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We present here a theorem on the existence of arcs in partially or-
dered spaces, and several applications to topological semigroups. The
hypotheses are motivated by the structure of the partially ordered set
of principal ideals of a compact connected topological semigroup with
unit. Noteworthy among the applications are (I)1 a compact, connected
topological semigroup with unit contains an arc. (2) A compact, connected
topological semigroup with zero, each of whose elements is idempotent,
is arc-wise connected. Throughout the paper, arc is used in the
sense of "continuum irreducibly connected between two points". We
do not assume metricity of the spaces, but all spaces are assumed to
be Hausdorff. Simple non-metric examples of the theorems are furnish-
ed by the "long line", i.e. the ordinals up to and including Ω, filled
in with intervals, the operation being a-b = min(α, b). The author is
indebted to R. D. Anderson, R. P. Hunter, and W. Strother for useful
suggestions.

We recall the following definitions: [10] (X, <) is a partially ordered
space if X is a space, and < is a reflexive, antisymmetric, transitive
binary relation on X. A chain in X is an ordered subset of (X, <).
We denote by Graph (<) the set of pairs (x, y) with x < y. We denote
by A\B the complement of β in A; closure is denoted by*, F(A) denote
the boundary of A, and Π denotes the empty set.

The following result of the author [3] is presented here in detail
because of its relation with Theorem 2.

THEOREM 1. Let (X, <) be a compact partially ordered space and
let W be an open set in X. //

(1) For each x e X, {y\y < x} is closed, and
(2) For any x e W, each open set about x contains an element y

with y < x,

then if C is any component of W, C* Π F(W) Φ G.

Proof. We show first that if V is open and V a W, then F(V) φ
Π. Let M be a maximal chain in F*. Then M is compact [10], hence
M has a minimal element m e F*. If m e F, then by hypothesis (2)
above, the chain M can be extended, contrary to the maximality. Now
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* iThis settles a question raised by D. Montogomery. The author learned of the
question through A. D. Wallace.
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let C be a component of W and suppose C* Π F(W) = [ ] . Then by
standard arguments [5; p. 110] there is an open and closed set N with
C c N c TΓ. Hence iV is an open subset of W with F(N) = •, a con-
tradiction.

In the next theorem we use the following topology for the space
S(X) of non empty closed subsets of a compact space X, which is an
extension of the Hausdorff metric topology [1]. For open sets U and V
of X, let N(U,V) = {A\AeS(X),AaU,An VΦU). Take {N(U,V)\U,V
open} for a subbasis for the open sets of S(X). It is known that if X
is compact Hausdorff, so is S(X).

THEOREM 2. Let (X, <) be a compact partially ordered space, and
let W be an open set in X. If

(1) Graph (<) is closed and
(2) For any x e W, each open set about x contains an element y

with y < x,
then any element x of W belongs to a (compact) connected chain C with
C n F(W) Φ D and x = sup C.

Proof. Let W be as above, and fix a e W. Since W* Π {y\y < a}
is a compact partially ordered space and contains the relatively open set
W Π {y\y < a} satisfying the above hypotheses, we may assume that
X — {y\y < a} and that W is an open set in X with α e ! f c W* = X.
Let ^ denote the collection of all closed chains in X with a e C and
C n F(W) Φ Π. By Theorem 1, F(W) Φ LJ hence if 2 6 F(W), the
elements a and 2 constitute an element of ^ so that r^ Φ Π.

(i) ^ is cίosecZ m S(X). We show that S(X)\rt? is open. Let A
be closed in X, with Λ 0 c<£ If A is not a chain, then there are ele-
ments x and 7/ of A with a? ̂  y and y ^ x. By hypothesis (1) there
exist open sets U and F about a? and y with the property that x' e U,
y' e V imply x' £ yf and y' <£ x'. Then iV(X, U) Π ΛΓ(X, F) is an open
set about A, and misses ^ If A is a chain but α ^ 4 , then (X\α, X\α)
is an open set about A which misses % and the case F( W) Π A = •
goes in a similar way.

D e f i n e L ( x ) = {y\y < x} a n d M(x) = {y\x < y}. A l s o d e f i n e (x, y) =
{z\x < z < y). Let δ be an open cover of X, and define a subset M8 of
S(X) by: C e M8 iff C is a closed chain in X, and for any x and y in
C with x < y and ( ι c , | / ) n C = D , there exists Ve 8 such that F
meets both L(a?) Π C and M(̂ /) Π C.

*

(ii) Mδ Π v:/ ̂  L_.;, for any open cover 8. Let δ be an open cover
of X, let & be the collection of all closed chains C with C a W, Ce M8,
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and a e C. Let <J? be a maximal tower in ^ and let T = U ^ Note
that T is a chain containing α, hence by hypothesis (1), Γ* is again
a chain. Also it is easily seen that inf T = inf T*. We will show that
T* e Ms. Let x, y e Γ* with x < y and (x, n ) n f = D . Suppose
a; = inf Γ; then if inf Γ $ T it follows that TcM(y), hence x e T*<zM(y),
a contradiction. Hence # — inf T e T, so there exists 7\ 6 ^f such that
x e Tλ. Since Tλ e Ms, there is V e 8 with F * meeting both L(x) Π ?\
and Λ%) Π 2^ Hence F * meets both L(a ) n T* and Mfy) Π Γ*, and
it follows that T* e Mδ. Therefore we may suppose inf T < x < y, so
there exists t0 with inf T < tQ < x < y, t0 e To e ^/Γ Since TQ e Ms, it
again follows that T* e M8. This establishes that Γ* e Afό and it re-
mains to show T * e ^ If Γ* c If, then Γ* e /2; so by the max-
imality of Γ, T* = Γ. Hence inf T e Γ c W, so there exists Ve 8 with
inf T e V. There is an element y e V f] W with y < x. By an easy
argument, T U y e Ms, so T U y e rS, T U y = Γ, and y e T, a con-
tradiction. We conclude that 3Γ* Π f ( ^ ) ^ D , and Γ* 6 Λfδ Π r ^

(iii) M8 Π ^ ŝ closed for each finite open cover 8 of X, Let δ
be a finite open cover of X. We show that S(X)\Mo Π r ^ is open.
Let A be a closed set, A 0 Mδ Π cώZ Then either A ^ r < or A 6 r
but A $ Ms. If A $ ^ then by part (i) there is an open set about A
which misses ^ Suppose i e ^ 7 and A $ Ms. Then for some x, y e A
we have (x, y) Π A — Π, and for each Ve 8, F * misses either L(x) Π A
or M(y) n A. By an easy argument which makes use of hypothesis (1)
and compactness, there are open sets U1 and W1 about L(x) Π A and
M(y) Π A resp. with the property that xf e U1 and y' e W1 imply y* £ x'.
Let U2= Γl{X\V*\VGδ, F * ΓiL(x) n A = •}, TΓa = Π ί W Ί ^ e δ ,
F * Π Λf(̂ /) Π A = Π}. Then, since δ is finite, C/2 is open and contains
L(x) Π A, TF2 is open and contains M(y) Π A, and for each F 6 δ, F *
misses either ί/2 or F2. Let ί/; = ^ Π ί/2, T7' = W\ Π T 2̂. Now
iV(ί/' U W7, f/r U TF') is open, contains A, and a§ we next show, misses
MβΠ^f Suppose Ce^rnΛΓ(ί7'U TΓ', Ϊ7'U TF'). Let x' = sup(Cn J7'), 1/' =
inf(CnTF'); then « i / ' ) n C = D . Also L(x')n Ca U" and Λf(i/')n Cd W,
and since for each Ve δ, F^ misses either C/r or Tf;, we conclude that
C $ Mδ. This completes (iii).

For any finite open cover 8, put Pδ = Ms Π ^f and let ^ = {Pδ}.
Note that if Paf Pβ e ^ then there is a finite open cover γ which refines
both α and /9, and hence Py c PΛ Π Pβ. Therefore Γ l ^ 5 ^ D L ^ t
C e Π ^ ? and we show next that C is order dense. Let x,y e C with
& < 2/. Then L(cc) Π Λf(ΐ/) Π C = •> so by normality there are open sets
U and F about L(x) Π C and Λ%) Π C resp., with U* Π F * = ••

Let α be the finite open cover consisting of {X\U*, X\V*}. Since
C e Pa and it is false that the closure of each member of a meets both
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L(x) and M(y), we conclude that (x, y) Π C Φ •> and C is order-dense.
Hence C is a compact order dense chain from a to F(W), and is there-
fore an arc. The proof is complete.

COROLLARY 1. Let (X, <) be a compact partially ordered space
with unique minimal element 0. //

(1) Graph (<) is closed in X x X and
(2) L(x) is connected for each x e X, then X is arcwise connected.

Proof. Let W=X\0; then from the connectedness of each L(x),
we see that W satisfies the hypotheses of Theorem 2. Hence each ele-
ment of X can be joined to 0 by a compact connected chain.

We note that Corollary 1 contains a result of Wallace [8].

Let S be a compact topological semigroup, and for a e S, let J(a) —

a U Sa U aS U SaS, and let J = {(x, y)\J(x) = J(y)}. Endow — with

o

the quotient topology, and let φ:S->— be the natural mapping.
J

SFrom the compactness of S it follows that — is compact Hausdorίf.
J

We denote by E the set of idempotents of S.

COROLLARY 2. Let S be a compact connected topological semigroup,
S

with S = ES U SE: then — is arcwise connected.
J

Proof. We define a partial order in — by: φ{a) < φ(b) iff J(a)aJ(b).
J

From the compactness of S it follows that Graph (<) is closed in S x S.
Further, if K denotes the minimal ideal of S, then φ(K) is the unique
minimal element of —. Note that L(φ(x)) = J(x); since S = ES U SE, it

J
follows that J(x) is connected. Hence Corollary 1 applies, and the proof
is complete.

REMARK. By a similar argument it can be seen that if L is a con-
tinuous monotone reflexive struct [4.7] on a continuum X, all of whose

minimal elements are related, then — is arcwise connected.
L

COROLLARY. 3. Let S be a compact connected topological semigroup
with unit u, and let V be an open set about u; then V contains an arc.

Proof. If S is a group, the result is known [2], hence we may sup-
pose that u 0 K, where K is the minimal ideal of S [9]. Let E denote
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the set of idempotents of S, and partially order E by: e < / iff ee fSf.
It follows from the compactness of S that Graph ( < ) is closed in E x E.
If there exists an open set W about u such that W d E satisfies (2) of
Theorem 2 (taking X = # ) , then I f n F ί l ί ? also satisfies (2), so there
is an arc in V. If for each open set W about u, W Π E fails to satisfy
(2), then there exists e e E Π F ί l (S\ίΓ) such that eSe Π # Π V= {β}.
Since e $ K, eSe is non-degenerate. Hence eSe is a compact connected
semigroup with unit e in which there is an open set containing e but
no other idempotent. By a theorem of Mostert and Shields [6] there is
a local one-parameter semigroup in eSe Π V and the proof is complete.

A compact connected semigroup with unit may fail to contain an
arc which contains the unit. This is illustrated in Example 2 below,
and is due to R. P. Hunter (unpublished).

EXAMPLE 1. Let R+ denote the non-negative reals under addition,
and let C by the unit disc in the complex plane: C = {z: \z\ < 1} Let
W = {(z, t);z = exp(2τris), t = e~\ s e R+}, and set S = (C x {0}) U W.
Then S is a compact connected semigroup with zero and unit, but does
not contain a standard thread joining the two. We may describe S by
saying it is a two-cell with an arc winding on its boundary.

EXAMPLE 2. Let A be the graph of x2 + y2 < — z = 1 - 4- i =
i %

1,2,3, •••. The Di then converge to a point u. From the center of
Dί+1 we start an arc At which winds upon the boundary of Dt as in
Example 1. Let St = Ai (j A ; S, is then a compact connected semigroup
with zero 0< and unit %4. Repeat this construction for each positive in-
teger i, and let S — {Jβ^ We define multiplication in S as follows: if
x, y e S and both cc and y belong to the same Sίy let xy be the product
given in Sίt If x e St and y e Sj with i < i, define xy — yx — as. It is
easy to see that S* becomes a compact connected semigroup with zero
0i and unit u. Moreover, no arc in S* contains u.

COROLLARY 4. Let S be a locally compact connected topologίcal
semigroup with zero (0), each of whose elements is idempotent; then S
is arcwise connected.

Proof. Note that e < f iff e e fSf defines a partial order on S,
and that Graph ( < ) is closed in S x S. The conclusion is now im-
mediate from Corollary 1.

We conjecture that compactness can be replaced by local compact-
ness in Corollary 4, and further, that a locally compact connected
semilattice is arcwise connected.
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