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Introduction, The multiplicity theory in Banach spaces has been
developed recently by Dieudonne [2] and Bade [1]. In [6] we studied
the algebra of bounded operators, in a given Hubert space, that commute
with all projections of a given Boolean algebra of self adjoint projec-
tions. By using Bade's paper [1], we propose to generalize these results
to Banach spaces. The notation of [1] will be used. Let X be a com-
plex Banach space. Let the Boolean algebra of projections be given as
follows:

On the compact Hausdorff space Ω, let a measure E(-) be defined
for every Borel set, such that:
1. For every Borel set α, E(a) is a projection on X.
2. For every xeX, the vector valued set function E( )x is countable
additive.
3. If a and β are Borel sets then

E{ά)E{β) = E(aΓ[β) .

4. There exists a constant M such that \E(a) ^ M\ for every Borel set a.
5. The Boolean algebra of projections E(-) is complete. (See [1] for
definition of completeness.)

In [1] the space Ω was defined to be the Stone space of the Boolean
algebra. In the above form it is easier to find examples. Bade's results
remain true for this slightly generalized version.

Throughout the paper we assume that the Boolean algebra has uni-
form multiplicity n, n < oo. (Definition 3.2 of [1]). Thus the following
is proved in [1]:

There exist n vectors x1,x2,
 m >%n

 a n d n bounded functionals
xff xfy •••,#* such that:

n

1. X — V sp(E(a)xt, a a Borel set)
i = l

2. Let xfE( )x% = /*«(•)• The measures μti = 1, , n are equivalent.
3. For every Borel set e, μ^e) ^ 0 and μ^e) = 0 and only if E(e) — 0.
4. If i Φ j then xfE(e)Xj = 0.
5. For every xeX there exists n functions fx(ω), -- ,/w(ω) defined on

Ω such that:

a. / 4 (ω)eL(0,#) .
b. For every Borel set e,
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xΐE(e)x = ( fh{ω)!h{dω) .

c. Let em = j ωWfiiω) | ^ m, i = 1, , n

then

x = lim
m->ooΐ

d. The transformation T from X to Σ!U£(/A) given by

is continuous. The functions fx{ω), , fn((o) are uniquely defined
by xf up to sets of measure zero.

These results are proved in 5.1 and 5.2 of [1]. Instead of writing

let us use the notation x ^ I

Let 21 be the algebra of bounded operators on X, which commute
with all the projections E(a). The purpose of this paper is to study 21.

Representation of the Algebra 21

Let A e 21, and let

/ \
AxL ^ I i = 1,

Denote this correspondence by A ~ (attj(ω)). The functions atιj(ω) satisfy
by 5.b.

2.1 xΐE(e)Axj = xfAE(e)x5 = I a^

and

Equation 2.1 defines the functions αifJ(ω) uuiquely (a.e.).

Now let xe X and x ~ I I. If e is a Borel set on which the

V»(V
functions fi{o)), α ί ( j(ω) are bounded then:
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E(e)x = Σ ( ft(<o)E(dω)xt

and

AE(e)x = E(e)Ax =
i

= Σ ( fi(ω)E(dω)(E(e)Axt) .
ϊ=i Je

E{e)Ax% — Σ \ α ί i(o))E(dω)Xj .
3 = 1 je

a;= Σ ( / ^ ^

But

Hence

From condition 3 of the introduction it follows that

S(β)i4α = Σi \a>j i(ω)fί(ω)E(dω)xj

l^ijmn Je

= Σ ( (ta),i((t>)fi(ω))E(dω)x] .
j = i J e \{ = i /

Therefore

xfE(e)Ax

This equation means

Ax ~ (aitj{ω))\

REMARK. Equation 5.b. of the introduction was proved here, for
only some Borel sets. But we know that

Ax

for some functions g^ω), •• ,flfn(ω). The above argument shows that

' \ I \

• = a.e.

fn{ώ)j
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THEOREM 2.1. For every operator Ae?I there corresponds a matrix
of measurable functions αu(ω), I ^ i, j <, n, such that:

1. αM(ω)
2. //

then

Ax ~ (atJ(ω))\

3. // a matrix of functions, (bitj(ω)), satisfies condition 2 then

α«j(ω) = &ίj(ω) α.e.

77&e matrix of the sum or product of two operators is the sum or
product of the matrices. If A'1 exists and is bounded then

The functions aitj(ω) are determined by equation 2.1.

Proof. The existence of a representing matrix was proved above.
The other parts of the theorem follow from the uniqueness assertion
given in condition 3.

COROLLARY. Let Ae%. If Bell and AB = I(BA = I) then BA =
I(AB = /).

Proof. If AB = I then

Hence

Thus by Theorem 2.1 BA = I.

THEOREM 2.2. Let Am1 A e 2ΐ. // the sequence {Am} converges
strongly to A then sequence of functions (αij^ω)} converges in
measure to altj(ω)9 for each 1 ̂  i, j ^ n. (It does not matter with re-
spect to what measure, because the measures are finite and equivalent).
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Conversely, the sequence {Am} converges strongly to A if:
1. The sequence {affi} converges in measure to aitJ(ω).
2. The sequence {\Am\} is bounded.

3. U {ω\W(<0)\ ^ K. l^hj^n, m = 1, 2, . . . } - Ω.

Proof. If for each xe X

lim Amx = Ax
m->oo

then for every Borel set e

= \xΐE(e)(Amx3 - Axj)\ ^ M\Anxj - Ax3\ ~> 0
m ~> oo

where Λί does not depend on e. Thus the sequence {α< ™}(ω)} converges
in measure to aitj(ω).

On the other hand, if conditions 1, 2 and 3 are satisfied and e is a
Borel set, on which the functions aγj\ω) are uniformly bounded, then

AmE(e)xi = Σ ί a^i\ω)E(dω)xJ
3 = 1 Je

and by the Lebesque Theorem, [5] IV. 10.10

n C

\ιmAWjE{e)xi = Σ \ aJΛ(w)E(dw)x1 .
m-^oo j = i Je

Now, by condition 3, the set of linear combinations of E(e)xi9

1 ^ i ^ ^ s-nd e as defined above, is dense. Thus the sequence {Amx}
has a limit for a; in a dense subset of X, and by condition 2 it has a
limit for every xe X. Let A be the strong limit of {Am] then

n C

AE(e)xι — Σ \ α j t(o))E(dω)xj .

Thus the matrix of A is (αZ)j(ω)). (See Remark before Theorem 2.1).
In order to develop further the theory, let us borrow the following

results from [6].

LEMMA 2.1. Let {ai5{w)) be a matrix of measurable finite func-
tions. There exists a decomposition of the form

2.2 (au(ω)) = Σ **(ω)efc(ω) + N(ω)

where zx{ω), , zn(ω) are measurable functions and e^ω), , εn(ω)f

N(ω) are matrices of measurable functions satisfying:
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ε\(ω) = εt(ω), ίfίφj then ε^aήε^ω) = 0, Σ εt(ω) = (Su) .

Aiso

) = N(ω)εi(ω)9 (N(ω))n = 0 .

Moreover, there exist n Borel sets βlf , βn whose union is Ω such
that on βι the numbers z^co), , z^ω) are different while zi+1(ω) =
• = zn(ω) = 0.

The proof is given in Lemma 3.1, 3.2 and Theorem 3.1 of [6].

THEOREM 2.3. Let Aetl. There exists a sequence of Borel sets,
{am} such that:

1. The sequence {am} increases to Ω.
2. The operator AE(am) is spectral. (For definition of spectral

operators see [3]).
Thus A is a strong limit of a sequence of spectral operators.

Proof. Let A ~ (aitJ(ύ))) — ΣΛΐ^1zk(ω)εki(ω) + N(ω), where the right
side of the equation is defined in Lemma 2.1. Let a be a Borel set
such that

a. On the set a the functions zk(ώ) are bounded.
b. If χa((o) is the characteristic function of α, then χ^(ω)εh(oj) and

χηύ(ω)N(ω) are representing matrices of the operators EkιΛ and
Na respectively in St.

Then, by Theorem 2.1,

2.3 AE(a) = £ ([ Zi(ω)E(dω))EttΛ + Na

where EitOt are disjoint projections and NΛ is a nilpotent of order n com-
muting with them.

Thus, for such α, the operator AE(a) is spectral, and the resolution
of the identity (see [3]) of A restricted to E(a)X is

In order to prove the theorem, we have to find a sequence of Borel
sets, satisfying conditions α, 6 and 1. Also with no loss of generality,
we may study the operator A on E(βt)X (Lemma 2.1). Thus we may
assume that at each point ω, the matrix (ajtk(ω)) has exactly i eigenvalues.

Define

am = I ω 11 (̂0)) I ^ m and \zj(ω) — zk(ω)\ ^ —, 1 ^ k < j ^
ί m

On the set am the matrix e^ω) can be calculated as follows:
Let Q(z) be the polynomial
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Q(z) = bo + b1z+ --- + & « n + 1 ) - i 3

such that:

Q{zλ{ω)) = 1, Q(z,(ω)) = 0, 2 ^ j ^ i ,

Q C P ) ( * ; M ) = 0, l ^ j ^ i , l£p^n

then

QK/ω)) = εx(ω) [see [4] p. 188].

These equations have a unique solution bj — b3{ω)y which are measur-
able and bounded (on am) functions of ω. Thus

and this matrix represents the operator Ehm, in SI, where

Similarly the matrices χΛ {ω)ε3{ω) represent the operators EJtm in 21, and
by equation 2.2 the matrix χ^ (ω)N(ω) represents a nilpotent of order
n, Nm, in 21 where

COROLLARY. Let A e 31 &e α generalized nilpotent {see [3] /or
finition) then

An = 0 .

Proof. By equation 2.3 and Theorem 8 of [3]

AS(α«) - Nm .

Hence for every xe X

E(am)Anx = 0

therefore

Anx = 0 .

LEMMA 2.2. Lβί Ae 21. If A ~ (aitJ(ω)) and zk(ω), k = 1, 2, .
are ί/ie functions defined in equation 2.2
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\zk(ω)\^ | A | a . e .

Proof. Let us assume, to the contrary, that for some i and ε > 0
the set

7 = {ω||s,(ω)| ^ |A | + ε}

is not of measure zero. Let {am} be the sequence defined in Theorem
2.3, for some mE(yΓ[cxm) φ 0. Now, on 7Γ\am |zt(<w)| >._ \A | + ε > 0
hence εt(α>) Φ 0. Thus E(ynam)E.ita φ 0, where -#«,* is defined in
Theorem 2.3. If the operator B is the restriction of A to E(y f]am)Eif(Ϋ, X
then

Jγn<*

where I is a nilpotent. Thus, if \μ\ ̂  |A | then |/^| ̂  | ^(ω) | — ε,
α)6 7Π^ m , and μ 0 ί/(β). Also, if \μ\ > \A\ then |/M > \B\ and /̂  ̂  <?(B).
This shows that o"(5) is empty which is impossible.

THEOREM 2.4. Let (altj(ω))) ~ A e ϊ ϊ . // the number λ $ σ(A) then
for some ε > 0

dist (λ, o^eiijίω))) ^ εa.e.

Proof. Let λeJo(A). The matrix of (λl — A)"1 has the form

M y V-"/ »

λ. - Zt(ύ)) (λ - ^,(OJ))2 (λ - Z}{θ)))n

Thus by Lemma 2.2

dist (λ, σ(aij(ω))) *• |λ — zk(ω)\

THEOREM 2.5. Let (aitJ(oή) ~ Ae 21 α^d ίβί /(«) 6e regular in a
neighborhood of o(A). Then the matrix f^a^^ω))) exists a.e. and it is
the matrix corresponding to f(A).

Proof. Let e be a Borel subset of Ω then

xΐE(e)f(A)Xj = χ*E(e)—[ f(X)R(X, A)xfdX
2πiJo

where C is a finite collection of Jordan curves surrounding o(A). Now
R(X; A) - (rkJ(ω, X)) = (λδfc.j - α,,,^))- 1 thus
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xΐE(e)f(A)xj - -L( f(\)(xϊE(e)R(λf A)x3)d\

= τ^\ /(λ)Γ( rkJ(ω;
2πι JO LJe

by equation 2.1. The functions rktJ(ω, λ) can be computed by Cramer's
rule. By Theorem 2.4 and the compactness of C there exists a positive
constant δ such that if λ e C then

dist (λ, σ(aktj(ω))) ^ δa.e.

Now, if e is a Borel set on which the functions aitJ(ω) are bounded,
then the functions rkιj(ω, λ) are measurable and bounded on e x C. For
such Borel sets e, we may use Fubini's theorem to conclude that

x*E(e)f(A)Xj =

From this equation it follows that the components of the matrix of f(A)
are given by

(*) ~U/(λ)r f c l j (ω, λ)ciλ a.e.
2πιio

Now by the argument of Lemma 2.1 in [6] the matrix /((αfclj(ω)))
exists a.e. and its components are, thus, given by (*).

THEOREM 2.6. Let A e 51 be a compact operator. If A^ (a^^ω)) and

)εfc(ω) + N(ω)Σ

is the decomposition given in Lemma 2.1, then there exists a sequence
{&>«}> of points in ω, such that:

1. E({ωv})Φ0
2. zk(ω) = 0 a.e. /or ω φ ωυ v = 1, 2,
3. lim 2&(O = 0.

Proof. Let /3Z and αm be the sets defined in Lemma 2.1 and Theo-
rem 2.3. It is enough to prove the theorem for points in βu thus we
assume that the matrix (αJιfc(α>)) has exactly i eigenvalues. Define

em,P = amn\ω\\zk(ω)\ ^ —, k = 1, -- ,

The operator A restricted to E{em,v)X is compact and, by Theorem 2.3.
has a bounded inverse. Thus the space E(emtP)X has a finite dimension.
Therefore there exists a finite set of points, α>? p, •• ,ω™)2\ such that
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E({ω?'p}) Φ 0

and

E(emιP- {ω? *, .--,ω?'*}) = 0.

By letting m, p-> ^ we get a sequence ωv satisfying conditions 1
and 2. In order to prove 3, let us assume that for some ε > 0 there
are infinitely many points, ωυ such that

\zkυ(ωυ)\ ^ ε .

The operator A is compact, hence o(A) has only zero as a limit point.
By theorem 2.4 zkJ(ωυ)eσ(A). Thus for some constant b Φ 0

zΛΌ(ωΌ) = 6

for infinitely many points, ωΏ. Let

G(b,A) = —[ R(X;A)d\
2πiJo

where C is a circle around b which does not contain any other point of
o(A). The operator G(b; A) is a compact projection. The matrix of
G(δ; A) is, according to Theorem 2.5,

G(b; (α4J(ω))) .

Thus

G(b;A)E({ωv})Φ0

whenever zk (ωΏ) — b, because the matrix of the product is not zero at
ωυ. This contradicts the fact that G(6; A) is a projection into a finite
dimensional space, and thus condition 3 is proved.

EXAMPLES. The following two examples are designed to show that
some of the theorems, proved in [6] for Hubert spaces, are false for
Banach spaces. Notice that the examples are simble because there exist
projections on

8p{E(a)xu a a Borel set] .

1. Let μ be the Lebesque measure on (0, 1). Let / be a monotone
increasing function such that

l, / ( I ) -

Define

= \f(t)μ(dt) .
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The Banach space X will be L^μ) ©L^μ^. Each xe X has the form

x -
x ~

Let

E(e)x =

It follows that the Boolean algebra is complete and has uniform multi-
plicity 2. Let

1 1 ? w — it/i^r^ ^21 / \) — \y2^μ

If A - ^ 2ί then A^-'ί l f l ; x' α i > 2 ; ( j and

ÔM faUω)gi(ω)\ > f.

- ] | α i 2
l ( ) (

a2t2(ω)g2(ω)J

for every g2eL^), Thus

Hence |α12(ω)| g |A|/(ω) a.e., or

αlfJ(ω) = bh2{ω)f(ω) and

Similarly

Δ

Λ
^ j|α2,i0il/^i"

Hence
a e

or

αatl(fi>) = % M and

Every operator in 2ί is given, thus, by a matrix of the form:
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where the functions b^^ω) are measurable and bounded. Also, every
such matrix defines a bounded operator.

This example shows that Theorem 2.2 of [6] can not be generalized
to Banach spaces:

The two topologies on 2ί given by the norms \A\ and

max ess sup \at 3(ω)\

are not equivalent.

2. Let X = Co φ lλ. Every x e X has the form

X — (P^if ΊJι> ^2> V2 ' * * i %n> Vn> ' ' ')

where

linci a?ra = 0, \x\ = max 1^1 + Σ 1^1 .

Define

^»(»i» Vi, •» »«, 2/n, •) = (0, , 0, xn, yn, 0 •) .

The Boolean algebra, generated by En, has uniform multiplicity 2.
Let the projection F be defined by

F(xi9y19 •••, xn,yn, ••

Vn, %n

The projection F is not bounded but \FEn\ — 1. Let the operator B be
defined by

*^i Vi m 9 # %n Vn

a n d l e t A = BF. T h e o p e r a t o r A is b o u n d e d a n d c o m p a c t , for if \x\ —

\(x19 y19 •••, xwyw •••)! ̂  1 t h e n

i x1 + i/! β β # ^^ + i/w ^^ + Vn π . . . π . .
β β #

« *
2 2 n 2 n-±-(0, . . . , o , -ϊ»+i + v»-

2 \ 2 W + 1 2 7 1 4

1 Γ/ sup | E Λ | + sup |7/w|
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Thus A is the uniform limit of compact operators. Now, o{B) =

j — , n — 1, 2, [. If 0 Φ X e σ(A) then for som

x = Fx and Xx = XFx — BFx — Bx. Therefore

—, n — 1, 2, [. If 0 Φ X e σ(A) then for some x e X, Xx — Ax. Hence

Let us compute G(-^, A)X for xe X.

h A>=M^
on EkX, σ(A) = ίo, ^ 1 , henceNow

Gl±; A)Ekx = 0 for k Φ n

and

G(-~; AjEnx — FEnx .

Therefore

and

— , /i IΛ —

The last equation shows that A is not spectral, and the preceding equa-
tion shows that Theorem 4.4 of [6] is false for Banach spaces:

There exists a compact operator A in 21 that is not spectral though
the projections G(ξ; A) are uniformly bounded.
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