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Introduction^ Why burn, in 1934, introduced the higher dimensional
cyclic elements [5]. He gave an analysis of the structure of the homology
groups of a space in terms of its cyclic elements. His results were for
finite dimensional spaces, and he used the integers modulo two as the
coefficient group. Puckett generalized some of Why burn's results to
compact metric spaces [3]. Simon has shown that if E is a closed sub-
set of a compact space M, which contains all the (r — l)-dimensional
cyclic elements of M, then Hr(E) & Hr(M)[4]. He also obtained a direct
sum decomposition of Hr(M) using the cyclic elements of M. We will
extend some of these results.

The properties of zero-dimensional cyclic elements in locally con-
nected spaces, and the relation of these cyclic elements to monotone
mappings, is basic in the applications of zero-dimensional cyclic element
theory. We shall give some counter-examples concerning the generaliza-
tion of these properties to higher dimensional cyclic elements.

1. Preliminaries* Throughout this paper M will always denote a
compact Hausdorff space. We shall use the augmented Cech homology
and cohomology with a field as coefficient group. Results stated in
terms of cohomology may be given a dual expression in terms of ho-
mology by means of the dot product duality for the Cech theory.

DEFINITION 1.1. A Γr set in I is a closed subset T of M such
that Hr(K) = 0, for all closed subsets K of T.

DEFINITION 1.2. An Er set in M is a non-degenerate subset of M
which is maximal with respect to the property that it can not be dis-
connected by a Tr set of M.

The proofs of Lemmas 1.3 through 1.9 can be found in the papers
by Why burn [5] and Simon [4]. The proofs given by Why burn are for
subsets of Euclidean space, but they can be carried over to our case
without difficulty.

LEMMA 1.3. Let K be a subset of M which can not be disconnected
by a Tr set. If M = M1[j M2, T^separated (by this we mean Mx and
M2 are proper closed subsets and M1f]M2 is a Tr set), then KdM1 (or,
KcM2).
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LEMMA 1.4. If K is an Er set, then K is closed and connected.

LEMMA 1.5. If Kx and K2 are both Er sets and Kλ Φ K2, then
KλP[K2 is a Tr set. Any Tr set is also a Tr+1 set.

LEMMA 1.6. If K is a non-degenerate subset of M, which can not
be disconnected by a Tr set, then K is contained in a unique Er set
in M.

DEFINITION 1.7. If yreHr(M) and D is a minimal, closed subset
of M such that i*(yr) Φ 0 (where i*: Hr(M) -> Hr(D) is the inclusion
map), then D is called a floor for γ r.

LEMMA 1.8. If γreHr(M) and Ύr Φ 0, then there exists a floor
for 7r.

LEMMA 1.9. If D is a floor for Y, then D can not be disconnected
by a Tr_! set.

LEMMA 1.10. If {E1, •• ,£rw} is a finite collection of Er^ sets in
M, with MΦ \Jΐ=ιEι, then there exist proper, closed subsets, M1 and
M2, of M such that (1) M = Mλ U M2, (2) M1Π M2 is the union of a finite
number of Tr-λ sets (therefore, M1Γ)M2 is a Tr set), (3) M^U^E1.

Proof. The proof will be by induction on n. The case n = 1 fol-
lows from Lemma 1.3.

Assume the lemma is true up to n — 1. Since M is not an Er^
set, we have M=M1[)M2, T^-separated. Let E=\J?s=1E

i. If
(M - E) n (M - (M1 n M2)) = φ, then the desired ^-j-separation of M
could be obtained by using the boundary of an open set in M1Γ\M2>
Therefore, we can assume (M — E) Π (M — Mλ) Φ φ. By Lemma 1.3,
we can assume \Ji=1E

ic:M2 and ^)ΐ^8+1E
tc:Ml9 where 1 < s < n. We

must have Eι(z(M — M^), for 1 ^ i ^ s. Otherwise, we could separate
Eι by the Tr^ set (M- MJn(M1ΠM2). Since (M-E)Γi(M- Mx) Φ φ,
(M - Mx) Φ \jUχE%. Thus, by the induction assumption, (M - Mx) =
Mά\jM5, where IJI^E1 is contained in Λf4 and M4ΓίM5 is the union of
a finite number of Tr-λ sets. If we let Mx = M^M^ and M2 = M6,
then

(1) M^M^M,,

(2) M1f]M2 is the union of a finite number of Tr_x sets,

(3) \JUE^MU

(4) Mx and M2 are proper closed subsets of M.
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2 Cyclic elements and the structure of M.

DEFINITION 2.1. A closed subset A of M is called a Lr set if every
Er-λ set, whose intersection with A is not a Tr set, is contained in A.

The proofs of the following theorems are given below.

THEOREM 2.2. If A is a Lr set, then i*: Hr(M) -> Hr(A) is onto.
Thus, by duality, v . Hr(A) —> Hr(M) is one-to-one.

THEOREM 2.3. Let A be a closed subet with the following property:
if E is an Er^1 set and Hr(E) Φ 0, then E is contained in A. Then
the map i*: Hr(M)—*Hr(A) is one-to-one and, by duality, l κ : Hr(A) —>
Hr(M) is onto.

THEOREM 2.4. Suppose there are only a finite number, say
{E\*- ,En}, of Er^ sets such that Hr(Eι) Φ 0. Let A = \Jn

i=1E
ι.

Then the mappings i*: Hr(M)—»Hr(A) and i^: Hr(A)—> Hr(A) are iso-
morphisms.

REMARK. Theorem 2.4 can not be generalized to an infinite number
of Er-.Ύ sets, as the following example shows. In Euclidean space let

M = D u tu~ i cil w h e r e D = i(χ> y>z) I * = °^2 + y2 ^ ! } a n d c* =
{(x, i/, 2) \z = 1/i, α;2 + 7/2 - 1}. We do not have ^(UΓ-i C*) & Hλ(M),
under the inclusion mapping.

THEOREM 2.5. Lei Y e Hr(M) and suppose U is an open set, such
that if D is a floor for Y, then D is contained in U {see Definition
1.7). Then there exists a γ£e Hr(M, M - U) such that γr = j*(7r

u),
where j * : Hr(M, M - U)-+Hr(M).

THEOREM 2.6. Assume E is an Er^ set in M and N is a closed
subset of M, where N Π E~φ. Then the composite mapping j* ί*: Hr(E)—+
Hr{M,N) is one-to-one. Here, ΐ*: Hr(E) -> Hr(M) and j * : Hr(M)->
Hr(M, N) are the natural mappings.

LEMMA 2.7. Let (M, A) be a compact pair with YeHr{A). If
δ*(γr) ψ 0, where δ*: Hr(A) -> Hr+1(M, A), then there is a minimal
closed set B such that BaA, and δj(γ£) φ 0. Here, δ£: Hr(B)->
Hr+\M,B) and jr

B = i*(jr), where i*: Hr(A)-+Hr(B).

LEMMA 2.8. Let B be a minimal set defined in Lemma 2.7. There
exists a minimal closed set N such that δ*(γ?

β) Φ 0, where δ*: Hr(B) —>
Hr+1(N, B).
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Proof. The proof of these lemmas is obtained from the continuity
of the Cech theory and Zorn's lemma.

LEMMA 2.9. The set N, in Lemma 2.8, can not be disconnected by
a Tr^x set.

Proof. Suppose N— Nx\)N2, where NλΠN2 is a Tr^ set. We will
show this to be impossible, unless N = Nx. Let B be as defined in
Lemma 2.8, and define Bt = NtΠB (i = 1, 2). We will show that the
mapping induced by inclusion

: Hr+\N, B) 2y B2)

is an isomorphism. We use the relative Mayer-Vietoris sequence given

below; note that Γ = JV^niVa is a Tr-λ set [2].

K*
Hr+1(N, B)

i*
K*

Hr(N, N) -> Hr+\N, NX\JB) + Hr+\N, N2ϋB) > Hr+1(N, B\jT)
-> Hr+1(N, N) .

The mappings if and if are isomorphisms by excision, the map K* by
exactness. Using the three exact sequences given below we see that
i* is an isomorphism.

HS~\B Π T)
s ( 5 U ϊ7) —

^ E U T, £ )

U Γ) HS(B n

U T) -* ί

UT,B) .

The first is a Mayer-Vietoris sequence, the second is a sequence for a
pair, the third is a sequence for a triple. Thus if* is an isomorphism.

In the diagram below, since δ|(7^) Φ 0, we may assume δj^φ?^) =£ 0.

, B) 2, B,)

\*f

H'(B)
Φ*®Φ*

We now have δ*φ*(γy ^ 0, since i?8ϊφ?(<γr

B) = 8^T(7r

B) Φ 0. This im-
plies J5X = J5, by the definition of # . Therefore, φf(7i) = YB and
8^T(7B) = δ^(7S) ^ 0. Since JV is minimal, we must have Λ^ = N.
Thus, ΛΓ can not be disconnected by a Tr^ set.
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Proof of Theorem 2.2. We will show S*(γr) = 0, for all 7 reίf'(A),
where δ*: Hr(A) —* Hr(M, A). Suppose not; then choose N and B ac-
cording to Lemma 2.8. Then there exists an Er-X set containing N, by
Lemma 1.6. Let E denote this Er-X set. Since E contains N, we have
EnAzίB. Since Hr(B) φ 0, B is not a Tr set. Therefore Ed A, be-
cause A is an Lr set. This implies that N is contained in A. But this
is impossible, as the diagram below shows. By the definition of the
pair (N, B), δ*i*(γr) Φ 0.

U

Proof of Theorem 2.3. Consider the exact sequence:

^ ^ H'(A) .

Suppose i*(γr) ^ 0, where jreHr(M, A). By Lemmas 1.9 and 1.6 there
is an Er-1 set which contains a floor for i*(7r) Let E be this 2^-i set.
Since E contains a floor for i*(γr), i ϊ r (#) =£ 0. Therefore, EczA; which
implies i*y*(γ*) ^ 0, since £/ contains a floor for i*(7r) Therefore j *
is a trivial map and i* is one-to-one.

Proof of Theorem 2.4. By Theorem 2.3, ΐ*: i7r(A) -> Hr(M) is onto.
If i^(^r) = 0, f or some Zr e Hr(A); then there is a minimal set K such that

(1) ίΓz>A, and
(2) i£(Zr) = 0, where iξ : Hr(A)-> Hr(K) [2]. If iΓ ^ A; then, by

Lemma 1.10, we have K — K^K^ 2>separated. The Mayer-Vietoris
sequence below implies iξι{Zr) = 0, where iξi : iίr(A) -

Hr(Kx Π1Q - Hr{Kλ)

Therefore, K — A and Z r = 0, or ΐ* is one-to-one.

Proof of Theorem 2.5. Consider the exact sequence,

ίΓ(ΛΓ, M - U) — ff^Jlf) - ^ ίf?(ikΓ - U) .

We will show i^(jr) = 0, where γr is the element of Hr(M) given in
the theorem. Suppose ί*(γr) Φ 0; then, by Lemma 1.8, there exists a
floor for i*(γr) contained in M — C7. If D is this floor, then D is a
floor for 7r, since ΐ£ = ΐ ^ ΐ * . Here, ΐ£: Hr(M)->Hr(D) and i^ .H'iM- U)->
Hr(D) are inclusion mappings. Therefore, by the definition of t/, Z) is
contained in U. This is impossible, hence i*(yr) = 0.
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Proof of Theorem 2.6. Let φ^ = j*i*, and suppose φ*(Zr) — 0, for
some Zre Hr(E). Then there exists a minimal closed set K in M such
that KZΪE and ψf (Zr) = 0, where φj: Hr(E)-> Hr(K, K f) N) is analo-
gous to Φ̂  defined above. This follows from Zorn's lemma and conti-
nuity. We will assume K Φ E. Since E is an Er.λ set, we can write
K=K1\JK2, Tr .^-separated. Also, we can assume EaKλ. Consider the
following commutative diagram:

, n κ2)

nHr(K Π N) —
ΐ V?

HAKv&nN)

θ θ θ

Hr(K2Γ\N) - —

The two vertical sequences are Mayer-Vietoris sequences. Also, the
two horizontal sequences are exact. We have

! n κ2 n N) = , n Λ0 = o ,

since K^K^ is a T,._i set. Since Φ%{Zr) = j%iξ(Zr) = 0, there exists a
Z^ e Hr(K n JV) such that ί%(Zl) = i%(Zr). There exists

such that

and

(Z]., Z>) 6 f ζ . ^ Π N) φ ^(X, Π 2V)

r) = Z\. By commutativity,

ψl(Zl, Zl) = i%{Z3

r) = ί*(Zr) ,

, 0) = iξ(Zr) .

By exactness, ψ% is an isomorphism, hence i\(Z\) — ί%i(Zr). Therefore,
j%ήκι(Zr) — j%ή\{Z\) — 0. But this is impossible, since K is minimal.
Thus, K — E and φ* is one-to-one.
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3. Cyclic elements in locally connected spaces* The zero-dimen-
sional cyclic elements in a locally connected continuum have several
useful properties. For example, if the continuum M is locally connected,
then the zero-dimensional cyclic elements of M are also locally connected
and these cyclic elements form a null sequence. Also, the simple
O-links (definition below) are identical with the Eo sets in an lc° space [6].
The examples below show that these properties do not generalize.

DEFINITION 3.1. A non-degenerate subset K of M is called a simple
r-link of M, if K is maximal with respect to the following property:
if M = Mx U M2, 2>separated, then KczM, (or Ka M2). In other words,
K is a maximal subset which can not be separated by a Tr set that
also separates M.

LEMMA 3.2. All simple r-links in M are closed. If Kλ and K2

are two distinct simple r-links in M> then KλΠK2 is a Tr set. If L
is a non-degenerate subset of M that is not disconnected by any Tr set
which also disconnects M, then L is contained in a simple r-link of M.

Proof. The proof is similar to those for the corresponding lemmas
for cyclic elements.

EXAMPLE. We will construct an lcr space M in which the collection
of Er sets does not form a null sequence. This example will also show
that, in an lcr space, the simple r-links need not be the same as the
Er sets.

For each positive integer n, let Rn be a solid, three dimensional
rod of height one and diameter l/2\ In Euclidean three-space, define
/ by / = {(xf y, z) \ x = 0, y = 0, 0 ^ z ^ 1}. Imbed RΛ in three-space so
that Rn is tangent to Rn+ι and the sequence of sets Rn converges to /
(i.e. Rn = {(x, x, z)\xλ + (y - 3/2n+1)2 ^ l/22n+2, 0 ^ z ^ 1}). Let M be
the set [Uw-i-KJU/. Then M i s a compact lc1 space, each Rn is an Eλ

set in M, but the collection {Rn} is not a null sequence. Also, / is a
simple 1-link, but is not an E1 set.

THEOREM 3.3. // M is s — Ic and E is an Er set of M, where
s ^ r, then E is s — Ic.

Proof. Given any x e Ey and an open set U° of E containing x,
then there exists an open set U of M such that U Π E = U°. Since M
is s — Ic, there exists an open set V, containing x, such that VaU
and any compact s-cycle in V bounds on a compact subset of U. Let
Zs be a compact cycle on V Π E — V°. Then there exists a minimal
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closed set K in M such that V°c:Kc: U, and Zs bounds on K. By using
the Mayer-Vietoris sequence, as it was used in the proof of Theorem
2.4, we can show Ka U°. Therefore Zs bounds in U° and E is s — Ic.

EXAMPLE. We will construct a compact lcr space which contains
an Er set which is not lcr. Consider the following curve in three-space:

x = 0, y = ί, z = sin (π/t), for 0 < t ^ 1 .

Expand this curve slightly so that it becomes a solid, three dimensional
figure, which oscillates as it approaches the origin. Let N be this space,
along with its limiting line segment on the 2-axis. Let P =
{(x, y,z)\x = 0,0^y^l,-l^z^l}; then define M= P\J N. Thus
N is an Eλ set in M and M is Ic1 but N is not 0 — Ic.

4. Cyclic elements and monotone mappings, A very basic property
of the zero-dimensional cyclic element theory is the following: if / : M—>
N is a monotone mapping (i.e. the inverse image of any point is con-
nected), M and N are Zc°, and EN is an Eo set in N; then there is an
EQ set in M whose image under / contains EN. This result does not
hold in higher dimensions, as the example below demonstrates. The
best result we have obtained in this direction is Theorem 4.2.

DEFINITION 4.1. A mapping/: M—>iVis r-monotone, if H8{f~\y))=Q,
for all yeN and 0 ^ s ^ r.

THEOREM 4.2. Let f be an (r — l)-monotone mapping of M onto N,
where M and N are compact Hausdorff spaces. If DN is a floor for
yr

NeHr(N), then there exists a floor DM for /*(7^) such that f(DM) = DN.

Proof. Since / is (r - l)-monotone, /* : Hr(N) -> Hr(M) is a one-
to-one mapping [1]. Therefore, /*(γ^) Φ 0. Consider the commutative
diagram below. The vertical mappings are inclusion mappings; and DM

is defined below.

M — > N

f-\DN)

VJM UN

DM —>f{DM) .

The mapping fx is the restriction of / to f'\DN). Therefore, fλ is
(r — l)-monotone. Since DN is a floor for YN, i^(γ^) Φ 0. Since
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/*: Hr(DN)^Hr(f-\D)) is one-to-one, iϊf*(yr

N) = f?i*(yr

N) Φ 0. There-
fore, f~\DN) contains a floor for /*(7^). Denote this floor by DM and
let f2 be the restriction of / to DM. By the definition of a floor,
i ίϋ/*(7i) =£ 0. Since jϊiϊf*(yr

N) = fTftiUv*), we have j*i%(yr

N) Φ 0.
This implies f(DM) = D^, since D^ is a floor for 7Γv

We shall omit the proofs of Lemmas 4.3 and 4.5.

LEMMA 4.3. Let N± and N2 be subsets of M which can not be dis-
connected by a Tr set. Suppose that iV^Uλ^ is not a Tr set. Then
N1{jN2 can not be disconnected by a Tr set.

LEMMA 4.4. Let f: M—> N, and suppose TczN is a Tr set such
that f~\T) is also a Ts set. Also, assume f is a homeomorphism of
M- f'\T) onto N- T. Then, if TN is a Tr set in N, f~\TN) is a
Tr set in M.

Proof. Let if be a closed subset of f~\TN). Denote f'\T) by
Γ"1. In the commutative diagram below ff is an isomorphism, by ex-
cision. Therefore, by exactness, Hr(K) — 0.

Hr(κ, K n T-1) -> Hr(K) — w\κ n T-1)

H'(f(K), f(K n Γ-1)) - H*(f{K)) ->

LEMMA 4.5. Assume f is a mapping of M onto N such that the
inverse image of any Tr set in N is a Tr set in M. If Kcz M can
not be disconnected by a Tr set in M, then f{K) can not be disconnected
a Tr set in N.

EXAMPLE. If / is an r-monotone mapping of M onto N, where M
and N are Zc°° spaces and EN is an Er set in N\ there may not be an
Er set, E", in M such that f{EM)i)EN.

We will construct the example in three space. Consider the follow-
ing solid cylinders:

M i = {(x,y,z)\x2 + y 2 ^ 1, 0 ^ z rg 1}

M2 = {(a?, y , z)\x2 + (y - 2)2 £ 1, 0 ^ z ^ 1} .

The cylinders Mι and M2 are tangent along / = {(x, y, z) \ x = 0,
2/ = l , 0 ^ z ^ l } . Let M3 be an arc joining the endpoints of /, which does
not meet M1[JM2 except at these endpoints. Let M= (J?=i Mi W e

will define a decomposition of M, and will let / : M —> N be the decom-
position mapping.
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To form N, identify all the points in M3 into a single point. Then
the mapping f:M—>N is r-monotone for all r and the restriction of /
to M — M3 is a homeomorphism.

We will show that N is an Ex set. First, neither M1 nor M2 can
be disconnected by a 2\ set. Lemmas 4.4 and 4.5 imply that neither
/(Mj) nor /(M2) can be disconnected by a TΊ set. By Lemma 4.3, N —
/(M,) U f(M2) can not be disconnected by a ϊ\ set, since /(M,) U /(M2)
contains an essential 1-cycle. If if is a closed subset of M such that
f(K)z)N, then Kz) Mλ U M2. Then j ί can be disconnected by a ϊ7! set,
namely Mx Π Λf2. Therefore, there is no £Ί set in M whose image is N.

Note that M is obviously lcr for all r. Therefore ΛΓ is also lcr,
for all r, since / is r-monotone, for all r.
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