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l Introduction* Let X and Y denote normed linear spaces and
let T Φ 0 be a linear operator with domain D(T)aX and range R(T)z) Y.
In this paper, D(T) is not required to be dense in X and T need not
be continuous. Furthermore, X and Y shall be assumed complete only
when necessary. Under these general conditions, we investigate some
invariant properties of the range and inverse of T when T is perturbed
by a bounded linear operator A. For example, it is shown that if the
range of T is not dense in Y and T has a bounded inverse, then T + A
has the same properties provided that D(A)^D(T) and the norm of A
is sufficiently small. In addition, a theorem of Yood ([5], Th. 2.1) is
generalized with some of the proofs simplified.

DEFINITION. Let Xx = D(T)aX. When Xx is considered as a normed
linear space, the conjugate transformation Tf is defined as follows: Its
domain JD(T') consists of the set of all y* in the conjugate space Y' for
which y'T is continuous on D(T); for such a y' we define T'y' = xf where
x' is the unique bounded linear extension of y'T to Xλ\ that is, x' is in
the conjugate space X[ of Xx.

The above notations shall be retained throughout the discussion.

2 Ranges and inverses of T + A.

LEMMA 1. If T has a bounded inverse, then so does T + A when-
ever \\A\\< \\T-ι\\~\

Proof. \\{T + A)x\\ > (HΓ-MI- 1 - l |A| | )[ |αM|.

THEOREM 1. // R(T) — Y and T has a bounded inverse, then
R(T + A) — Yand T + A has a bounded inverse whenever \\A\\ < HΓ"1!!"1

and D(T)dD(A).

Proof. By [4] Th. 1.4, (T')"1 = (T"1)' exists and is continuous on
X[. Hence from the lemma we conclude that (T + A)r — Tf + Ar has
a bounded inverse since ||A'|| = ||A|| < HΓ"1!!"1 = HCH"1!!"1. The theo-
rem now follows from [4] Th. 1.2.

If for X = Y, the resolvent of a linear operator T is defined as the
set of scalars λ such that (T — λ/)"1 exists and is continuous on a
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domain dense in X, then the following corollary is an immediate result
of the theorem.

COROLLARY. The resolvent of a linear operator is open.

DEFINITION. For each z φ 0 in Γ, let

mz(T) = sup W l l z - Tx\\ ̂  k\\Tx\\,xeD(T)} .

We define m(T) = sup ma(T).

REMARK. m(Γ) ^ 1; This follows from the fact that for Tx Φ 0
and for each ze Y, \\z-Tαx\\l \\Tαx\\ ̂ 1 + | | s | |/ \\Tαx\\->l as |α|-»oo.

LEMMA 2. Let Y be complete. Then R(T) = Y if and only if
m(T) = 0.

Proof. If R(T) = Y, it is easy to see that m(Γ) = 0. Suppose

there exists an element yoe Y which is not in R(T). The 1-dimension-

al linear manifold [y0] spanned by y0 and the linear manifold [y0] + R(T)

are closed in Y; moreover, [yo]ΠR(T) = (0). Hence by [2] Th. 2.1,

there exists a A: > 0 such that \\y0 — # | | ̂  fe||i/|| for all yeR(T); that

is, m(T) > 0.

THEOREM 2. If R(T) Φ Y and T has a bounded inverse, then

R(T + A) Φ Y and T + A has a bounded inverse whenever

\\A\\ < m(T)l\\T-% and D(T)aD(A).

Proof. Clearly there is no loss of generality if the theorem is proved

for the completion Ϋ of Y. Thus it may be assumed that Y is com-

plete. We now simplify and apply an argument given by Yood

[5, p. 489], From Lemma 1, T + A has a bounded inverse. By Lemma

2, there exists, for each ε > 0, an element yQe Y but not in R(T) such

that

(1) \\yo-Tx\\^(m(T)-ε)\\Tx\\ for all xeD(T) .

Suppose that the theorem is not true. Then yoe R(T + A) = Y and
thus we may choose an element x e D(T) so that

H(Γ + A)x - ϊ/ol| < min (εd, \\yQ\\) ,

where d is the distance between yQ and R(T). In particular,
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( 2 ) \\(T + A)x - yQ\\ < ed ̂  e||y0 - Γa?|| and x Φ 0 .

From (1) and (2),

l |A| | | |α | | ^ \\Ax\\ ̂  \\Tx - yo\\ - \\y0 - (T + A)x\\ > ( 1 - ε)\\yQ - Tx\\

^ (1 - ε)(m(Γ) - ε)||Γaj|| ^ HΓ-Ml^l - e)(m(Γ) - e)\\x\\ .

Since ε > 0 was arbitrary, | |A| | ^ I I Γ " 1 ! ! " 1 ^ ^ ) ) which is impossible.

LEMMA 3. Suppose X and Y are complete. If T is a closed linear

operator, then R(T) = Y and T~x does not exist if and only if R{T') Φ X[

and Tf has a bounded inverse.

Proof. This follows from the " state diagram" for closed opera-
tors [1].

THEOREM 3. Suppose X and Y are complete. If T is closed,
R(T) = Y and T~x does not exist, then R(T + A) = Y and (T + A)-1

does not exist whenever D(T)czD(A) and A < mί

Proof. By Lemma 3, R(Tf) Φ X[ and T' has a bounded inverse.
Futhermore, D(A') = Y'z>D{T') and T' φ 0 since D(T') is total ([4]
Th. 1.1). From Theorem 2, it is clear that R{T' + A') Φ X[ and Tr + A'
has a bounded inverse. Since T' + A' — (T + Ay and T + A is closed,
the theorem follows from Lemma 3.

3. A generalization of a theorem* In ([5] Th. 2.1), Yood proves a
theorem about the range of a bounded linear transformation T and its
conjugate Tr, where T maps Banach Space X into Banach space Y.
We now generalize the theorem by requiring instead that T be a closed
linear operator on D(T). The results are stated in a different but more
precise form than in [5].

DEFINITION. If T has a bounded inverse, let K(T) = HT1-1!!, other-
wise let K(T) — 0. We now define a number a(T) as follows:

a(T) = min ((m(Γ), ̂ | L ) if m(Γ) > 0
\ K{1 ) /

= oo if m(T) = 0 .

α(T') shall be defined in a similar manner.

THEOREM 4. Suppose X and Y are complete. Let T be a closed

linear transformation and let A represent a bounded linear transform-
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ation such that D(A)IDD(T). Then the following statements concerning
T are equivalent.

(1) Either T has bounded inverse or R(T) — Y.

(2) β ( T ' +A')cΛ(Γ ' ) if \\A\\ < a(Tf).
(3) R(T' + A ' )cβ(Γ ') if \\A\\ < a(T').

(4) R(Tf) is not a proper dense subset of X[ and \\A\\ < α(Γ')

implies that R(Tf + A')a.R(Tf).
(5) R(T') is not a proper dense of X[ and \\A\\ < α(Γ') implies

that R(T' + A')cR(T').

(6) R(T + A)dR(T) if \\A\\ < a(T).
(7) R(T+A)czR(T) if \\A\\<a(T).

(8) R(T) is not a proper dense subset of Y and \\A\\ < a(T) im-

plies that R(T + A)aR(T).
(9) R(T) is not a proper dense subset of Y and \\A\\ < a(T) im-

plies that R(T + A)aR(T).

Proof. (1) implies (2): (T need not be closed): If T has a bounded

inverse, then by [1] R(T') = X[Z)R(T' + A') for all A. If T has no

bounded inverse, then R(T) = Y so that R(T') φ X[ and T' has a

bounded inverse by [1]. Since T' is closed, it follows that R(Tf) is

closed; i.e. m{T') > 0. If (2) is false, there exists an x'oe^R(Tf + A')

but at a positive distance d from R(Tf). By the argument as in Theo-

rem 2, | |A| | - HA'll ^ 5 © ^ ^(^0 > II^H w h i c h i s impossible.

(2) implies (3). Obvious

(3) implies (1): (cf. [5]): If R(T) ^ 7 and T has no bounded in-
verse, then we show that (3) fails to hold. By [1], R(T') Φ X[ and T'
has no bounded inverse. Therefore, we may choose an element x'oe X[,
||ίcί|| = 1 and x[ 0 R(Tf). For each ε > 0, there exists an element
y'oeD(T') such that | | ^ | | = 1, \\T'y'0\\ < ε and an element y0 such that
Ill/oil = 1, y'oVo = β is real and 1^/5^1/2. Let A be defined by
Ax = ε(x'ox - (εβy'T'yΌx) y0 for xeD(T). Hence

'T'y',) = eβx'Q - T% ,

so that

{Tr + A')y', = ε/9^ $ R(T'). Moreover, \\A\\ ̂  ε(l + —) ^ 3ε .

Since ε > 0 was arbitrary, it follows that (3) does not hold.
(4) and (5) implies (1): Follows from the above argument.

(1) implies (4) and (5): (T need not be closed): This follows from

the fact that
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(1) implies that R(T') is closed and also that (1) implies (2).
(1) implies (6): If R(T) = Y, then (6) is satisfied. Suppose

R(T) Φ Y but that Γ has a bounded inverse. Hence R(T) is closed so
that m(T) > 0. If (6) is false, there exists an element yoεY = R(T + A)
but yQ $ R{T). The remaining argument is now as in Theorem 2.

(6) implies (7): Obvious

(7) implies (1): If R(T) Φ Y and T has no bounded inverse, then
for ε > 0, there exists an element x0 e D(T), \\xo\\ = 1 such that || Txo\\ < ε.
An element xf

oeX[ is chosen so that \\xr

0\\ = 1 and x'Qx0 = 1. Suppose
that y $ R(T) and \\y\\ = 1. We define A by the relation

Ax = εx'ox(y - e~xTxQ), x e D(T) .

Then (T + A)x0 = εy $ R(T). Moreover, | |A| | < 2ε. Since ε > 0 is
arbitrary, (7) cannot hold. Thus the assertion is proved.

(8) and (9) are equivalent to (1): This is shown in the same way
that (4) and (5) were shown equivalent to (1).

If there is no restriction put on the inverse but only on the range
of T, we may still infer something about the range of T + A. In fact,
A need not be continuous. The following theorem illustrates this.

THEOREM 5. Suppose X and Y are complete. If T is a closed
linear operator with a closed range, then there exists a p > 0 such that
T + A is also a closed linear operator with a closed range whenever A
is a linear operator (not necessarily continuous) with D(A)^D(T) and
\\Ax\\^p(\\x\\ + || Tα||) for every xeD(T).

Proof. We introduce another norm \\x\\lf on D(T) by defining
llαlL = ll^ll + \\Tx\\. A shall denote D(T) with this new norm. Since
X and Y are complete and T is closed, it is easy to see that D1 is a
complete normed linear space. Moreover, Tx as a transformation of A
into Y is bounded and has an inverse. Thus by the closed graph theo-
rem, T'1 is bounded; i.e. there exists an m > 0 such that | [ T x | | ^
m( | | a | | + ||Tίc|[) for xe A Choose p > 0 so that 1 > p and m - p > 0.
Thus || (T + A)x\\ ^ (m - p)(\\x\\ + \\Tx\\), whence T + A has a bounded
inverse from R(T + A) onto A Clearly T + A is continuous on A
Since defining a new norm in D(T) does not alter the situation in Y, it
follows that R(T + A) is closed. In [3], Nagy proves that T + A is a
closed operator from D(T) into Y", which completes the proof of the
theorem.
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