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Introduction. The purpose of the present paper is to apply the well
known Schauder fixed point theorem, in its general from due to Tychonov
[8], to the situation of nonlinear (or rather, not necessarily linear) maps
defined on (or on a subset of) the " positive " cone in a partially ordered
locally convex linear space. Throughout this paper, no use is made of
possible linear properties of the maps under consideration. As far as the
author is informed, there is little history to the study of such mappings;
the only work done seems to be contained in papers by Krein-Rutman
[2], Rothe [9] and Morgenstern [3]. In [2], the Schauder theorem is
largely applied to linear maps (where it can be avoided) and a few non-
linear cases1. In [4], the author paid attention mainly to the case of
linear compact maps in general locally convex spaces. At the end of
that paper, with a somewhat sketchy proof, a general nonlinear theorem2

is stated which however seems to need some improvement.

In this paper, the essential proposition resulting from the fixed point
theorem is stated in the form of three different theorems to throw some
light on potential ways of argument. While Th. 1, depending on a special
convexity argument, is of a different character, Th. 2 is almost a special
case of Th. 3. But as Banach spaces with normal order cones (with
which Th. 2 is concerned) seem to be the most important ones in non-
linear analysis, it might be useful to have the theorem stated separately,
a much simpler proof than that of Th. 3 going with it. Applications
have been selected so as to furnish a non-trivial example to each of the
three theorems, the one to Th. 1 showing that it is not always fruitful
to restrict attention to normed topologies. It is understood that each
example constitutes a new result in its respective field.

Preliminary material. In the present section, we are going to collect
some theorems and definitions on which argumentation will be primarily
based in the sections to follow. The main tool will be the

FIXED POINT THEOREM (Tychonov). Let E be a locally convex linear
space, M a convex compact subset of E. If T is a continuous map on
M into M, then T has a fixed point x0 e M.

Received September 29, 1958, and in revised form February 11, 1959.
1 Also, considerations are restricted to Banach spaces.
2 Satz 3.1. This is restated and proved in this paper as Th. 3. The additional as-

sumption to be made in [4] may be any one of hypotheses a,β stated with Th. 3 of the
present paper.
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For the proof, see [8]. To make this theorem more easily applica-
ble to mappings that carry sets not necessarily compact into compact
ones, we state the following slightly more general

FIXED POINT THEOREM (2nd form). Let M be a complete convex set
in E. If T is continuous on M into M such that T(M) is relatively
compact, then T has a fixed point x0 e M.

Proof. Let Mx be the closed convex hull of T(M). As M is com-
plete, Mx is compact (Bourbaki [1], p. 81) and since obviously T(M1) c Mlf

Tychonov's theorem yields the desired result.
Let E be a linear space over the real scalar field. A partial ordering

of E is a binary relation " < " such that

1 x < x f or all x e E .

2 {x<y&y<z}^x<z.

3 {x < y & y < x] =φ x = y .

Such an ordering is said to be compatible with the linear structure of
E if in addition

4 { x > 0 & λ ^ 0 } = φ λ £ > 0 .

5 x>y=$x + z>y + z for all z e E.

The set of all x e E such that x > 0 is a convex cone C which con-
tains its vertex 0, and which is proper (i.e. C Π — C = {0}). C will be
referred to as the positive cone with respect to a given partial ordering
of Ez). Conversely, each cone in E with the listed properties defines
a partial ordering satisfying axioms 1 through 5, x < y meaning y — xe C.

Let E be a linear space, partially ordered by some such cone C
If T is a mapping defined on a subset of C, we will say T is positive
whenever the range of T is in C. If E is, moreover, a topological space,
T will be called strictly positive if T(xn) —> 0 implies xn —> 0 for any
sequence {xn} in the domain of T.

Examples •

1. Let E be Hubert space L2 (0,1) in its natural order, i.e. the
positive cone C consisting of all elements f:f(t) > 0, t e [0, 1], The positive
mapping, defined on all of E,

3 In this paper, all order ings are understood to be compatible v/ith the linear structure
of the space involved. Also, we exclude the trivial case C— {0}.
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is not strictly positive. Take fn — V ntn~ι, then | | / n | | = 1. Now as

τ(/n) = ί«, ιι τ(fn) ii = 7 _ L - - - o .
V2n + 1

2. Let E be the J3-spaee of continuous functions on the unit in-
terval, with its natural partial order. Let K(t, τ) be ^ 0 (but ^ 0) and
continuous on the unit square. If P(z) is a polynomial with non-negative
coefficients,

Γ(/)= [κ(t,τ)P[f(τ)]dτ
Jo

is strictly positive if and only if the constant term in P is > 0.

3. Denote by {Ea} a collection of topological linear spaces, each
Ea being partially ordered by some positive cone Ca. Then the product
space E — Π * ^ is ordered by C — HaCa. Let AΛ be a positive map
on E into Eay and consider the map

A(x) = (•••, Aa(x), ••')

on E into £7. Then A is strictly positive on C if and only if to each
α, there is a β(α) such that Aβ(cc) —> 0 (in ϋ7β) implies #Λ -> 0 (in £7α).
In particular, if Aa(x) = i Λ ( ^ ) , then A is strictly positive if and only
if each Aa is.

L Morgenstern's theorem* If E is the Banach space Llf partially
ordered by the positive cone C — {f:f(t) ^ 0 } , it turns out that the
intersection of C with the unit sphere S = {/: 11/11 = 1} is convex.
This is true for any abstract L-space or, more generally, for any normed
space in which the norm is additive on C. To this situation Morgenstern
[3] applied Schauder's fixed point theorem. He obtained the following

THEOREM (Morgenstern)4. Let E be a Banach space, partially order-
ed by a positive cone C which is closed and on which the norm is addi-
tive. Then if T is continuous and strictly positive on C Γ\ {\\x\\ = c},
c > 0, mapping this set into a compact one, there is some λ > 0 and
xeC such that Xx = T(x), \\x\\ — c.

The proof is readily obtained by applying the fixed point theorem
(2nd form) to the map cT(x)j\\T(x)\\ on the set C Π {||α|| = c}. How-
ever, it may be so arranged as to yield a much more general proposition.

4 The theorem is stated in our terminology and a slightly more general form.
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THEOREM 1. Let E be a locally convex space, partially ordered by
a complete cone C, and let T be a continuous, strictly positive transfor-
mation on C, mapping bounded sets into compact ones. Assume H: f(x) — l
is a closed hyperplane meeting C in a nonvoid, bounded set. Then to
each c > 0, there is an xe C and λ > 0 with

Xx = T(x) , f(x) = c .

Proof. It follows from our assumptions that the continuous linear
form f(x) is > 0 at every non-zero point of C. For assume there is
an xoeC, x0 Φ 0, with f(xQ) = 0. Then if yQeH Π C, we would have
f(Vo + [IXQ) = 1 f° r all μ ^ 0 which contradicts the hypothesis that H Π C
be bounded. It is now also clear that / cannot be < 0 on C. Apply-
ing the fixed point theorem (2nd form) to the map cT{x)lf[T(x)] on the
set H Π C, we get the desired result letting X = f[T(x)~\. c~\

REMARK. We should point out the relation between Morgenstern's
theorem and Th. 1. If, under the assumptions of the former, the norm
coincides on C with a continuous linear form, then Morgenstern's theorem
is a corollary of Th. 1. (This is the case in Llf e.g.). Assume then,
still under the assumptions of Morgenstern's theorem, that there is no
such linear form. Now C Π {IIx\\ = c] is convex (c > 0), so there is a
closed hyperplane H separating this set from a convex open neighborhood
of 0. Obviously H Π C is bounded and Th. 1 can be applied provided T
is compact, continuous and strictly positive on C.

II Banach spaces with normal positive cones We will now extend
Morgenstern's theorem to ordered Banach spaces in which the norm is
not necessarily additive on the positive cone C. This assumption will be
replaced by the weaker hypothesis that C is normal. A convex cone of
vertex 0 in a normed space E is normal [5] if the topology of E is
generated by a norm which is monotone (with respect to the order in-
duced in E by C) on C. In terms of the given norm on E, x -* ||ίc|[,
this amounts to saying there is a constant 7 > 0 such that

\\x + 1/11 ^7111/II for all xeC,yeC .

It can easily be checked that for all classical Banach spaces, the positive
cones pertaining to their natural partial orders are normal ([5], p. 130).

THEOREM 2. Let E be a normed space, partially ordered by a com-
plete normal cone C. Let T be a strictly positive transformation, which
is continuous and maps bounded subsets of C into compact ones. Then
to each c > 0, there is x e C and λ > 0 with

Xx = T{x) , \\x\\ = c .
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Proof. Consider the mapping

χ - » S e ( x ) = T(x) + \c- \\x\\\y

for fixed 0 Φ y e C and c > 0. This is a continuous map carrying bound-

ed subsets of C into compact ones. T being strictly positive, we have

inf j | |T(α) | | : ίceC&| | ίc | | ^ —Λ = ε > 0. Hence, C being a normal cone,

we obtain

infHSc(a?)| |^7 inf sup(HΓ(aj)[|, \c - \\x\\ | \\y\\) ̂  γsup(ε, ±-c\\y\\)> 0 .
xec xeo V 2 /

Thus x-+ Rc(x) = cSc(x)\\Sc(x)\\-1 maps C Π {II #11 ^ c} into a compact
subset. So by the fixed point theorem (2nd form) there is an x in this
subset with x = Rc(x). Clearly \\x\\ = c, and letting λ = ^MI^aOH we
have Xx — T(x). Since c > 0 is arbitrary, the proof is complete.

III. A third theorem* The theorem presented in this section weakens
the assumption in Th. 2 that E be normed and removes the hypothesis
that C be a normal cone. Instead, we require either one of conditions
a, β of hypothesis H (s. below) to hold. As the conclusion is only
established for some continuous semi-norm x -> p(x) on E (which, how-
ever, may be assumed to generate the topology of E if E is normed),
Th. 3 is not a generalization of Th. 1 or 2. We start out with a

LEMMA. If E is a locally convex space, C a closed proper convex
cone in E of vertex 0, then there exists a continuous linear form on E,
non-negative on C and > 0 at a given non-zero element of C.

Proof. Let 0 Φ y e C. Since C is proper and closed, there is a con-
vex open neighborhood U of — y such that C and \Jλ>oλ>U do not in-
tersect. Hence there is a closed hyperplane H separating C and UλxΛt/
Obviously H contains 0, so has an equation f(x) — 0. After a potential
change of sign, / will meet the requirement.

Now let E be any locally convex space, partially ordered by a com-
plete positive cone. A mapping T, defined on a neighborhood of 0 in
C into C, will be called of type " P" if it satisfies:

1. T is continuous and strictly positive.
2. There is a neighborhood U of 0 such that the image under T of

U Π C is relatively compact.

Consider

HYPOTHESIS H. We will say that hypothesis H is satisfied if one of
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the two following statements is true:
a. To each compact subset of C, there exists a continuous semi-

norm which is > 0 at each non-zero point of that set.
β. T is positive-homogeneous of some degree σ > 0, i.e. T(Xx) =

XσT(x) for xeC and λ > 0.
For instance, condition a is automatically fulfilled if there exists

a continuous norm on E (or even on Cf. Condition β is of course satisfied
if T is a linear map.

THEOREM 3. Assume hypothesis H holds and T is a mapping of
type " P " . Then there exists a continuous semi-norm p such that for
each 0 < c <L 1, there are an xeC and λ > 0 satisfying

Xx — T(x) , p(x) — c.

Proof. Let U = {x: ^(cc) ^ 1} be a closed neighborhood of 0 such
that T(U Π C) is relatively compact. Second, let q2 be selected, accord-
ing to which one of conditions a, β in H is satisfied, as follows:

Case a. Let q2 be a continuous semi-norm strictly positive on

τ(un C).

Case β. Let q2 = ĝ .
Third, by the lemma, we may choose an p C and a continuous linear
form / such that / Ξ> 0 on C while f(y) > 0. We may further suppose
that sup {qx(y), q2(y),f(y)} - 1.

Put p — sup {qlf q2, \f\} and consider the set Uι = {x e C: p(x) ^ c),
c being any fixed real number between 0 and 1 (1 included). For any
positive integer n, form the mappings

Tn(x) - T(x) + 11 - p(Tx) I n-'y

and S^αO = cTn(x)lp[Tn(x)]. Obviously, Sn is a transformation of type
" P " , mapping Ê  into itself, provided the denominator p[Tn(x)] has
a positive lower bound. To show that this is true, consider first all

xeU, such that p(T(x)) ^ —. Then
4

p(Tn(χ)) ^ f[Tn(χ)] ^ } f(y) Φ 0 .
An

3
For the remaining elements x e Uι we have p(T(x)) > ~-, hence

p(Tn(x)) ^ P(T(x)) - |1 - p(Γ(α;)) |^-^(7/) > A - 1 = 1 .

5 Condition α can be weakened so as to require the existence and continuity of the

semi-norms involved only on C.
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Applying the fixed point theorem (2nd form) to Sn, we are sure there
is an xne Ux satisfying xn = Sn(xn), p(xn) = c. Letting Xn = p(Tn(xn))'C~\
by definition of Sn we obtain

(*) λ A = T(xn) + |1 - v{T{xn))\n-ιV .

{T(xJ} being relatively compact, it follows that {Xn} is a bounded sequence.
Assume, for the moment, that {Xn} has a positive lower bound. Then
as the right-hand side of our last equation is relatively compact, so is
{xn}. (Here we may remark that for a convergent subsequence of
{xn}, the corresponding subsequence of λ's converges automatically to
some λ > 0.) Hence for each limiting point of a subsequence of {Xnxn},
such that Xnjc -» λ, Xx = T(x) and, by continuity, p(x) = c.

All that remains to prove is that Xn > η > 0 f or all n. Suppose there
were a subsequence {λfc} tending to zero. From this it would follow
that p(T(xk)) -> 0 which, by definition of p, in turn would imply
q2(T(xk)) -H> 0. On the other hand, T being strictly positive, 0 is no limit-
ing point to the sequence T(xn) because of p{xn) = c. Thus if a of H is
satisfied, we arrive at a contradiction. Now assume H holds by virtue
of condition β. Letting zn — Xnxn, {zn} has a limiting point z, say. Be-
cause T is strictly positive, we must have z Φ 0. Multiplying equation
(*) by λ£, we get

λjs» = T(zn) +

Now if there were any subsequence {λfc} of {Xn} such that λfc -> 0, we
would obtain (as XI -» 0) Γ(2;) = 0 for some ze C,z Φ 0. This again con-
tradicts the hypothesis that T be strictly positive, and the proof is
complete.

REMARK. Hypothesis H was needed to prove that {Xn} does not
have 0 as a limiting point. The proof of Satz 3.1 in [4] is essentially
the same as the one presented here, but is incorrect at the point where
it says " λ0 > 0 " (I.e., p. 329, line 3 f.b.).

Applications* The remainder of this paper is concerned with a num-
ber of applications to the preceding theorems.

1. Consider the linear space ω of all real sequences x = (xlf x2, •)>
partially ordered by the positive cone C = {x: x% ^ 0, i = 1, 2, •}. In
the product topology (i.e. considering ω the product of countably many
real lines) ω is locally convex. Let r > 0 be a fixed integer and let
k = (kl9 k2, •) denote any sequence of non-negative integers such that
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Σllifc ί = r.6 Since the set {k} of all such k is countable, we may
arrange it into a sequence hence consider {&} as ordered by the natural
order of subscripts.

Further, denote by xk the product Πfc^^Λ Now if to each k and
each positive integer i there corresponds a real number aiJC ^ 0 such
that

Σ α u < C ,

where C is independent of i, the equations

(fc)

define a mapping y — A(x) on the subspace of all bounded sequences
into itself such that each yt is a homogeneous form of degree r in the
variables xlf x2, ••• (If r — 1, then A defines a bounded linear map on
the jB-space (m)).

Consider the properties

a. There are n rows in A (the first n rows, say) such that

n

Σ aijc ^ βjΛ; for all k and all j > n .

n n

β> Σ Vi -* 0 implies Σ #« ~> 07

We prove the following theorem:

// α mapping A of the above mentioned type satisfies a and β, there
are a X > 0 and an x > 0 for which

Xx = A(x) .

REMARK. If r = 1, then the point spectrum of the bounded map
A on (m) contains a positive real number.

Proof. Consider in ω the cone Cι~Cf\ {x: Σf-i^t = ^J> i > bl-
owing to a, A(x) is defined on the cone Cx into itself. Since ω is com-
plete and C± closed, Cλ is a complete cone in α>. Next we show that
Af which is in general not defined but on a dense subset of ωy is con-
tinuous on Cx. Let xn -> x in Cx. It follows from the definition of Cλ

that all coordinates of all the xn are uniformly bounded, say by some

6 A more general theorem results if we admit all k such that Σ &•* : ^ r

7 Cf, Example 3 in the preliminary section.
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constant M ^ 1. Given ε > 0 and any fixed subscript ΐ, we can find
a k0 such that

k>kQ

Then if yn — A(xn) and y = A(x), we obtain

I (ni 0j\ I "̂CΓ \ Λ 1 /Ί Ύ Π Ύ^" I I \ ^ ri /γ>^ _J_ NΓ~* ,-* /γk

The last two righthand terms are, by the choice of kQ, each less than

—ε. The first righthand term will be less than —ε for n > n0 if n0 is
O O

large enough, since there are only finitely many coordinates of both xn

and x involved. Thus we have \(yn — y)A < ε if n > n0 and continuity
is established.

n

Now f(x) — Σ xt is a continuous linear form on ω. The intersection
of the hyperplane f(x) = 1 with CΊ is certainly bounded as (0 ^) xt ^
1, ΐ = 1, 2, , in that intersection. Moreover, a set {x} is bounded in
ω if and only if \xA < Mi uniformly on {x}. If M% can be chosen in-
dependently of i, then the set is relatively compact by the well known
Tychonov theorem. Thus on CΊ closed bounded sets coincide with com-
pact sets, and A transforms bounded sets into compact ones on Cx.

By hypothesis β, A is strictly positive on Ct. (Conditions more ex-
plicit than β may be obtained easily by applying the reasoning of Ex-
ample 3, preliminary section.) Hence A meets all the requirements of
Th. 1 and the proof is complete.

2. In a recent paper [7], Schmeidler proved the existence of an
eigenvalue to the homogeneous algebraic integral equation of order n

(* ) μnyn{s) ~ Σ i"V(s)αβ(β, y) = 0 , (0 ^ s ^ 1)

where n is an odd integer > 0 and

ί i ri

• \ Kβ(s, t19 , Qy^+Htj) y'*+1(t)/)dtί dtvo Jo

are homogeneous integral forms with continuous kernels Kfίβ& t)
such that (β + l)(v + 1) = n + 1 and the K'& are symmetric with re-
spect to all their arguments. Schmeidler shows (*) to be the natural
generalization of a linear Fredholm equation with continuous symmetric
kernel. In an earlier paper [6], a theorem was stated by Schmeidler
that generalizes the well known Jentzsch theorem on linear Fredholm
integral equations with positive kernel. The proof of that theorem of
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Schmeidler's, however, appears to be incorrect8. We are going to show
that the theorem yet is correct and holds under weaker conditions than
the ones stated in [6]. Let us call (*) an algebraic integral equation
with non-negative coefficients if n is any positive integer and

<*β(s, y) = Σ Γ Γ Kβai αv(s, t19 , QyW ViQ^dt, . dtv
α 1 + . . + α v = » - β J θ J o

are homogeneous integral forms of order n — β with continuous kernels
Kβ*r..a(s, tlf •••, tv) ^ 0. We will prove this theorem:

// some aβ contains a term I K(s, t19 , t^yit^ y^yd^ dtv

such that a is the highest power occurring in any aβ, and if

[K(sf tlf , tv)ds ^ δ > 0 for (tlf , ίv) 6 [0, If
Jo

then (*) /KXS cm eigenvalue μ0 > 0 wiίft eig en function yo(s) ^ 0.

Proof. We first state a

LEMMA. Consider the mapping φ: (α0, , α^-J -> 2;0 where z0 is the
greatest real root of

( 1 ) * » - Σ α β S β = 0 .
β-0

i s defined a n d c o n t i n u o u s o n t h e s e t { a β ̂ O O ^ β ^ n — 1 }
It is clear that z0 = 0 if and only if α0 = αx = = an^1 = 0, and φ

is continuous at that point. At any other point, however, z0 is a simple
root which implies continuity of ψ.

Recalling that a is the highest power of y in any aβ, we observe
that aβ(s, y) (0 ^ β ^ n — 1) exist for all y(s) e Lα(0,1). Moreover, each
aβ(s, y) is a continuous map on [0, 1] x LΛ into the space C(0, 1) of con-
tinuous functions on [0,1]. For

( 2 ) |αβ(s, i/) - αβ(ί, §r) | ^ |αβ(s, 2/) - αβ(s, 7/) | + \aβ(s, y) - aβ(t, y) \

where the first righthand term can be estimated by expressions of the
form

/ = I K\y{t^) — ^ I M O / ^ I ) * 1 " 1 + y(tyΊ~λ)y(t^i*2 y(tv)^dtL dtv.

Using Holder's inequality we arrive at an estimate

| I | ^ const- | | i /- i f | lP( | | s/ | | , \\y\\)

where P(u, v) is a homogeneous polynomial of order n — β — 1 in u, v
8 The treacherous point is that the mapping η -> ?/, [6] p. 252 above, is not continuous.
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and II || denotes the norm in LΛ. Thus, aβ(s, y) — aβ(s, y) -+ 0 uniformly
in s as y -> y in La. The second righthand term in (2) can be estimated
by terms

//= J [K(8, tλ tv) - K(t, tx

so if \s — t\ < δ(ε), the iΓs being continuous, we obtain

\II I ̂  ε j ^ r ^ J

yydt <: I 7/Λcίί if γ ^ α.
o \Jo /

This proves continuity of aβ on [0, 1] x L*. But from the above rea-
soning it is obvious that {aβ(s, y)} is an equicontinuous, bounded set of
functions if y runs through any bounded set of La. Hence, by the
lemma, we have established:

The mapping y(s) -> zQ(s), z0 being defined as the greatest real root
of (1) for each se[0, 1], maps any bounded subset of the positive cone
in La onto a set of equicontinuous, non-negative and uniformly bounded
functions over [0, 1].

Thus the map y -> z0 satisfies the assumptions of Th. 2 if we can
show that it is strictly positive. For that end, let [[zo|| —• 0. If K is
the kernel mentioned in our present theorem, we get by (1)

zo(sf ^ zo(sy [ [K(8, tu . ., ty)y(ti)* V(U)*dtx - - - d t v
Jo Jo

where va + β — n. Since z0 is the greatest real root of (1), there
follows

J

Integrating this last equation, we obtain

( 3 )

Now assume first that y is bounded in La as z0 -> 0. Then z0 runs
through a uniformly bounded set of continuous functions and hence, as

it converges to 0 in measure, \ zQ(s)voύds -> 0. By (3) this implies \\y\\ -> 0.
JΘ

This excludes that III/II —> oo as 20->0, for division of z and y by \\y\\
(remember that (*) is homogeneous) would lead to \\y\\ = 1 while zo~+ 0.

9 In general, aβ are not continuous for the weak topology on
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Thus y ~> z0 is strictly positive and the application of Th. 2 ends the
proof.

3. Let Ω be a compact region in Euclidean n-space, C(Ω) the B-
space of continuous functions on Ω, and D(Ω) the space of continuously
differentiate functions on Ω in the topology of uniform convergence of
the function and its first order derivatives. Assume a kernel K(s, t) ^ 0
is given on Ω x Ω and a real function f(s u, Pi) of 2n + 1 arguments
(letting s — (x19 •••, xn)) such that these conditions are satified:

1°. K{Λ\Γ) = \ K(s, t)\\r(t)dt is a compact linear transformation on

C(Ω) into D(Ω) which has an eigenvalue X1 > 0 with an adjoint eigen-

function φ(s) that is ^ 0 and bounded except on an ί2-subset of (Lebesgue)

measure 0.

2°. / is a continuous real valued function, defined for se Ω, u ^ 0,
\pL I < cx> (i — 1, . . . , n) and such that

iau if 0 < u < 8

where a, 8, K are three suitably chosen positive constants. Then the
following theorem holds:

Under conditions 1°., 2°. the nonlinear integro-differential equation

Xu(s) = ( K(s, t)f(t u(t), ^ - (
Ω

has for each c > 0 at least one solution u ^ 0 with λ = X(u) > 0 and
\\u\\ = c, ivhere \\ | | denotes a suitably chosen norm of D(Ω). Moreover,
X(u) satisfies the inequality X Ξ> Xλ inf (a, Kc1).

Proof. D(Ω) is partially ordered by the positive cone C = {u:u ^

0 on Ω] but we note t h a t C is not a normal cone (cf. sec. II). For any

ε > 0, the transformation 1 0

u,

is, due to the continuity of / and condition 1°., compact and continuous
on C into C For all ue C we have

f Ts(u)ds ^ \\κ(s, t)εdtds ^ ε \\κ(s, t)φ(s)dtds = ελ: f ^(s)ds > 0

1 0 The following proof shows how cases may be handled where strict positiveness of

the map involved cannot be verified. (Ts is not necessarily strictly positive by Example 2

of the preliminary section if ε = 0.)
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if sup ess φ(s) = 1. Hence Tζ is strictly positive and we may apply
Th. 3, hypothesis H being satisfied through condition a. Following the
notation of the proof to Th. 3, choose for qλ any norm generating the
topology of D(Ω), let q2 — max \u\ and write p — || | | . (Obviously p is
a norm generating the topology of D(Ω); it is also evident that, in the
present case, the statement of Th. 3 holds for all c > 0 instead of
0 < c ^ 1.) Thus, c being fixed, to each ε > 0 there is a us ^ 0 and
Xs > 0 such that

( 1 ) \eu9 = T ε ( O , \\us\\ = c .

We are going to show that λε has a positive lower bound for ε > 0.
Multiplying (1) by ψ and integrating, we obtain

( 2 ) λ i uεφdt = ί ί ίΓ(s, <)^(s)[/(uε(ί)) + d

= λxj Ψ(t)[f(us(t)) + e]dt

Now β is the union of two measurable subsets Ωx and β2 such that
Uz ^ δ in £?! whereas ^ ε > 8 in β2. On account of condition 2°. we have

jdt ^ α \ cpu*dt

and

ί ψf[us]dt >κ\ φdt^ — \ φuεdt ,
JΩ 2 JΩ 2 cγ J Ω 2

where γ ^ 1 is a constant such that max \u\ ^ 7II^11 for all ueD(Ω)n.
Hence for the last integral in (2),

1 φflus]dt ^ a l φu2dt + — 1 φusdt ^ inf («!—- )ι
JΩ jQ a cγ JΩ 2 V cγ / J

and we finally obtain

( 3 ) λs :> inf f α, ~) . λx f or ε > 0 .

Now let ε->0 in (1). As | |w8 | | = c independently of ε, the righthand
side of (1) is a relatively compact sequence and so is the corresponding
sequence of u, by (3). Thus for a common convergent sequence of λε

and uε, the limit function u satisfies λ% = T0(u) and the proof is complete.
11 p = sup {<7i, <72, | / |} (Th. 3) implies γ ^l- If / does not depend on any pi, the proof

may be carried via Th. 2 and we will have γ — 1, ||w|| = max \u\.
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REMARK. If f(s;u, pt) is such that S may be chosen arbitrarily

large (e.g., if / = au + g(s; u, p%) with g ^ 0), then we will have Ω2

void and λ will satisfy the inequality

X(u) ^ aX1 .

We apply the preceding theorem to the following problem.

Let Ω be a compact region in 3-space such t h a t Green's function

for the first boundary problem of potential theory exists. I t is then

well known t h a t this kernel G(s, t) satisfies condition 1°. of our theorem.

It f(s; u, pt) is Holder continuous with respect to all variables, then t h e

equation

Xu(s) = I G(s, t)f(t; u,
JΩ V dxt

is equivalent to the boundary problem

1 j ίlUj ~\~ ΛJ jΓ I S , Uι,

V dxi

Hence, if / satisfies condition 2°., we have:

The nonlinear boundary problem (*) has, for suitable values X > 0,

solutions u Ξ> 0 such that max u attains any positive real number. If,

moreover, f = u + g(s; u, pt) (g >̂ 0), then for each such λ

X(u) >̂ Xι ,

where Xλ is the largest eigenvalue of the corresponding linear problem.
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