THE NILPOTENT PART OF A SPECTRAL OPERATOR

CHARLES A. McCARTHY

1. Introduction. Throughout this paper, X¥ is a Banach space, T
a bounded spectral operator on ¥ with scalar part S, nilpotent part N,
and resolution of the identity E(¢) for ¢ a Borel set in the complex
plane. M is the bound for the norms of the FE(s); |E(c)] < M for all
Borel sets o. The resolvent function for T, (A — T')7%, is denoted by
R(\, T). The operator R(\, T)E(s) has an unique analytic extension
from the resolvent set of T to the complement of o, and on the sub-
space E(o)X it is equal to the operator R(\, T,) where 7T, is the re-
striction of 7T to FE(o)X. For material on spectral operators, we refer
to the papers on N. Dunford [1], [2]. ¥.(£) is the characteristic function
of the Borel set o: ¥ (&) =1 if £ e 0, (§) =0 if £ € 6. For p a non-
negative real number, /¢, is Hausdorff p-dimensional measure [3, pp. 102
M.]; . is Lebesgue planar measure multiplied by n/4, and y, restricted
to an arc is majorized by arc length.

We assume throughout that there is an integer m for which the
resolvent function for T satisfies the mth order rate of growth condition

RO\, TYE()| < K - d(\, 0)™, N ¢ 0, M < T +1,

where d(\, 0) is the distance from ) to ¢ and K is a constant inde-
pendent of ¢. If X is Hilbert space, it is known that this growth
condition implies N™ =0 [1, p. 337]. In an arbitrary Banach space,
this is no longer true; the best that can be done is N”+** = 0. If ¥ is
weakly complete, N"*'=0; or if ¢ is a set of /, measure zero, N"*'E(s) = 0.
If o lies in an arc and either ¥ is weakly complete or ¢ has pt, measure
zero, then N™E(s) = 0. Examples show that we cannot obtain lower
indices of nilpotency in general.

2. The fundamental lemma and some easy consequences. If f(§) is
a bounded, scalar valued Borel function, the operator | f(¢§)E(d£) exists
as a bounded operator with norm at most 4M - sup.| f(£)| [1, p. 341], so
that uniform convergence of a sequence of bounded Borel functions f,(¢)
implies convergence in the uniform operator topology of the operators
S fE)E(dE). Thus for a given bounded Borel function f(£) and a given
positive number 7, there exist a finite number of disjoint Borel sets o,
and points & € o, such that
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<7n.
Similiarly if A, are a finite number of bounded operators and f,(¢) are

bounded Borel functions, for any positive number 7, there exist a finite
number of disjoint Borel sets ¢, and points &, € o, such that

|2 | AL @B@) — 0 20 Aufu(€)EE))| < 75

in particular, for an integer k¥ and a positive number 7, there exist
a finite number of disjoint Borel sets ¢, and points & € o, such that

<7.

@ - oBae) — .7 - €00

LEMMA 2.1. There exist constants M, such that |[ N*E(c)| < M, € *+'=™
Jor any choice of ¢,0 < e <1, and Borel set o of diameter no greater
than e.

Proof. Pick ¢,0 < e <1, and let ¢ be any Borel set of diameter
no greater than ¢. We have [1, p, 338]

NE() = | (7 - grBag).

For any positive number 7, there is a decomposition of ¢ into a finite
number of disjoint Borel sets g, C ¢, and points & € o, such that

| @ - erBay - 2.7 - £0°B@)| < 7.

Since ¢ is of diameter at most ¢, there is a circle /" of diameter 3¢
which encloses ¢ and for which |y — &] > ¢ for all vy € [" and £ € a.
Then

(T — £)E(o) = TS (v — £ R(v, T)E(o)dv ,

so that

S (T — E)E(0)) —7; 5 R(y, TYS (v — E)E(o)dy

which in norm in no greater than

*)

L . sup|R(y, T)E(0)|- sup| 4 (v — E)°E(0,)| - length of I".
T YEF YEF

The mth order rate of growth condition gives
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sup| R(v, T)E(0)| < Ke™™ .
YEF

For any v e I,
|22 (v — &) E(0y)| < 4AM - miaXI'r — &|* < AM(2¢)°

so that (*) is no greater than

L Ke-m. 4p(2e) - 67e = Metrim
21
where M, = 3-2**KM, and is independent of 7, ¢, 0, and the manner
in which ¢ is decomposed. Thus
,NkE(O.)' S Mk€k+1—-m + v

for every positive 7, which proves the lemma.

THEOREM 2.2. Let o be a Borel set whose Hausdor{f p-measure is
zero for a giwen p. Then NYE(c) =0 where k 1is an integer and
Ek>p+m—1.

Proof. Since ¢ has p-measure zero, for every ¢ > 0, there is a cover-
ing of ¢ by disjoint sets o, of diameter ¢; such that ;¢ <e. By
Lemma 2.1 we have

|N“E(0)| < 3| N*E(0)| < M, e/
< M, Ziei(]’+m—l)+1—m < M, ZiEf < Mge.

Since ¢ may be chosen arbitrarily small, N*E(s) = 0.
COROLLARY 2.3. N™* = 0.

Proof. Taking ¢ to be the spectrum of T'and p =3, N™**E(a(T))=0;
but E(o(T)) is the identity mapping on X.

COROLLARY 2.4. If o has planar measure zero, then N™E(0) = 0.
COROLLARY 2.5. If ¢ has p,-measure zero, then N™E(c) = 0.

3. The case of weakly complete X. Let ¢ be a Borel set in the
plane. For any ¢ > 0, we can cover ¢ with disjoint Borel sets. o, of
diameter ¢;, ¢; < 1, such that

el < (o) + e
Thus by Lemma 2.1,
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[N E(0)] < 35| N™E(0,)| < M 306l
< Mous(11(0) + ©)

Since ¢ and ¢ are arbitrary, we have for all Borel sets o,
| N E(0)| < My fa(0)

As a consequence, all the scalar measures x*N™+ E(+ )z =[(N*)"*'E*(+ )z ]z,
x € %, * e X*, are absolutely continuous with respect to y,, and have
derivative bounded by M,,.,|z*||x]| .

Suppose that f(&) = Z,{’,lapx,,p(é) is a simple Borel function; «, are
scalar constants and o, are disjoint Borel sets. We have

[reoarrards | < 5 la @B,

P
< 35100 | Maspt(0,)

= m+1|flll(ll'z) .

Thus if f,(€) are simple Borel functions converging in L,(z,) to f(§), the
operators S FuEYN*)"+ E*(dE) converge in the uniform operator topology

to an operator which we denote by § FENF)"E*(dE); this limit opera-
tor has norm bounded by M,..,|f|L(z).

THEOREM 3.1. If X is weakly complete, then N™* = 0.

Proof. Assume that N™*' s 0, so that also (N*)"** = 0. We will
first obtain a bicontinuous map of an infinite dimensional L, space into
X*. An analogous map into ¥ would show then that X cannot be re-
flexive, since the image in X of this L, space would be a closed non-
reflexive subspace of X; however, the map into X* is needed for the
slightly more general case of ¥ weakly complete.

Let the Borel set o,%, € %, and xf € X* be chosen so that
[(N*)"E*(o)xf]lx, # 0, and let the derivative of the measure
[(N*)m*+1E*(+ )2z, be denoted by g(£). We can then find a subset 7 of
o and a constant a > 0 such that g,(z) > 0 and |g(§)| > a on 7.

Define the map @ of Lz, ) into X* by

o(5) = |_r@ @y Br@gs .
@ is a linear map with bound M,.,|x5|. Now take

@ = L[gr(é)]‘1 sgn fE)E(dé), ;
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The norm of x is no greater than 4M -a~'-|x,|. But we have
[2(f))(z) = S FOLgE)] sgn fELN*)"E*(dE)ay 1,

= | Ir@lEr@mae
= 1f1s,,
which shows that
0] = 1f Lo+ @M ]2))

so that @ is one-to-one and has a continuous inverse.
Now let ¥ be the map of L.(z, tt,) into X:

V(h) = St[g(é)]“h(é‘)E(dE)xo )

¥ is a continuous map with bound no greater than 4M -a'|z,|; we will
show that ¥ is one-to-one and bicontinuous. We have

o) = | OOy B*datle,
= | renemas,

so that

sup [0 = sup || s@nEm(ae

Ifl, <1
L

= 'hlnw .
But since @ is bounded,

sup |O()¥(h)| < sup [z*¥(h)|
Wig <t l::Fs{T;|

AR

so that
k], < Q1T ()] ;

thus ¥ is one-to-one and bicontinuous, The range %) of ¥ in X is then
a closed non weakly complete subspace of X. But this is impossible,
because every closed subspace of a weakly complete Banach space is
again weakly complete; the proof of this last remark is as follows.
Let X be a weakly complete Banach space, ¥ a closed subspace.
Let y, be a weakly Cauchy sequence in ), so that y*y, is a Cauchy
sequence of numbers for every y* in Y*. Since any z* in X*, when
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restricted to 9, is an element of 9*, x*y, is a Cauchy sequence of num-
bers for every x* in X*. Since X is weakly complete, there is an z, in
X such that lim,_. z*y, = 2*x, for every z* in X*; and since ) is strongly
closed in ¥, it is weakly closed, so that x, must lie in ¥). Finally since
every y* in 9* is, by the Hahn-Banach theorem, the restriction of an
2* in X*, lim y*y, = y*x, for every y* in 9*, so that ) is weakly complete.

THEOREM 3.2. If X is weakly complete, then N"E(c) = 0 for every
set ¢ of finite p,-measure.

Proof. Follow exactly the same discussion above, replacing the
number m + 1 by m and the measure p, by ..

Note that Theorems 3.1 and 3.2 also hold if X is assume to be
separable instead of weakly complete, for the image of the L.. space
in ¥ would be a nonseparable closed subspace of X; but every closed
subspace of a separable space is again separable.

4. Examples. In the following examples we will need two com-
putational lemmas.

LemMMA 4.1. For each real number p > 1 and Borel set o,
S N — &~ (dE) < 8d(N, 0)-?, for all A & T .
Proof.
[ I gl
—_ —(P+2)
< Sm—&lza(me)m E[m 0 p(dE)
_4 Fndﬂ gw P @EDp dp (N — & = reV)
T Jo Jala,o)
< 8d(\, )" .

LEMMA 4.2. For each real number p >1 and Borel subset ¢ of
the real line,

S N — E[-@*Du(dE) < 22*'nd(\, 0)77,

where (t, is Lebesgue measure along the line, and ) is any complex
number, » € .

Proof. Let M=a+ 18, a, B real. Then either, (i), d(«a, d) > d(), 0)/2
or, (i) |B] = d(\, 0)/2. In case (i) we have
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oo

SUI)h — 5}'—(”“)/,!1(d§) < Sd()\ 0)/277—(p+1)d77 (X _ é: — v)

< 20p=id(, )7 .

In case (ii) we have
[ v —glompman < |7 e - igl-oae
<|” @+ ptoma
< 2v41zd(N, 0)"7 .

EXAMPLE 4.3. Let Y be a disc in the plane with p,-measure 1.
Let

= L) D L(Z)D -+ D LA2) D L:(2) ,

where m copies of L,(Y) are taken. Let T be the operator S + N where
S and N are defined as

SLAE) D 9:(6) D + - - D 9.(8) S W&)]
= [£f(6) D £9.(§) D - - - D Egu(§) B ENE)],

NLS(E) D 9:(6) D -+ D 9n(8) D h(6)]
=[0DfE)DGE) D -~ D gud)l.
Since 3 has measure 1, any function in L, is in L, for all s <, and
the L, norm is no greater than the L, norm; thus N is a bounded

operator with norm 1. Also N is a nilpotent for which N™+** £ 0. The
operator T is a spectral operator with resolution of the identity

E(0) (&) D 9:(6) D - -+ D 9ulé) D h(&)]
= [f(E)2o(&) D 9:(E))o(E) D -+ - D gn(E)XAE) D (E)x(E)] -
The resolvent function is

ROw TYE@)F(E) © 0. @ -+ D 0.(6) © h(®)]
_[LOLE) g (£OLE) | SOLD Vg ...
E »—

X — & (= &y
OO L 0ELE |, FELE
( N — & * * (x—g)m+(x-—g)m+l>
MELE | 6ELE | ... . 6®OLE ., fOLE ]
@ (F ek + Sleph - o SOLE, + LOLD, )]

All the terms are clearly of mth order rate of growth except possibly
for
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SELAE)
@ e,

2

and (c)l gl(f)Jé;(le

FELLE)
(b)f L) |

For (a) we have

([ 17@0 - e ppan)” < 171 [ r - e1-m=m@e}”
< If 1 VA0, ),

for (b) we have

| 1r©0 - oo e < 171, | In - g1 eopnae)
<1f1s. 80, )",

and for (¢) we have

[ 10— orewimas < {[ 10@rm@e} ([ - e-mpma)”
<16l V'8 - d(\, 0)™ .

Thus each term of the resolvent, and hence the resolvent itself satis-
fies the mth order rate of growth condition; this shows that Corollary
2.3 cannot be improved.

ExXAMPLE 4.4. Let X be as in the previous example and let

X=L2)D- - DL D L)

where m copies of L, are taken. = and s are to satisfy 1 <s<r < o
and rs < 2(r—s). Let T=S+ N, where S and N are defined in
essentially the same way as in the previous example. The resolvent
function is given by

B\, T)E(O)f1(E) D - - - D ful€) D 9(6)]
—_ fl(E)XO'(S) @ @ ( fm(S)XU(S) _+_ + fl(é)%a(&) )

N — x— & =&
g(é)xc(é) FalE0l8) FELE)
@( r—t TTo—p T TR s>m+1>]‘

Each of the terms is clearly of mth order rate of growth except possibly
for the L, norm of f,(§)(A — &)~™*Vy,(£), and for this we have

{SU | 1(EYN — E)m1)e pz(dg)}”s
< ([ 1r@1 man}"{{1n - e =2 e
< |filg, - 87 . d(n, g)-m-(-252)

< | fily,-87d(n, 0)
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Thus the resolvent satisfies the mth order rate of growth condition, and
N™ = 0. Since ¥ is reflexive, this shows that Theorem 3.1 cannot be
improved. Note that X is also separable.

ExXAMPLE 4.5. Let ¥ be the interval [0, 1] endowed with p,-measure,
and let
X¥=L.(3)D - D L(3) D Ly(3)

where m copies of L. are taken. Let T=S 4+ N where S and N are
defined in essentially the same way as in the previous examples. The
resolvent function is given by

B\ TYHO)LAAO) D +++ @ ful®) © 9]
[HOLO) g ... @ (LD ... 4 LOLEO)
E

A — A —£ n—=8"
9IEXAE) 4 Sul®AAE) ... 4 SAELLE) ]
@< A—§ * (n — &) * +(x_§)m+1)]

Each of the terms is clearly of mth order rate of growth except for
the L, norm of f,(§)(A — &)~ ™*Vy,(£), and for this we have

[ 17@0 — oo ) <11, | In = 17
< 1120w )

Thus we have an example of an operator with spectrum in a rectifiable
arc which satisfies the mth order rate of growth condition, but for which
N™ =+ 0,
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