ON A CRITERION FOR THE WEAKNESS OF AN IDEAL BOUNDARY COMPONENT

Kôtaro Oikawa

1. Exhaustion. Let F be an open Riemann surface. An exhaustion $\left\{F_{n}\right\}$ of F is an increasing (i.e., $\bar{F}_{n} \subset F_{n+1}$) sequence of subregions with compact closures such that $\bigcup_{n=1}^{\infty} F_{n}=F$. We assume that ∂F_{n} consists of a finite number of closed analytic curves and that each component of $F-F_{n}$ is noncompact. This is the most common definition used in the theory of open Riemann surfaces. Sometimes, however, we shall add the restriction that each component of ∂F_{n} is a dividing cycle; if this is the case we shall call the exhaustion canonical.
2. Weak boundary component. Let γ be an ideal boundary component of F, and let $\left\{F_{n}\right\}$ be a canonical exhaustion of F. Then there exists a component γ_{n} of ∂F_{n} which separates γ from F_{n}. Let n_{0} be a fixed number and consider the component G_{n} of $\bar{F}_{n}-F_{n_{0}}\left(n>n_{0}\right)$ such that $\gamma_{n} \subset \partial G_{n}$. There exists a harmonic function $s_{n}(p)$ on $\overline{G_{n}}$ which satisfies the following conditions:
(i) $s_{n}=0$ on $\gamma_{n_{0}}$ and $\int_{\gamma_{n_{0}}} * d s_{n}=2 \pi,\left(\gamma_{n_{0}}=\partial F_{n_{0}} \cap \partial G_{n}\right)$
(ii) $s_{n}=\log r_{n}=$ const. on γ_{n},
(iii) $s_{n}=$ const. on each component $\beta_{n \nu}$ of $\partial G_{n}-\gamma_{n}-\gamma_{n_{0}}$ and $\int_{\beta_{n \nu}} * d s_{n}=0$.
The condition $\lim _{n \rightarrow \infty} r_{n}=\infty$ depends neither on n_{0} nor on the exhaustion. If it is satisfied, γ is said to be weak.

Weak boundary components were introduced for plane regions by Grötzch [1] in connection with the so-called Kreisnormierungsproblem. He called them vollkommen punktförmig. They were generalized for open Riemann surfaces by Sario [6] and discussed also by Savage [7] and Jurchescu [2]. The above definition was given by Jurchescu [2].

A noncompact subregion N whose relative boundary ∂N consists of a finite number of closed analytic curves is called a neighborhood of γ if γ is an ideal boundary component of N as well. Let $\{c\}$ be the family of all cycles c (i.e., unions of finite numbers of closed curves) which are in N and separate γ from ∂N. Jurchescu [2] showed that $\lambda\{c\}=0$ if and only if γ is weak, where $\lambda\{c\}$ is the extremal length of the family $\{c\}$.

[^0]3. Savage's criterion. Let $\left\{F_{n}\right\}$ be an arbitrary exhaustion. Let E_{n} be the smallest union of components of $F_{n}-\bar{F}_{n-1}$ such that $\gamma_{n-1}=$ $\partial E_{n} \cap \partial F_{n-1}$ is a cycle which separates γ from $F_{n-1}(n=2,3, \cdots)$. Evidently $\gamma_{n} \subset \partial E_{n}$. If $\left\{F_{n}\right\}$ is canonical, E_{n} is connected and γ_{n} is a closed analytic curve.

There exists a harmonic function $u_{n}(p)$ on \bar{E}_{n} such that
(i) $u_{n}=0$ on γ_{n-1} and $\int_{\gamma_{n-1}} * d u_{n}=2 \pi$,
(ii) $u_{n}=\log \mu_{n}=$ const. on $\partial E_{n}-\gamma_{n-1}=\partial E_{n} \cap \partial F_{n}$.

The quantity $\log \mu_{n}$ is called the modulus of E_{n} (cf. Sario [4,5], who called μ_{n} the modulus). It is expressed in terms of extremal length as follows:

$$
\log \mu_{n}=\frac{2 \pi}{\lambda\{c\}_{n}}
$$

where $\{c\}_{n}$ is the family of cycles in E_{n} homologous to γ_{n-1}.
Since $\sum^{\infty} 1 / \lambda\{c\}_{n} \leqq 1 / \lambda\{c\}$, we get the following criterion:
Theorem 1 (Savage [7]). If there exists an exhaustion such that $\prod_{n=2}^{\infty} \mu_{n}=\infty$, then γ is weak.

The purpose of the present note is to discuss the converse of this theorem.
4. Jurchescu's criterion. Suppose the exhaustion $\left\{F_{n}\right\}$ is canonical. There exists a harmonic function $U_{n}(p)$ on \bar{E}_{n} such that
(i) $U_{n}=0$ on γ_{n-1} and $\int_{\gamma_{n-1}} * d U_{n}=2 \pi$,
(ii) $U_{n}=\log M_{n}=$ const. on γ_{n},
(iii) $U_{n}=$ const. on each component $\beta_{n \nu}$ of $\partial E_{n}-\gamma_{n}-\gamma_{n-1}$ and $\int_{\beta_{n \nu}} * d U_{n}=0$.
Jurchesch's paper [2] contains implicitly the following result:
Theorem 2 (Jurchescu). A boundary component γ is weak if and only if there exists a canonical exhaustion such that $\prod_{n=2}^{\infty} M_{n}=\infty$.

Proof. Sufficiency : Let $\left\{c^{\prime}\right\}_{n}$ be the family of cycles in E_{n} separating γ_{n} from γ_{n-1}. It is not difficult to see that $\log M_{n}=2 \pi / \lambda\left\{c^{\prime}\right\}_{n}$. Since $\sum^{\infty} 1 / \lambda\left\{c^{\prime}\right\}_{n} \leqq 1 / \lambda\{c\}$, we conclude that $\sum_{n=2}^{\infty} \log M_{n}=\infty$ implies $\lambda\{c\}=0$.

Necessity: Consider a canonical exhaustion $\left\{F_{n}^{0}\right\}$. The desired exhaustion $\left\{F_{n}\right\}$ is obtained by taking its subsequence as follows:
$F_{1}=F_{1}^{0}$. To define F_{2}, consider the quantity r_{n} introduced in No. 2 with respect to $F_{n}^{0}-\overline{F_{1}^{0}}(n=2,3, \cdots)$. Take n_{2} so large that $r_{n_{2}} \geqq 2$,
and put $F_{2}=F_{n_{2}}^{0}$. Evidently $M_{2}=r_{n_{2}}$. Similarly, $F_{3}=F_{n_{3}}^{0}$ is defined by considering $F_{n}^{0}-\bar{F}_{n_{2}}^{0}\left(n=n_{2}+1, n_{2}+2, \cdots\right)$ and by taking $n_{3}>n_{2}$ so large that $r_{n_{3}} \geqq 2$ where $r_{n_{2}}$ is the quantity r_{n} introduced in No. 2 with respect to $F_{n}^{0}-F_{n_{2}}^{\overline{0}}$. We have $M_{3}=r_{n_{3}}$. On continuing this process, we obtain a canonical exhaustion such that $\sum_{n=2}^{\infty} \log M_{n} \geqq \sum_{n=2}^{\infty} \log 2=\infty$. The idea of this proof was first used by Noshiro [3].
5. The converse of Savage's criterion. We shall now show that Savage's criterion in Theorem 1 is also necessary.

Theorem 3. If γ is weak, then there exists an exhaustion such that $\prod_{n=2}^{\infty} \mu_{n}=\infty$. It is not necessarily canonical.

Proof. By Theorem 2 there exists a canonical exhaustion $\left\{F_{n}^{0}\right\}$ such that $\prod_{n=2}^{\infty} M_{n}^{0}=\infty$. From this we construct a canonical exhaustion $\left\{F_{n}^{*}\right\}$ as follows:
$F_{1}^{*}=F_{1}^{0} . \quad$ To construct F_{2}^{*}, let $\partial E_{2}^{0}-\gamma_{1}^{0}-\gamma_{2}^{0}=\beta_{21} \cup \beta_{22} \cup \cdots \cup \beta_{2 k_{2}}$ be the decomposition into components, and let H_{3}^{ν} be the component of $F_{3}^{0}-F_{2}^{0}$ such that $\partial H_{3}^{\nu} \cap \bar{F}_{2}^{0}=\beta_{2 \nu}\left(\nu=1,2, \cdots, k_{2}\right) . F_{2}^{*}$ is the union of $F_{1}^{*}, E_{2}^{0} \cup \gamma_{1}^{0}$, all the other components of $F_{2}^{0}-F_{1}^{0}$, and $\bigcup_{v=1}^{k_{2}} H_{3}^{\nu}$. In this way, F_{n}^{*} is defined as the union of $F_{n-1}^{*}, E_{n}^{0} \cup \gamma_{n-1}^{0}$, every component of $F_{m+1}^{0}-F_{m}^{0}(m \geqq n)$ which is adjacent to F_{n-1}^{*}, and $\bigcup_{v=1}^{k_{n}} H_{n+1}^{\nu}$. By construction, $E_{n}^{*}=E_{n}^{0} \cup \bigcup_{\nu=1}^{k_{n}} H_{n+1}^{\nu}$.

The desired exhaustion $\left\{F_{n}\right\}$ is obtained by taking a refinement of $\left\{F_{n}^{*}\right\}$ as follows: Consider E_{n}^{0} and the function U_{n}^{0} for the exhaustion $\left\{F_{n}^{0}\right\}$. Let $\partial E_{n}^{0}-\gamma_{n}^{0}-\gamma_{n-1}^{0}=\beta_{n 1} \cup \beta_{n 2} \cup \cdots \cup \beta_{n k_{n}}$ be the decomposition into components and let $U_{n}^{0} \equiv a_{\nu}$ on $\beta_{n \nu}\left(\nu=1,2, \cdots, k_{n}\right)$. We may assume, without loss of generality, that the a_{ν} 's are different by pairs. We suppose that

$$
0 \equiv a_{0}<a_{1}<\cdots<a_{k_{n}}<a_{k_{n}+1} \equiv \log M_{n}^{0}
$$

Take $a_{\nu}^{\prime}\left(a_{\nu-1}<a_{\nu}^{\prime}<a_{\nu} ; \nu=1,2, \cdots, k_{n}, a_{k_{n}+1}^{\prime} \equiv \log M_{n}^{0}\right)$ and $a_{\nu}^{\prime \prime}\left(a_{\nu}<a_{\nu}^{\prime \prime}<\right.$ $a_{\nu+1} ; \nu=1, \cdots, k_{n}, a_{0}^{\prime \prime} \equiv 0$) so close to a_{ν} that

$$
\begin{equation*}
\sum_{\nu=1}^{k_{n}+1}\left(a_{\nu}^{\prime}-a_{\nu-1}^{\prime \prime}\right) \geqq \log M_{n}^{0}-2^{-n} \tag{1}
\end{equation*}
$$

Consider the sets

$$
\begin{aligned}
& D_{n}^{\nu}=\left\{p ; a_{\nu-1}^{\prime \prime}<U_{n}^{0}(p)<a_{\nu}^{\prime \prime}\right\}, \nu=1,2, \cdots, k_{n}+1,\left(a_{k_{n}+1}^{\prime \prime} \equiv \log M_{n}^{0}\right) \\
& D_{n}^{\prime \nu}=\left\{p ; a_{\nu-1}^{\prime \prime}<U_{n}^{0}(p)<a_{\nu}^{\prime}\right\}, \nu=1,2, \cdots, k_{n}+1
\end{aligned}
$$

The modulus $\log \mu^{\prime(\nu)}$ of $D_{n}^{\prime \nu}$ with respect to $\beta^{\nu}=\left\{p ; U_{n}^{0}(p)=a_{\nu-1}^{\prime \prime}\right\}$ and $\partial D_{n}^{\prime \nu}-\beta^{\prime}$ is equal to $a_{\nu}^{\prime}-a_{\nu-1}^{\prime \prime}$, since the function $U_{n}^{0}(p)-a_{\nu-1}^{\prime \prime}$ plays the role of $u_{n}(p)$ introduced in No. 3. Let $\log \mu^{(\nu)}$ be the modulus of D_{n}^{ν}
with respect to β^{ν} and $\partial D_{n}^{\nu}-\beta^{\nu}$. Since $\mu^{(\nu)} \geqq \mu^{\prime(\nu)}$, we obtain, by (1),

$$
\begin{equation*}
\sum_{\nu=1}^{k_{n}+1} \log \mu^{(\nu)} \geqq \log M_{n}^{0}-2^{-n} \tag{2}
\end{equation*}
$$

We have decomposed E_{n}^{0} into $k_{n}+1$ subsets D_{n}^{ν}. $E_{n}^{*}-E_{n}^{0}$ consists of components H_{n+1}^{ν} such that $\beta_{n \nu}=\partial H_{n+1}^{\nu} \cap \partial E_{n}^{0}\left(\nu=1,2, \cdots, k_{n}\right)$. By decomposing H_{n+1}^{ν} into $k_{n}-\nu+1$ slices, we obtain a decomposition of E_{n}^{*} into $k_{n}+1$ parts. It is possible to divide each of the other components of $F_{n}^{*}-\bar{F}_{n-1}^{*}$ into $k_{n}+1$ pieces so that we get an exhaustion $\left\{F_{n}\right\}$ which is a refinement of $\left\{F_{n}^{*}\right\}$. D_{n}^{ν} plays the role of E_{n} with respect to this exhaustion. Therefore, by (2), we get

$$
\sum_{n=2}^{\infty} \log \mu_{n} \geqq \sum_{n=2}^{\infty} \log M_{n}^{0}-1=\infty
$$

6. Remark. On a "schlichtartig" surface, every exhaustion is canonical. If F is an arbitrary Riemann surface, the question arises whether or not Savage's criterion is still necessary under the restriction that $\left\{F_{n}\right\}$ is canonical. The answer is given by

Theorem 4. There exist a γ of an F which is weak and such that $\Pi_{n=2}^{\infty} \mu_{n}<\infty$ for every canonical exhaustion.

Construction of F : In the plane $|z|<\infty$, consider the closed intervals

$$
I_{k}:\left[2^{k^{2}}, 2^{k^{2}}+1 \mid \quad(k=2,3, \cdots)\right.
$$

on the positive real axis, and the circular arcs

$$
\begin{gathered}
\alpha_{\nu}:|z|=\nu,|\arg z| \leqq \frac{\pi}{2} \\
\left(\nu=2^{k 2}+2,2^{k^{2}}+3, \cdots, 2^{(k+1)^{2}}-1 ; k=2,3, \cdots\right)
\end{gathered}
$$

Take two replicas of the slit plane $(|z|<\infty)-\bigcup_{k=2}^{\infty} I_{k}$ and connect them crosswise across $I_{k}(k=2,3, \cdots)$. From the resulting surface, delete all the α_{ν} 's on both sheets. This is a Riemann surface F of infinite genus.
F has an ideal boundary component γ over $z=\infty$, which is evidently weak.

Let $\left\{F_{n}\right\}$ be an arbitrary canonical exhaustion. Consider E_{n} corresponding to γ (No. 3). The interval I_{k} determines a closed analytic curve C_{k} on F. Since $\gamma_{n-1}=\partial E_{n} \cap \bar{F}_{n-1}$ is a dividing cycle, the intersection number $\gamma_{n-1} \times C_{k}$ vanishes and, therefore, $\gamma_{n-1} \cap C_{k}$ consists of an even number of points whenever it is not void.* Take two consecutive points

[^1]p and q in $\gamma_{n-1} \cap C_{k}$. There are two possibilities according as the arc $\overparen{p q} \subset \gamma_{n-1}$ is homotopic to $\overparen{p q} \subset C_{k}$ or not. If the latter case happens for at least one pair of p and q, we shall say that γ_{n-1} intersects C_{k} properly.

Since γ_{n-1} is a closed curve separating γ from F_{n-1}, there exists a number k such that γ_{n-1} intersects C_{k} properly. If there is more than one k, we take the greatest one and denote it by $k(n)$.

To estimate μ_{n}, let $\{c\}_{n}$ be the family of all cycles in E_{n} separating γ_{n-1} from $\partial E_{n}-\gamma_{n-1}$. We have mentioned that $\log \mu_{n}=2 \pi / \lambda\{c\}_{n}$. Let C_{k} be a curve for which there are numbers n with $k(n)=k$. Evidently these n are finite in number and consecutive. Let n_{k} be the greatest.
I. If $k(n)=k$ and $n<n_{k}$ then γ_{n-1} and γ_{n} intersect C_{k} properly. Since every $c \in\{c\}_{n}$ separates γ_{n-1} from γ_{n}, it has a component which intersects C_{k} and is not completely contained in the doubly connected region A_{k} consisting of all points that lie over $\left\{z ; 2^{k^{2}}-1<|z|<2^{k^{2}}+\right.$ $2,|\arg z|<\pi / 2\}$. Therefore, every c contains a curve in $\left\{c^{\prime}\right\}^{(k)}$ which is the family of all curves in the right half-plane connecting I_{k} with the imaginary axis. Consequently

$$
\begin{equation*}
\sum_{\substack{(n)=k \\ n \neq n_{k}}} \frac{1}{\lambda\{c\}_{n}} \leqq \frac{1}{\lambda\left\{c^{\prime}\right\}^{(k)}} . \tag{3}
\end{equation*}
$$

II. $k(n)=k$ and $n=n_{k}$. Consider all the $\alpha_{\nu}\left(\nu \geqq 2^{k^{2}}+2\right)$ on the upper sheet. Let G_{n-1} be the component of $F-\bar{F}_{n-1}$ such that $\partial G_{n-1}=$ γ_{n-1}. For a sufficiently large ν, α_{ν} is an ideal boundary component of G_{n-1}. Let $\nu(k)$ be the least ν with this property. If $\nu(k)=2^{k^{2}}+2$, then every $c \in\{c\}_{n}$ separates γ_{n-1} from $\alpha_{\nu(k)}$ and, therefore, it has a component intersects either C_{k} or one of four line segments over $\left[2^{k^{2}}-1,2^{k^{2}}\right]$ or $\left[2^{k^{2}}+1,2^{k^{2}}+2\right]$. When $\nu(k)=2^{l^{2}}+2$ for some $l>k$, then γ_{n-1} separates $\alpha_{\nu(k)-3}$ from $\alpha_{\nu(k)}$ and every $c \in\{c\}_{n}$ separates γ_{n-1} from $\alpha_{\nu(k)}$, so that c has a component with the above property. If $\nu(k)$ is not of the form $2^{l^{2}}+2$, then, for the same reason, every $c \in\{c\}_{n}$ has a component which intersects the line segment on the upper sheet lying over $[\nu(k)-1, \nu(k)]$, and is not contained in the simply connected region on the upper sheet consisting of all points over $\{z ; \nu(k)-1<|z|<\nu(k)$, $|\arg z|<\pi / 2\}$. In any case, every $c \in\{c\}_{n}$ contains a curve in $\left\{c^{\prime \prime}\right\}^{(k)}$ which is the family of all curves in the right half-plane connecting $[\nu(k)-3, \nu(k)]$ with the imaginary axis. Therefore,

$$
\begin{equation*}
\frac{1}{\lambda\{c\}_{n}} \leqq \frac{1}{\lambda\left\{c^{\prime \prime}\right\}^{(k)}} . \tag{4}
\end{equation*}
$$

By (3) and (4), we obtain

$$
\begin{equation*}
\sum_{n=2}^{\infty} \log \mu_{n}=2 \pi \sum_{n=2}^{\infty} \frac{1}{\lambda\{c\}_{n}} \leqq 2 \pi \sum_{k=2}^{\infty}\left(\frac{1}{\lambda\left\{c^{\prime}\right\}^{(k)}}+\frac{1}{\lambda\left\{c^{\prime \prime}\right\}^{(i)}}\right) . \tag{5}
\end{equation*}
$$

To show the convergence of $\sum_{k=2}^{\infty} 1 / \lambda\left\{c^{\prime}\right\}^{(k)}$, we make use of the transformation $z \rightarrow z^{2}$. It is immediately seen that $\lambda\left\{c^{\prime}\right\}^{(k)}$ is equal to the extremal distance between $[-\infty, 0]$ and $I_{k}^{\prime}=\left[2^{2 k^{2}},\left(2^{k^{2}}+1\right)^{2}\right]$ with respect to the region $A=\left\{[-\infty, 0] \cup I_{k}^{\prime}\right\}^{c}$. Since A is conformally equivalent to Teichmüller's extremal region $\{[-1,0] \cup[P, \infty]\}^{c}$ where

$$
P=\frac{2^{2 k^{2}}}{\left(2^{k^{2}}+1\right)^{2}-2^{2 k^{2}}},
$$

we have (Teichmüller [8])

$$
\begin{aligned}
\lambda\left\{c^{\prime}\right\}^{(k)} & \sim \frac{\log P}{2 \pi} \quad(P \rightarrow \infty) \\
& \sim \frac{k^{2} \log 2}{2 \pi} \quad(k \rightarrow \infty)
\end{aligned}
$$

and, therefore, $\sum_{k=2}^{\infty} 1 / \lambda\left\{c^{\prime}\right\}^{(k)}<\infty$. Similarly $\sum_{k=2}^{\infty} 1 / \lambda\left\{c^{\prime \prime}\right\}^{(k)}<\infty$ because $\nu(k) \geqq 2^{k^{2}}+2$. We conclude that

$$
\sum_{n=2}^{\infty} \log \mu_{n}<\infty
$$

References

1. H. Grötzsch, Eine Bemerkung zum Koebeschen Kreisnormierungsprinzip, Ber. Verh. Sächs. Akad. Wiss. Leipzig. Math.-Nat. K1., 87 (1935), 319-324.
2. M. Jurchescu, Modulus of a boundary component, Pacific J. Math., 8 (1958), 791-809.
3. K. Noshiro, Open Riemann surface with null-boundary, Nagoya Math. J., 3 (1951), 73-79.
4. L. Sario, Über Riemannsche Flächen mit hebbarem Rand, Ann. Acad. Sci. Fenn. Ser. A. I, 50 (1948), pp. 79.
5. ——, Modular criteria on Rieman surfaces, Duke Math. J., 20 (1953), 279-286.
6. Capacity of the boundary and of a boundary component, Ann. Math., 59 (1954), 135-144.
7. N. Savage, Weak boundary components of an open Riemann surface, Duke Math. J., 24 (1957), 79-96.
8. O. Teichmüller, Untersuchungen über konforme und quasikonforme Abbibldung, Deutsche Math., 3 (1938), 621-678.

University of California, Los Angeles,
AND
Tokyo Institute of Technology

[^0]: Received October 22, 1958. This paper was prepared under Contract No. DA-04-495-ORD-722, OOR Project No. 1517 between the University of California, Los Angeles and the Office of Ordnance Research, U. S. Army.

[^1]: * Added in proof. We should have mentioned the case where γ_{n-1} tangents C_{k}. The following discussion covers this case if the number of the points of $\gamma_{n-1} \cap C_{k}$ is counted with the multiplicity of tangency and case $p=q$ is not excluded.

