ON A CRITERION FOR THE WEAKNESS OF AN IDEAL BOUNDARY COMPONENT

Kôtaro Oikawa

1. Exhaustion. Let F be an open Riemann surface. An exhaustion $\{F_n\}$ of F is an increasing (i.e., $\overline{F_n} \subset F_{n+1}$) sequence of subregions with compact closures such that $\bigcup_{n=1}^{\infty} F_n = F$. We assume that ∂F_n consists of a finite number of closed analytic curves and that each component of $F - F_n$ is noncompact. This is the most common definition used in the theory of open Riemann surfaces. Sometimes, however, we shall add the restriction that each component of ∂F_n is a dividing cycle; if this is the case we shall call the exhaustion canonical.

2. Weak boundary component. Let γ be an ideal boundary component of F, and let $\{F_n\}$ be a canonical exhaustion of F. Then there exists a component γ_n of ∂F_n which separates γ from F_n . Let n_0 be a fixed number and consider the component G_n of $\overline{F}_n - F_{n_0}$ $(n > n_0)$ such that $\gamma_n \subset \partial G_n$. There exists a harmonic function $s_n(p)$ on \overline{G}_n which satisfies the following conditions:

(i)
$$s_n = 0$$
 on γ_{n_0} and $\int_{\gamma_{n_0}} *ds_n = 2\pi$, $(\gamma_{n_0} = \partial F_{n_0} \cap \partial G_n)$
(ii) $s_n = \log r_n = \text{const. on } \gamma_n$,
(iii) $s_n = \text{const. on each component } \beta_{n\nu}$ of $\partial G_n - \gamma_n - \gamma_{n_0}$ and $\int_{\beta_{n\nu}} *ds_n = 0$.

The condition $\lim_{n\to\infty} r_n = \infty$ depends neither on n_0 nor on the exhaustion. If it is satisfied, γ is said to be *weak*.

Weak boundary components were introduced for plane regions by Grötzch [1] in connection with the so-called Kreisnormierungsproblem. He called them vollkommen punktförmig. They were generalized for open Riemann surfaces by Sario [6] and discussed also by Savage [7] and Jurchescu [2]. The above definition was given by Jurchescu [2].

A noncompact subregion N whose relative boundary ∂N consists of a finite number of closed analytic curves is called a *neighborhood of* γ if γ is an ideal boundary component of N as well. Let $\{c\}$ be the family of all cycles c (i.e., unions of finite numbers of closed curves) which are in N and separate γ from ∂N . Jurchescu [2] showed that $\lambda\{c\} = 0$ if and only if γ is weak, where $\lambda\{c\}$ is the extremal length of the family $\{c\}$.

Received October 22, 1958. This paper was prepared under Contract No. DA-04-495-ORD-722, OOR Project No. 1517 between the University of California, Los Angeles and the Office of Ordnance Research, U. S. Army.

3. Savage's criterion. Let $\{F_n\}$ be an arbitrary exhaustion. Let E_n be the smallest union of components of $F_n - \overline{F}_{n-1}$ such that $\gamma_{n-1} = \partial E_n \cap \partial F_{n-1}$ is a cycle which separates γ from F_{n-1} $(n = 2, 3, \dots)$. Evidently $\gamma_n \subset \partial E_n$. If $\{F_n\}$ is canonical, E_n is connected and γ_n is a closed analytic curve.

There exists a harmonic function $u_n(p)$ on \overline{E}_n such that

(i)
$$u_n = 0$$
 on γ_{n-1} and $\int_{\gamma_{n-1}} *du_n = 2\pi$,

(ii) $u_n = \log \mu_n = \text{const.}$ on $\partial E_n - \gamma_{n-1} = \partial E_n \cap \partial F_n$.

The quantity log μ_n is called the *modulus of* E_n (cf. Sario [4,5], who called μ_n the modulus). It is expressed in terms of extremal length as follows:

$$\log \mu_n = \frac{2\pi}{\lambda \{c\}_n}$$

where $\{c\}_n$ is the family of cycles in E_n homologous to γ_{n-1} .

Since $\sum_{n=1}^{\infty} 1/\lambda \{c\}_n \leq 1/\lambda \{c\}$, we get the following criterion:

THEOREM 1 (Savage [7]). If there exists an exhaustion such that $\prod_{n=2}^{\infty} \mu_n = \infty$, then γ is weak.

The purpose of the present note is to discuss the converse of this theorem.

4. Jurchescu's criterion. Suppose the exhaustion $\{F_n\}$ is canonical. There exists a harmonic function $U_n(p)$ on \overline{E}_n such that

- (i) $U_n = 0$ on γ_{n-1} and $\int_{\gamma_{n-1}} * dU_n = 2\pi$,
- (ii) $U_n = \log M_n = \text{const. on } \gamma_n$,
- (iii) $U_n = \text{const.}$ on each component $\beta_{n\nu}$ of $\partial E_n \gamma_n \gamma_{n-1}$ and $\int_{\beta_{n\nu}} *dU_n = 0.$

Jurchesch's paper [2] contains implicitly the following result:

THEOREM 2 (Jurchescu). A boundary component γ is weak if and only if there exists a canonical exhaustion such that $\prod_{n=2}^{\infty} M_n = \infty$.

Proof. Sufficiency: Let $\{c'\}_n$ be the family of cycles in E_n separating γ_n from γ_{n-1} . It is not difficult to see that $\log M_n = 2\pi/\lambda \{c'\}_n$. Since $\sum_{n=2}^{\infty} 1/\lambda \{c'\}_n \leq 1/\lambda \{c\}$, we conclude that $\sum_{n=2}^{\infty} \log M_n = \infty$ implies $\lambda \{c\} = 0$.

Necessity: Consider a canonical exhaustion $\{F_n^0\}$. The desired exhaustion $\{F_n\}$ is obtained by taking its subsequence as follows:

 $F_1 = F_1^0$. To define F_2 , consider the quantity r_n introduced in No. 2 with respect to $F_n^0 - \overline{F_1^0}$ $(n = 2, 3, \dots)$. Take n_2 so large that $r_n \ge 2$,

and put $F_2 = F_{n_2}^0$. Evidently $M_2 = r_{n_2}$. Similarly, $F_3 = F_{n_3}^0$ is defined by considering $F_n^0 - \overline{F}_{n_2}^0$ $(n = n_2 + 1, n_2 + 2, \dots)$ and by taking $n_3 > n_2$ so large that $r_{n_3} \ge 2$ where r_{n_2} is the quantity r_n introduced in No. 2 with respect to $F_n^0 - \overline{F_{n_2}^0}$. We have $M_3 = r_{n_3}$. On continuing this process, we obtain a canonical exhaustion such that $\sum_{n=2}^{\infty} \log M_n \ge \sum_{n=2}^{\infty} \log 2 = \infty$. The idea of this proof was first used by Noshiro [3].

5. The converse of Savage's criterion. We shall now show that Savage's criterion in Theorem 1 is also necessary.

THEOREM 3. If γ is weak, then there exists an exhaustion such that $\prod_{n=2}^{\infty} \mu_n = \infty$. It is not necessarily canonical.

Proof. By Theorem 2 there exists a canonical exhaustion $\{F_n^0\}$ such that $\prod_{n=2}^{\infty} M_n^0 = \infty$. From this we construct a canonical exhaustion $\{F_n^*\}$ as follows:

 $F_1^* = F_1^0$. To construct F_2^* , let $\partial E_2^0 - \gamma_1^0 - \gamma_2^0 = \beta_{21} \cup \beta_{22} \cup \cdots \cup \beta_{2k_2}$ be the decomposition into components, and let H_3^{ν} be the component of $F_3^0 - F_2^0$ such that $\partial H_3^{\nu} \cap \overline{F}_2^0 = \beta_{2\nu}$ ($\nu = 1, 2, \dots, k_2$). F_2^* is the union of $F_1^*, E_2^0 \cup \gamma_1^0$, all the other components of $F_2^0 - F_1^0$, and $\bigcup_{\nu=1}^{k_2} H_3^{\nu}$. In this way, F_n^* is defined as the union of $F_{n-1}^*, E_n^0 \cup \gamma_{n-1}^0$, every component of $F_{m+1}^0 - F_m^0$ ($m \ge n$) which is adjacent to F_{n-1}^* , and $\bigcup_{\nu=1}^{k_n} H_{n+1}^{\nu}$. By construction, $E_n^* = E_n^0 \cup \bigcup_{\nu=1}^{k_n} H_{n+1}^{\nu}$.

The desired exhaustion $\{F_n\}$ is obtained by taking a refinement of $\{F_n^*\}$ as follows: Consider E_n^0 and the function U_n^0 for the exhaustion $\{F_n^*\}$. Let $\partial E_n^0 - \gamma_n^0 - \gamma_{n-1}^0 = \beta_{n1} \cup \beta_{n2} \cup \cdots \cup \beta_{nk_n}$ be the decomposition into components and let $U_n^0 \equiv a_{\nu}$ on $\beta_{n\nu}$ ($\nu = 1, 2, \dots, k_n$). We may assume, without loss of generality, that the a_{ν} 's are different by pairs. We suppose that

$$0 \equiv a_{\scriptscriptstyle 0} < a_{\scriptscriptstyle 1} < \cdots < a_{\scriptscriptstyle k_n} < a_{\scriptscriptstyle k_n^{+1}} \equiv \log \, M^{\scriptscriptstyle 0}_{\,n}.$$

Take $a'_{\nu}(a_{\nu-1} < a'_{\nu} < a_{\nu}; \nu = 1, 2, \dots, k_n, a'_{k_n+1} \equiv \log M^{\circ}_n)$ and $a''_{\nu}(a_{\nu} < a''_{\nu} < a_{\nu+1}; \nu = 1, \dots, k_n, a''_{0} \equiv 0)$ so close to a_{ν} that

(1)
$$\sum_{\nu=1}^{k_n+1} (a_{\nu}'-a_{\nu-1}'') \ge \log M_n^0 - 2^{-n}$$

Consider the sets

$$egin{array}{l} D_n^
u = \{p\,; a_{
u-1}^{\prime\prime} < U_n^0(p) < a_
u^{\prime\prime}\}, \
u = 1,\,2,\,\cdots,\,k_n+1, \ (a_{k_n+1}^{\prime\prime} \equiv \log M_n^0) \ D_n^{\prime
u} = \{p\,; a_{
u-1}^{\prime\prime} < U_n^0(p) < a_
u^{\prime}\}, \
u = 1,\,2,\,\cdots,\,k_n+1 \ . \end{array}$$

The modulus $\log \mu'^{(\nu)}$ of $D_n'^{\nu}$ with respect to $\beta^{\nu} = \{p ; U_n^0(p) = a_{\nu-1}''\}$ and $\partial D_n'^{\nu} - \beta'$ is equal to $a_{\nu}' - a_{\nu-1}''$, since the function $U_n^0(p) - a_{\nu-1}''$ plays the role of $u_n(p)$ introduced in No. 3. Let $\log \mu^{(\nu)}$ be the modulus of D_n''

with respect to β^{ν} and $\partial D_n^{\nu} - \beta^{\nu}$. Since $\mu^{(\nu)} \ge \mu^{\prime(\nu)}$, we obtain, by (1),

(2)
$$\sum_{\nu=1}^{k_n+1} \log \mu^{(\nu)} \ge \log M_n^0 - 2^{-n}.$$

We have decomposed E_n° into $k_n + 1$ subsets D_n° . $E_n^* - E_n^{\circ}$ consists of components H_{n+1}^{\vee} such that $\beta_{n\nu} = \partial H_{n+1}^{\vee} \cap \partial E_n^{\circ}$ ($\nu = 1, 2, \dots, k_n$). By decomposing H_{n+1}^{\vee} into $k_n - \nu + 1$ slices, we obtain a decomposition of E_n^* into $k_n + 1$ parts. It is possible to divide each of the other components of $F_n^* - \overline{F}_{n-1}^*$ into $k_n + 1$ pieces so that we get an exhaustion $\{F_n\}$ which is a refinement of $\{F_n^*\}$. D_n^{\vee} plays the role of E_n with respect to this exhaustion. Therefore, by (2), we get

$$\sum\limits_{n=2}^{\infty}\log\mu_n \geqq \sum\limits_{n=2}^{\infty}\log M^{\scriptscriptstyle 0}_n - 1 = \infty$$
 .

6. Remark. On a "schlichtartig" surface, every exhaustion is canonical. If F is an arbitrary Riemann surface, the question arises whether or not Savage's criterion is still necessary under the restriction that $\{F_n\}$ is canonical. The answer is given by

THEOREM 4. There exist a γ of an F which is weak and such that $\prod_{n=2}^{\infty} \mu_n < \infty$ for every canonical exhaustion.

Construction of F: In the plane $|z| < \infty$, consider the closed intervals

$$I_k: [2^{k^2}, 2^{k^2} + 1] \qquad (k = 2, 3, \cdots)$$

on the positive real axis, and the circular arcs

$$lpha_{
u}: \, |\, z\,| =
u, \, |rg\, z\,| \leq rac{\pi}{2}$$
 $(
u = 2^{k_2} + 2, \, 2^{k^2} + 3, \, \cdots, \, 2^{(k+1)^2} - 1\,; \, k = 2, \, 3, \, \cdots)$.

Take two replicas of the slit plane $(|z| < \infty) - \bigcup_{k=2}^{\infty} I_k$ and connect them crosswise across I_k $(k = 2, 3, \dots)$. From the resulting surface, delete all the α_{ν} 's on both sheets. This is a Riemann surface F of infinite genus.

F has an ideal boundary component γ over $z = \infty$, which is evidently weak.

Let $\{F_n\}$ be an arbitrary canonical exhaustion. Consider E_n corresponding to γ (No. 3). The interval I_k determines a closed analytic curve C_k on F. Since $\gamma_{n-1} = \partial E_n \cap \overline{F}_{n-1}$ is a dividing cycle, the intersection number $\gamma_{n-1} \times C_k$ vanishes and, therefore, $\gamma_{n-1} \cap C_k$ consists of an even number of points whenever it is not void.* Take two consecutive points

1236

^{*} Added in proof. We should have mentioned the case where γ_{n-1} tangents C_k . The following discussion covers this case if the number of the points of $\gamma_{n-1} \cap C_k$ is counted with the multiplicity of tangency and case p=q is not excluded.

p and q in $\gamma_{n-1} \cap C_k$. There are two possibilities according as the arc $\widehat{pq} \subset \gamma_{n-1}$ is homotopic to $\widehat{pq} \subset C_k$ or not. If the latter case happens for at least one pair of p and q, we shall say that γ_{n-1} intersects C_k properly.

Since γ_{n-1} is a closed curve separating γ from F_{n-1} , there exists a number k such that γ_{n-1} intersects C_k properly. If there is more than one k, we take the greatest one and denote it by k(n).

To estimate μ_n , let $\{c\}_n$ be the family of all cycles in E_n separating γ_{n-1} from $\partial E_n - \gamma_{n-1}$. We have mentioned that $\log \mu_n = 2\pi/\lambda \{c\}_n$. Let C_k be a curve for which there are numbers n with k(n) = k. Evidently these n are finite in number and consecutive. Let n_k be the greatest.

I. If k(n) = k and $n < n_k$ then γ_{n-1} and γ_n intersect C_k properly. Since every $c \in \{c\}_n$ separates γ_{n-1} from γ_n , it has a component which intersects C_k and is not completely contained in the doubly connected region \varDelta_k consisting of all points that lie over $\{z; 2^{k^2} - 1 < |z| < 2^{k^2} + 2, |\arg z| < \pi/2\}$. Therefore, every c contains a curve in $\{c'\}^{(k)}$ which is the family of all curves in the right half-plane connecting I_k with the imaginary axis. Consequently

(3)
$$\sum_{\substack{k(n)=k\\n\neq n_k}}\frac{1}{\lambda\{c\}_n} \leq \frac{1}{\lambda\{c'\}^{(k)}}.$$

II. k(n) = k and $n = n_k$. Consider all the α_{ν} ($\nu \ge 2^{k^2} + 2$) on the upper sheet. Let G_{n-1} be the component of $F - \overline{F}_{n-1}$ such that $\partial G_{n-1} =$ γ_{n-1} . For a sufficiently large ν, α_{ν} is an ideal boundary component of G_{n-1} . Let $\nu(k)$ be the least ν with this property. If $\nu(k) = 2^{k^2} + 2$, then every $c \in \{c\}_n$ separates γ_{n-1} from $\alpha_{\nu(k)}$ and, therefore, it has a component intersects either C_k or one of four line segments over $[2^{k^2}-1,2^{k^2}]$ or $[2^{k^2}+1,2^{k^2}+2]$. When $\nu(k)=2^{l^2}+2$ for some l>k, then γ_{n-1} separates $\alpha_{\gamma(k)-3}$ from $\alpha_{\gamma(k)}$ and every $c \in \{c\}_n$ separates γ_{n-1} from $\alpha_{\nu(k)}$, so that c has a component with the above property. If $\nu(k)$ is not of the form $2^{c^2} + 2$, then, for the same reason, every $c \in \{c\}_n$ has a component which intersects the line segment on the upper sheet lying over $[\nu(k) - 1, \nu(k)]$, and is not contained in the simply connected region on the upper sheet consisting of all points over $\{z : \nu(k) - 1 < |z| < \nu(k),$ $|\arg z| < \pi/2$. In any case, every $c \in \{c\}_n$ contains a curve in $\{c''\}^{(k)}$ which is the family of all curves in the right half-plane connecting $[\nu(k) - 3, \nu(k)]$ with the imaginary axis. Therefore,

$$(4) \qquad \qquad \frac{1}{\lambda\{c\}_n} \leq \frac{1}{\lambda\{c''\}^{(k)}} .$$

By (3) and (4), we obtain

$$(5) \qquad \sum_{n=2}^{\infty} \log \mu_n = 2\pi \sum_{n=2}^{\infty} \frac{1}{\lambda\{c\}_n} \le 2\pi \sum_{k=2}^{\infty} \left(\frac{1}{\lambda\{c'\}^{(k)}} + \frac{1}{\lambda\{c''\}^{(k)}} \right).$$

KÔTARO OIKAWA

To show the convergence of $\sum_{k=2}^{\infty} 1/\lambda \{c'\}^{(k)}$, we make use of the transformation $z \to z^2$. It is immediately seen that $\lambda \{c'\}^{(k)}$ is equal to the extremal distance between $[-\infty, 0]$ and $I'_k = [2^{2k^2}, (2^{k^2} + 1)^2]$ with respect to the region $A = \{[-\infty, 0] \cup I'_k\}^c$. Since A is conformally equivalent to Teichmüller's extremal region $\{[-1, 0] \cup [P, \infty]\}^c$ where

$$P=rac{2^{2k^2}}{(2^{k^2}+1)^2-2^{2k^2}}$$
 ,

we have (Teichmüller [8])

$$\lambda \{c'\}^{(k)} \sim \frac{\log P}{2\pi} \qquad (P \to \infty)$$

 $\sim \frac{k^2 \log 2}{2\pi} \qquad (k \to \infty) ,$

and, therefore, $\sum_{k=2}^{\infty} 1/\lambda \{c'\}^{(k)} < \infty$. Similarly $\sum_{k=2}^{\infty} 1/\lambda \{c''\}^{(k)} < \infty$ because $\nu(k) \ge 2^{k^2} + 2$. We conclude that

$$\sum\limits_{n=2}^{\infty}\log\mu_n<\infty$$
 .

References

1. H. Grötzsch, *Eine Bemerkung zum Koebeschen Kreisnormierungsprinzip*, Ber. Verh. Sächs. Akad. Wiss. Leipzig. Math.-Nat. Kl., **87** (1935), 319-324.

2. M. Jurchescu, Modulus of a boundary component, Pacific J. Math., 8 (1958), 791-809.

3. K. Noshiro, Open Riemann surface with null-boundary, Nagoya Math. J., 3 (1951), 73-79.

4. L. Sario, Über Riemannsche Flächen mit hebbarem Rand, Ann. Acad. Sci. Fenn. Ser. A. I, **50** (1948), pp. 79.

5. ——, Modular criteria on Rieman surfaces, Duke Math. J., 20 (1953), 279-286.

6. ____, Capacity of the boundary and of a boundary component, Ann. Math., **59** (1954), 135-144.

7. N. Savage, Weak boundary components of an open Riemann surface, Duke Math. J., 24 (1957), 79-96.

8. O. Teichmüller, Untersuchungen über konforme und quasikonforme Abbibldung, Deutsche Math., **3** (1938), 621-678.

UNIVERSITY OF CALIFORNIA, LOS ANGELES, AND TOKYO INSTITUTE OF TECHNOLOGY

1238