
PROBLEMS IN SPECTRAL OPERATORS

URI FIXMAN

Introduction. An important problem in the theory of spectral
operators in Banach spaces initiated by N. Dunford [5; 6] is that of
deciding whether the linear operators of the types encountered in analysis
are spectral. Various conditions for spectral operators have been given
in [5], but further research is needed in order to apply them to specific
cases. J. Schwarz [11] has shown that a class of operators arising from,
not necessarily self adjoint, integro-differential boundary-value problems
consists of spectral operators. The present investigation originated in a
problem on stationary sequences in Banach spaces which led to the study
of unitary operators, namely linear isometries of the space onto itself,
from this point of view. Accordingly, attention was focused on the
class of unitary operators, and the limitations imposed on the operators
under study were designed to include it.

Section 1 contains a summary of definitions and results from [5; 6].
A distinction, significant only in non-reflexive spaces, is made between
spectral and merely prespectral operators according to the topology in
which tf-additivity of the resolutions of the identity is required. As
shown in § 2, a resolution of the identity of a prespectral operator
uniquely determines the resolutions of the identity of its spectral re-
strictions. A simple example shows how this can be used to prove that
certain operators are not spectral.

Known results are combined in § 3 to yield a necessary condition
for spectral operators of scalar type, which involves only the norms of
rational functions of the operators. If the space is reflexive and the
spectrum an i?-set [1, p. 397], the condition is also sufficient. Using the
results of §2 this condition is localised to "cyclic" subspaces generated
by single elements. A much more general approach to localization, via
the notion of vector measures associated with the operator, is expounded
in [3]. It is felt though that the present considerations retain their
interest owing to the explicit conditions given. The method of [3] also
implies the results of § 2 on restrictions for the case of a reflexive space.
Section 3 ends with some characterizations of finite dimensional cyclic
subspaces.

The above results are specialized in § 4 to unitary operators which,
if the space is reflexive, satisfy all the subsidiary conditions. As a
corollary it follows that in a reflexive space a unitary operator is spectral
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if and only if every stationary sequence it generates is spectral.
The final section contains examples of non-spectral unitary operators.

It is shown that a unitary operator U in the space of continuous func-
tions defined on a compact Hausdorff space is not spectral provided the
homeomorphism determined by U is non-periodic. Using the boundness
of the norms of the values of a resolution of the identity, examples are
given of non spectral unitary operators in the spaces lp, 1 < p < oo,
p Φ 2. The two methods used are combined to show that if in parti-
cular the permutation of the basis, determined by a unitary operator in
the last mentioned spaces has an infinite "cycle", the operator is not
spectral. Examples of non spectral unitary operators in the spaces Lp,
p Φ 2, (c) and (cQ) follow as corollaries.

1. Preliminaries* Let X denote a complex j?-space and 33 the
Boolean algebra of Borel subsets of the complex plane p. A spectral
measure in X is a homomorphism E of 33 onto a Boolean algebra of
projections of X such that: E(p) = I = identity operator, E(ψ) — 0, and
||i?(<7)|| < M < oo, M independent of σ e 23. The Boolean operations on
commuting projections A, B are defined, as usual, by

Af]B = AB, Al)B = A + B-AB.

A spectral measure E in H is said to be of class Γ in case Γ is a
total linear manifold in 3c* and x*E( )x is σ-additive on 33 for x e 3E,
X* 6 Γ>

Let B{ϋ) be the i?-algebra of bounded linear operators of X into it-
self. If Γ e B(H) and 2) is a (closed) subspace of 36, we denote by T\ Y
the restriction of T to 2), and by σ(T) and ρ(T) respectively the spectrum
and resolvent set of T. Thus, if 2) is, invariant under T, σ(T\ Y) denotes
the spectrum of T considered as an operator in 2). For ζ e ρ{T),
(ζ - T)'1 is abbreviated to T{ζ).

An operator T e B(ϋ) is called a prespectral operator (of class Γ)
in case there exists a spectral measure E of some class Γ such that

TE(σ) = E(σ)T , σ(T \ E(σ)ϊ) c σ , σ e S3 .

E is then called a resolution of the identity for Γ.
An operator in 33(36) is called a spectral operator if it is prespectral

of class 3£*. In this case, I? is σ-additive on 33 in the strong operator
topology, and the boundness of its range is a consequence of the other
requirements [6, p. 325], A spectral operator T has a unique resolution
of the identity E\6, Th. 6], If A e J5(3E) commutes with Γ, then it
commutes with E[6, Th. 5].

It may also easily be shown that if the bounded subsets of ϊ are
weakly sequentially conditionally compact, in particular if X is reflexive,
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then every prespectral operator in X is spectral.
Let T e B(%), x e 36. By an abuse of language, an X-valued func-

tion / defined and analytic on an open set D(f) c; p is called an analytic
extension of T(ζ)x if

(ξ - T)f(ξ) = x , ? e D(f) .

/(?) = Γ(?)« on D(f) Π /θ(T) for otherwise (ζ - T)(/(£) - T{ζ)x) =
cc — α? = 0 would imply f e σ(Γ). Further we have

1.1. THEOREM. If T is a prespectral operator, and f, g are analytic
extensions of T(ξ)x, then f(ζ) = g(ζ) for ξ e D(f) n D(g). ([6, Th. 2],
The further assumption D(f) 3 jθ(Γ), which is made there, is not used
in the proof).

Hence there exists a maximal open set which may serve as a do-
main of definition of an analytic extension of T(ξ)x. This set is called
the resolvent set of x, and is denoted by ρ(x) (or pτ(x), when more then
one operator is involved in the discussion). Its complement σ(x) (or στ(x))
is called the spectrum of x. The maximal analytic extension itself is
denoted by x(ξ) (or xτ(ξ)).

The main use of the concepts above is through the following charac-
terization of spectral subspaces [6, Th. 4]:

1.2. THEOREM. Let T be a prespectral operator in X with a re-
solution of the identity E, and let σ c p be closed. Then

E{σ)%= {x\σ(x) c σ} .

Let E be a spectral measure which vanishes on the complement of

a compact set σ, and let / be a complex valued function continuous on

σ. Then the Riemann integral \ f(ζ)E(dξ) exists in the uniform operator
Jσ

topology [6, Th. 7]. An operator S is said to be of scalar type if it is
spectral and satisfies

1.3. S

where E is the resolution of the identity of S [6, Def. 1].
The reader is referred to [4] for the definition and properties of

f(T), where T e B(%) and / belongs to a certain class of locally holo-
morphic functions. In the sequel, / will in general be a rational func-
tion with poles in p{T). If S is of scalar type with the resolution of
the identity E, then we have the functional calculus

1.4. f(S) =
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We refer to [6] for the general case of a spectral operator.
Finally we shall need the concept of the cyclic subspace [x] generated

by an element x e 36. By this is meant the subspace spanned by
{T(ξ)x\ξ e ρ(T)} [5, Def. 1.4]. It has the following properties [5,
Lemma 1.5]:

1.5. LEMMA.

1.5.1. x e \x\.
1.5.2. /(Γ)M cz [3].
1.5.3. If y e [x], then [y] c [x].

2. Restrictions of prespectral operators* The following is a generali-
zation of the uniqueness theorem for spectral operators mentioned in § 1.

2.1. THEOREM. Let T be a prespectral operator in the B-space 3£,
and let E be a resolution of the identity for T. Let 2) be a subspace
of X invariant under T. Then if T|2) is spectral, its resolution of
the identity equals the restriction 2?|2) of E to 2).

Proof. Let y e 2). The function yτ\<Aζ) is an analytic extension of
T(ζ)y with domain ρτ^(y). Thus pT\φj) £ pτ(v)9 or

(2.1.1) στ(y) c στφ) .

Let F denote a resolution of the identity for Γ|2). If a is a closed
subset of the complex plane, we have by 1.2

στm(F(σ)y) c σ .

Therefore, by (2.1.1),

στ(F(σ)y) c σ,

and again by 1.2

(2.1.2) E{σ)F(σ)y - F(σ)y .

If τ is a closed set disjoint from σ, we get, operating with E(σ) on
E(τ)F(z)y = F(τ)y,

(2.1.3) E(σ)F(τ)y = 0 .

(2.1.3) and the <r-additivity of F in the strong operator topology show
that E(σ)F{σf)y — 0 {σr denotes the complement of σ with respect to p).
This together with (2.1.2) gives

E(σ)y = F(σ)y , σ closed.
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The properties of E and F now yield the same equality for every Borel
set.

The theorem above shows that in variance of 2) under E (i.e., under
every value of E) is a necessary condition in order that T\ 2) be spectral.
This condition is by no means automatically fulfilled, and this fact can
be used to show that an operator is not spectral:

2.2. EXAMPLE. Let Ω be a compact topological space. We consider
the £>-space C(Ω) of all complex valued functions / continuous on Ω with
11/11 = maxω6Ω \f(ω)\. Let μeC(Ω), and let S be the operator of multipli-
cation by μ. Heuristically, S cannot in general be spectral because
projections which " ought" to belong to the resolution of the identity
are not members of B(C(Ω)). This is made precise as follows. Let T
be the extension of the multiplication to the space X — M(Ω) of complex
valued functions / bounded on Ω with | | / | | = sup |/(ω)|. T is pre-
spectral with a resolution of the identity: E(σ) is the multiplication by
XΛK ))t where χσ is the characteristic function of σ. The σ-additivity
may be verified with respect to the total linear manifold generated by
the functionals #*, <o e Ω, defined by x%x — x(ω), x e M(Ω). To see
that σ(T\E(σ)%) c σ, observe that if ζ e σ', (T\E(σ)X)(ζ) is the multi-
plication by χσ(μ( ))(ξ — μ)~ι (here 0/0 = 0). We omit the details. Now
suppose, for instance, that μ is not constant on a connected component
of Ω, and that ωlf ω2 are two points in the component such that
μ(ω1) Φ μ(ω2). Then taking σ = {μ(ω^} we see that E(σ) does not leave
C(Ω) invariant. Hence S= T\C(Ω) is not spectral.

The next theorem is a partial converse of Theorem 2.1. We need
two lemmas.

2.3. LEMMA. Let T be a prespectral operator in the B-space 36,
and let A e B(£) commute with T. If x e X, then σ(Ax) c: σ(x) and
(Ax)(ξ) - Ax(ζ), ζ e p(χ).

Proof. For ζ e p(x), (ζ - T)Ax(ζ) = A(ζ - T)x(ξ) = Ax. The con-
clusion follows by the definition of σ(Ax) and 1.1.

2.4. LEMMA. If T is prespectral in 3£, x e X and τ is a connected
component of ρ{x) such that τ Π p(T) Φ φ, then x(ζ) e [x], ζ e r.

Proof. Since p(x) is open in the complex plane, τ has the same
property and is therefore a region. Let x* e X vanish on [x]. For
ζ 6 ρ(T), x(ξ) = T(ξ)x e [x]; thus f(ξ) = x*x(ζ) vanishes on the open
subset T Π p(T) of τ. Being regular, / vanishes identically on τ. A
well known corollary of the Hahn-Banach extension theorem yields the
conclusion.
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It may also be shown that {ξ e p(x)\x(ξ) e [x]} is open and closed
in ρ(x). If p(T) is dense in the plane, then x(ζ) e [x] for every ζ e p(x)
[5, Lemma 1.5.3]. Cf. however Example 2.6 below.

2.5. THEOREM. Let T be a prespectral operator in X with a re-
solution of the identity E. Let 2) be a subspace of 36 invariant under
T(ζ), ζ € p(T), and under E. Then T\tj is prespectral with a re-
solution of the identity i?| 2). If T is spectral or spectral of type m
(v. [6, p. 336]), T\ Y has the same property.

Proof. Since T = -—\ T(ξ)dξ , where C is a circle containing σ(T)
2πiU

in its interior and the integral is in Riemann's sense and in the uniform
operator topology, 2} is invariant under T, and T| 2) is well defined. If
T is spectral, we may assume invariance under T instead of under T(ξ),
ζ 6 ρ(T), using [6, Lemma 3].

All the assertions of the theorem are easily verified, except: For
every σ e 83, σ((T\W\(E\ Y)(σ)W = σ(T\E(σ)ψ) c σ. We have to show
that if ξ e σ\ then ξ — T induces a one-to-one mapping of E(σ)ty onto
itself. Since σ(T\E{σ)Έ) c σ, there is no z φ 0 in E(σ)% and hence in
E(a)%) such that (ζ — T)z — 0. It remains to show that the range of
(ζ-T)\E(σ)ty is E(σ)% Let z e E(σ)ty. Then E(σ)z = z, hence
E(σ)z = 2;, and therefore by 1.2 σ(z) ^ σ. Therefore ξ* € p(z), and since
(ξ — T)z(ξ) = zit suffices to show that z(ξ) e E(a)V). Let π be an open
half plane with ζ on its boundary. From 1.2 it follows that σ(E(π')z) c
π' U σ(z), and therefore {f} U ΊZ C p(E(πr)z). Since p(E(πf)z) is open,
it follows that f belongs to a component of p(E(πf)z) which contains
arbitrarily distant points of the complex plane and thus points of p(T).
2.4 now implies (E(π')z)(ξ) e \E(π')z~\. The assumptions of the invariance
of 2) show that [E(π')z] c 2). Therefore (E(π')z)(ξ) e 2). But by 2.3,
we have (E(π')z)(ζ) = E(π')z(ξ); therefore

E(π')z(ξ) e 2) .

Similarly one shows E(π)z(ζ) e 2). Therefore z(ζ) = ^(^'^(f) + £r(^)^(ξ') e
2). On the other hand, E{σ)z = z implies by 2.3 E(σ)z(ζ) = 2(f). There-
fore 2(f) e E{σ)^} as required.

It follows from the proof above that, under the conditions of the
theorem, z e Y implies z(ξ) e 2), ξ e p(z). The following example shows
that without invariance of 2) under E, this need not hold even if T is
a normal operator in Hubert space. This, in turn, amplifies Example
2.2 by showing that even if T is spectral, and not merely prespectral,
2) is not necessarily invariant under E.

2.6. EXAMPLE. Let X be the Hubert space L2(Ω), where Ω is the
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disc {ω I I ω \ < 1} in the complex plane. Let T be the operator of
multiplication by ω. Then T is a bounded normal operator and spectral.
We define x e I by

1 i f i ^ l ^ l ^ i
0 if | ω | < i .

The maximal analytic extension of T(ζ)x, x(ξ), exists for ξ not in the
ring σ(x) = {ζ\ \ < \ ξ\ < 1}, and then

x(ξ)[ω] = —^— if i < I ω I < 1
ζ-ω
0 if I ω I < i

We consider the subspace 2) = [cc], which is invariant under T(ζ), ζ e p(T)
by 1.5.2, and contains x by 1.5.1. [x] is the closure of the finite linear
combinations of the functions T(ζ)x = x(ζ) for ξ e ρ(T) = β'.

Now, suppose that for a fixed ξ, \ξ\ < £, x(ζ) were approximable
by these linear combinations in the Hilbertian norm. Since all these
functions are holomorphic in σ(x), x(ξ) would be uniformly approximable
by the linear combinations on a closed ring τ concentric with and inner
to σ(x) [13, p. 96]. But this is impossible, since the approximants are
rational functions with poles in the unbounded component of τ', while
the only analytic continuation of x(ξ) | τ to the other component is
V(ζ - ω)> which is not regular at ξ (v. [13, p. 25, Th. 16]).

It may also be directly shown that there exist x and σ such that
E(σ)x 0 [a?].

We now give an example to show that the assumption that T \ 2) is
spectral cannot be dropped in Theorem 2.1 even if 2) =3c; i.e., a pre-
spectral operator may have more than one resolution of the identity.

2.7. EXAMPLE. We specialize Example 2.2, retaining its notation.
We take for Ω the set of positive integers. Thus 9£ = M(Ω) is the space
usually denoted by (m). For μ we chose a function belonging to ϊ
which satisfies

(2.7.1) μ(l) = 1

(2.7.2) μ(j) φl, j > 1

(2.7.3) lim μ(j) == 1 .
j

As is well known [2, p. 34], there exists a real bounded linear functional
lim^, defined on the space (m)R of all real bounded sequences, which
has the following properties:

(2.7.4)Λ If x, y e (m)R and y(j) = x(j + 1) , j = 1, 2, . . ,
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then lim^ y — lim^ x

(2.7.5)Λ lim x(j) < limβ x < lim

We define a functional lim on X by lim# = \\mRxf + ί l i m ^ " , where
x — x' + ί#", #', x" e (m)R. Evidently, lim is a bounded linear functional
which enjoys the property (2.7.4) analogous to (2.7.4)^. Further we have
(T defined as in 2.2)

(2.7.6) lim Tx = lim x .

To see this, we write (Tx)(j) — (μ(j) — l)x(j) + x(j). By the linearity of
lim, it suffices to show that a(j) —> 0(a(j) = μ(j) — 1) implies lim ax — 0.
This follows from (2.7.5)* on separating a and x into their real and
imaginary parts. We define an operator A e B(%) by Ax = lim x x0,
where #0(i) = 81:f (Kronecker's symbol). Using (2.7,1), (2.7.6) we get
TA = Aϊ7. On the other hand, A does not commute with E (defined in
2.2). Taking σ = {1} we have, using (2.7.2), (2.7.4), AE{σ)x = 0 while
2?(tf)A# = lim x αj0. Hence the function F, defined by

F(σ) = £7(0") + A&(<7) - E(σ)A , σ 6 95 ,

differs from E. We show that F is a resolution of the identity for T.
A straightforward calculation, based on the fact E is a spectral measure,
shows that F is a spectral measure (In verifying that F(σ)F(S) — F(σ Π 8),
one uses the fact that AE(τ)A — 0, τ e 33). F is σ-additive with respect
to the total linear manifold generated by the functionals xf (xjx = x{j)),
j>2 and x* = x? — lim; since xfF(σ)x — x*E(σ)x for i > 2, while
^ ^ ( σ ) ^ = χσ(l)(^(l) — lim x). Since T commutes with E and A, Γ com-
mutes with F, Finally, to see that σ(T\F(σ)T) c S, we assert that the
restriction of (T| E(σ)l)(ζ) to F(o )X, ξ* e σ\ is an inverse of (ζ - T)\F(σ)X.
As shown in the proof of [6, Th. 5], the prespectrality of T implies
E(σ)AE(σ) = AE(σ). Hence E(σ)AE(σ) = AK(σ), whence it follows
that E(σ)F(σ) = F(σ). Therefore F(σ)9e c ^(σ)^, and the mentioned
restriction is well defined. Let x e F(σ)2ί. Then σ(x) c σ, by 1.2,
since a? e E(σ)H. Further, 1.1 and 2.3 imply

{T\E{σ)H){ζ)x = x(ξ) = (F(<j)αO(?) = ^ ( ^ ( r ) .

Thus the range of the restriction is included in F(σ)%. The truth of
our assertion is now evident.

3. Conditions for operators of scalar type* If T 6 B(l), the full
algebra generated by Γ, denoted by §Ϊ(Γ), is the smallest subalgebra of
B(T) which is closed in the norm topology of JB(Ϊ), which is inverse-
closed and which contains T and / [6, Def. 5]. Let σ be a compact
subset of the complex plane. We denote by R{σ) the set of rational
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functions regular on σ. CR(σ) denotes the closure of R(σ) in C(σ).
Following [1, p. 397], a compact nowhere dense set σ in the complex
plane is called an R-set if and only if CR(σ) = C(σ). For properties of
i?-sets used in the sequel see [1, p. 398] and the references there given.

3.1. THEOREM. Let S e B(T), then the following equivalent con-
ditions are necessary in order that S be of scalar type:

3.1.1. There exists a constant H < co such that for every f e R(σ(S))

\\f(S)\\ < Hmzx\f(ξ)\ = H\\f(S)\\sp = H\im\\f(Sy\\^ .
ζeσ(S) n

3.1.2. There exists a constant K < co such that for every f e R(σ(S))

\\f(SW<K\\f(Sγ\\.

If % is reflexive and σ(S) is an R-set, each of the mentioned conditions
is sufficient. Each of the following conditions implies 3.1.1:

3.1.3. For every x e ϊ there exists a constant H(x) {independent
of f) such that for every f e R(σ(S))

\\f(S)x\\£Hmax\f(ξ)\-\\x\\=H(x)\\f(S)\U\x\\ .
ζeσ(S)

3.1.4. The same; with h(x), f e R(σ(S\ [x])) and

\\f(S [x]) < h(x) m a x \f(ξ) | - h(x) \\f(S \ [x])\\sp

ζβσ(S\iχ ])

3.1.5. The same; with k(x), f e R(σ(S\[x])) and

3.1.3 is implied by 3.1.1. 3.1.4 and 3.1.5 are necessary if S is of scalar
type and satisfies the following condition:

3.1.6. If E is the resolution of the identity of S, x e 36 and σ e SB,
then

E(σ)x e [x] .

Proof. For the equivalence of 3.1.1 and 3.1.2 see [9, p. 78] and for
the necessity see the beginning of the proof of [6, Th. 13]. If one of
them holds, then 2I(S) is equivalent to CR(σ(S)), hence if σ(S) is an
iϋ-set, to C(σ(S)). Therefore if X is reflexive, S is of scalar type by
[6, Th. 18 (IV)]. Since, from 1.5.2, σ(S\ [x]) c σ(S) and | | / ( S ) a | | <

)| | II α| |, the equivalent conditions 3.1.4, 3.1.5 imply 3.1.3. The
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proof that 3.1.3 implies 3.1.1 is much like the proof of the uniform
boundness theorem. 3.1.3 and Baire's category theorem imply that at
least one of the sets

Gj= {x e %\\\f(S)x\\ < j \ \ f ( S ) \ \ S P \ \ x \ \ , f e R ( σ ( S ) ) } ,' = 1 , 2 , . . . ,

let it be the nth, contains a sphere {x e X | || x — x0 \\ < r}, r > 0. 3.1.1
then easily follows with H — n(2\\xo\\ + r)/r. If S is of scalar type
and satisfies 3.1.6, then every [x] is invariant under E (because if
y e [x], then E(σ)x e [y] c \χ\ by 1.5.3) and S(ξ) (by 1.5.2). Therefore,
by 2.5, S\[x] is of scalar type, and the necessity of 3.1.4, 3.1.5, which
are 3.1.1, 3.1.2 for S\[x]9 follows.

REMARKS. In case the conclusion of 1.2 holds, it may be convenient
to replace σ(S\[x]) by σ(x) in 3.1.4, 3.1.5. One always has σ(x) c σ(S\[x]).
By slight modifications in the proof of [5, Lemma 1.10], one shows that,
provided S is spectral, σ(x) = σ(S \ [x]) (for every x) if and only if for
every x and ξ e p(x), x(ξ) e [a?]. As remarked after 2.5, this is the
case if 3.1.6 holds.

Taking S as in 2.2, 3.1.1 is obviously fulfilled. By an appropriate
choice of Ω and μ, we may achieve that S is not spectral although
σ(S) = range of μ is an ϋ?-set. Thus these conditions fail to assure
scalarity if X is not reflexive.

We conclude the present section with some characterizations of finite
dimensional cyclic subspaces.

3.2. THEOREM. // S is of scalar type, satisfies 3.1.6 and x e X,
then the following conditions are equivalent:

3.2.1. [x] is of finite dimension.
3.2.2. SI(S)# is of the second category in [x] (or x = 0).
3.2.3. For each y e [x] there exists a U(y) e B{W), commuting

with S, such that U(y)x = y.
3.2.4. For each y e \x] there exists a V(y) e B([x]), commuting

with SI [x], such that V(y)x = y.
3.2.5. σ(x) is finite (equivalent to 3.2.1 by mere scalarity).

Proof. Evidently we may assume x Φ 0. 3.2.1 ==> 3.2.2 and 3.2.3:
Since {f(S)\f e R(σ(S))} is dense in SI(S), SI(S)x is a dense linear
submanifold of [x\. By 3.2.1, Wί(S)x is of finite dimension; hence closed.
Therefore %(S)x = |>], whence 3.2.2 and 3.2.3 follow.

3.2.2 or 3.2.3 =φ 3.2.4: Under either hypothesis the set

Z - {z = U(z)x I U(z) e B([x])9 U(z)S - SU(z)}

is of the second category in [x]. Suppose /„ e R(σ(S))y \\fn(S)x\\ = 1
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and z e Z. Then {fn(S)z} is bounded since

\\fn(S)z\\ = \\fn(S)U(z)x\\ = II ̂ ) / n ( S ) a ? | |

<\\U(z)\\\\fn(S)x\\ = \\U(z)\\.

Therefore, by the uniform boundness theorem, {||/n(S) | [cc]||} is bounded.
Hence, if fn e R(σ(S)), ||/n(S)a?|| - 1 and y e [x\, then {\\fn(S)y\\} is
bounded. This shows that there exists a constant c(y) < oo such that
\\f(S)y\\<c(y)\\f(S)x\\, f e R(σ(S)). We define the transformation
V(y) on {f(S)x\fe R(σ(S))} by

V(y)f(S)x=f(S)y.

V{y) is bounded by c(y) on a dense linear submanifold of [x]. Therefore
it is uniquely defined, and can be extended by continuity to a bounded
operator on [x\. Evidently, this operator satisfies our requirements.

3.2.4 =φ 3.2.5: We first show that for each y e [x] there exists a
constant c(y) such that

\\E{σ)y\\<c{y)\\E{σ)x\\, σ e 33 .

As in the proof of 3.1, S\[x] is of scalar type with the resolution of
the identity i?|[cc]. By the commutativity theorem, mentioned in § 1,
E\\x\ commutes with V(y). Therefore for every Borel set σ

|| E(σ)y\\ = \\ E(σ)V(y)x || = || (E(σ) |

= || V(y)(E(σ) \ [x])x \\ < \\ V(y) \\ \\ E(σ)x \\ .

This proves our statement. Hence, if we define

Gj= {ye [x]\\\E(σ)y\\<j\\E(σ)x\\,σ e S } , j = l , 2 , - . . ,

we have \Jβό = [x]. Since the G/s are closed, it follows by the usual
category argument that there exists a constant c < oo such that

\\E(σ)\[x]\\<c\\E(σ)x\\, a e S3.

Since the norm of a non null projection is at least 1, it follows that
E(σn)x —> 0, σn e 33 =Φ There exists an n0 such that E(σn) \[χ] = 0

for n > nQ.

Now, suppose σ(x) were infinite. Then we could represent it in
the form σ(x) = \Jζ=0<7n, where the σn are pairwise disjoint, σ0 e 33 and
on, n < 1 are non void sets open relative to σ(x) (we omit the easy
proof). From the σ-additivity of E in the strong operator topology it
follows that E(σn)x —> 0. Hence, by what was proved above, there exists
an m > 1 such that E(σm)x = 0. σm — σ(x) Π T, where τ is open in the
complex plane. We have
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E(τ)x = E(τ)E(σ(x))x = E(τ n σ(x))x = ^(αw)a? - 0 .

Therefore E(τ')x = x. Since τf is closed, 1.2 implies σ(x) c τ'. Thus
we get σm = <r(#) Π r = ψ, contradicting the choice of σm.

3.2.5 =φ 3.2.1: Since we assumed x Φ 0, we have σ(x) φ φ. Let

tf (a ) = {ξ\, •••,£.}. If /̂ e [x] there exist / n e R(σ(S)) such that

MS)x-+y. By 1.4, Λ(S) = J/n(r)#(dr). Using Riemann's sums ap-

proximating the integral, we get

But fn(S)E(σ(x))x =/.(S)«; therefore

Now

(**) E({ξj})xf j = 1, •••, r are linearly independent:

If EJ-i«^({fj})» = 0, then operating with E({ξk}), we get akE({ξk})x = 0.
But Eilξ^x Φ 0 for otherwise

x = E(σ(x))x - JB7(€j(a?) - {ζk})x + E{{ζk})x =

would imply by 1.2 the contradiction σ(x) c σ(ίi?) — {ξ*fc}. Therefore
ak = 0. From (**) and (*) it follows by a well known argument that
the sequences {fn(ζj)}n=i &?& bounded; hence compact. Therefore there
exists a subsequence {%} of the indices such that fnjίζj) —> Wj, 3 — 1>
• , r. So

V=Σ><*jE({ςJ})x.

The vectors E({ζj}x, j = 1, •••, r, are independent of y, and thus span

4. Applications to unitary operators. To render the results of § 3
conveniently applicable, one should know beforehand of an operator that
if it is spectral, it is of sealer type and satisfies Condition 3.1.6. We
shall show that this is the case for a class of operators which includes
the unitary operators in reflexive spaces. We lean heavily on [5]; and
although some familiarity with this paper is assumed in the present
section, it will be convenient to cite the pertinent definitions.

4.1. DEFINITION. Let the spectrum σ(T) of an operator T e B(X)
lie in a closed rectiflable Jordan curve Γo. Suppose that Γo is embedable
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in a family Γs, — δ0 < δ < δ0 (0 < δ0 < £), of closed rectifiable Jordan
curves which satisfies the following conditions: Γ8ι is interior to /\ 2

for - δ 0 < 81 < δ2 < δ0. The curve Γδ is defined by a function f(λ, δ),
— 1 < λ < 1, with £( — 1 , δ) = f(l, δ). As λ increases from - 1 to 1, the
point ζ(X, δ) traces Γ8 in a counterclockwise direction. For different
values of λ, the arcs ζ(X, δ), — δ0 < δ < δ0 do not intersect. They are
rectifiable, and | δ | is the length of the subarc with endpoints f(λ, 0)
and f(λ, δ). Under these assumptions a nonnegative integer-valued
function v(X) satisfying the condition

1 , 0 < | δ | < δ 0 , - l < λ < l ,

is called an index function for T.

4.2. THEOREM. If U is a unitary spectral operator, it is of scalar
type.

Proof. This is essentially proved in [5]: It is easy to show that
the spectrum of U lies in the unit circle and that if we embed the
unit circle in the family of circles Γδ, — \ < 8 < J, defined by
f(λ, δ) = (1 + δ)β7rίλ, - λ < λ < 1, then v(X) = 1 is an index function for
U. Since ζ(X, 8) has continuous second partial derivatives, and the as-
sumptions of [5, Lemma 3.16] hold, it follows from [5, Lemma 3.18] that

\ (U - ζ)E(dξ) = 0 oτ U=\ζE{dζ).

4.3. LEMMA, Let S e 5(36) be spectral with index function v(X) == 1
with respect to ξ(X, 8) which has continuous second partial derivatives.
Let X be reflexive. Then E({ζ})x e [x], x e X, ζ e Γo.

Proof. Let ζ0 e Γo. Then ζ0 is of the form ζ0 = ζ(XQ, 0). It is
shown in the proof of [5, Th. 3.12 (III)] that there is a y e X and a
sequence 8n —+ 0 such that for ξn = ξ(XQ9 8n) we have

(4.3.1) (ζn - ςo)S(ζn)x(->)y .

Further, (4.3.2) (ξ0 - S)y = 0,

(4.3.3) x - y e (ζ0 - S

y e [x] since, by (4.3.1), it is a weak limit of vectors in [cc], hence a
strong limit of their linear combinations [2, p. 134. Th. 2]. (4.3.2) im-
plies, by [6, Lemma 1], E({ζQ})y = y. By (4.3.3), there exist zn such
that (ξΌ - S)zn -+y-x, and by [5, Lemma 3.17] E({ξo})(ζQ - S) = 0;
therefore #({£„})(2/ - ») = 0. It follows that E({ζo})x = y e \x\.

4 . 4 . L E M M A . Under the hypotheses of 4 . 3 , if ξ,ξ e Γo, ζ Φ ξ and
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x e X, then there exist zk e [x] such that E({ξ'})E({ξ'})x = limk(S - £)2

Proo/. Let ζOf ξ0 e ΓQ9 ζ0 Φ ξ0. Then, by 1.5.1, 1.5.3 and 4.3,
u = E({ζQ}')E({ξQ}')x e [a?]. Therefore by 1.5.3 it is sufficient to establish
the representation for u with zk e \u\. The argument follows closely
part of the proof of [5, Lemmas 2.6, 2.10], As in the proof of 4.3, there
exist ζn—>ξQ such that

Thus

(ζQ - S)S(ζn)u = (ξ0 - ξn)S(ζn)u + u{-»)u .

Since S(ξn)u e \n\ and since weak convergence to u implies strong
convergence of linear combinations, it follows that there exist uk e [u]
such that

(4.4.1) (ξo-Syuk-+u.

Operating on uk with the identity

(ζ0 - SγS(ζn) = (ζ0 - ξnγS(ζn) + (ζQ - ζn) + (Co - S)

and letting n tend to infinity, we get

(4.4.2) (ζ0 - S K = urn (ζ0 - SfS{ζn)uk .

But SiζnjUjc e [uk] c [u\, hence (4.4.1), (4.4.2) show that there are
vk e [u\ such that

(4.4.3) (fo-^-w.

Operating on (4.4.3) with E({ξQ}'), we get

(4.4.4) (&

But by 4.3 E({ξo}')vk e fe] c [^]; therefore, by what has been proved
thus far, E({ξo}')vk is of the form

(4.4.5) E({ξoy)vk = Km (|0 - S ) 2 ^ , , vfcll e [w].

From (4.4.4), (4.4.5) our lemma follows.

4.5. THEOREM. If S is a spectral operator which satisfies the as-
sumptions of 4.3, in particular if S is a spectral unitary operator in
a reflexive space, then it satisfies Condition 3.1.6.

Proof (After [5, Th. 2.11]). Since E{σ) - E(σ n Γo), σ e 93, and
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since E is tf-additive in the strong operator topology, it suffices to show
that E(σ)x e [x] for σ the closed proper subarcs of Γo. Let ξ — ζ(X, 0),
ξ = ξ(μ, 0), Xφ μ, be the ends of the arc

ίξf I] = {ζ(<*, 0) I λ < a < μ if X < μ; a $ (μ, λ) if μ < X} .

We show that !?([£, |])OJ e [x] (the case λ = μ cared for by 4.3). Since
I=E({ζ}) + E({ξ}) + E({ξ}')E({ξ}'), we have

E([ζ, ξ\)x = # ( { # ) * + ^({f})» + E&ξ, ξ\)E{{ζ

By 4.3 we have to show that E(ξ, ξ])u e [x\, where u =
But by 4.4 there exists a sequence zk e [x] such that

, ξ])(S - ξ)\S -
Jc

Thus we have only to show that z e [x] implies

- ζ)\S - ξfz 6 [x] .

Let ξn = ξ(\n, 0), ^n = (//n, 0), where the sequences Xn — λ, //„ -> ^
are so chosen that if λ < μ then Xn < λ < μ < μn, while if /̂  < λ then
μ < μn < Xn < X. It is shown during the proof of [5, Th. 2.4] that,
since S has 1 as an index function, (S — ξf(S — ξf is of the form

(4.5.1) (S - ζ)\S - ξγ = lim (7(λ, μ) + I(μn, λn)) ,

where I{a, β), —l<a,β<l,aΦβ, are certain operators, the manner
of definition of which is explained in [5, Lemma 2.4], which enjoy the
properties:

(4.5.2) I(a, β)[x] c [x] (J(α, β) being a line integral of S(ξ)).

(4.5.3) σ(/(α, /9)τ/) c [ξ-(α, 0), f(/3, 0)], » e ϊ [S, Lemma 2.4].

Let « e O]. Then, by (4.5.1),

(4.5.4) E([ξ, ξ\)(S - ?)2(S - SYz

- lim (£/([f, |]/(λ, /i)« + £?([?, |])7(//w, Xn)z) .

But by (4.5.3) σ(I(X, μ)z) c [f, £], σ(/(^M, λ n » c [ξn, ξn] and hence by

1.2 #([£, a)7(λ, /£)« = J(λ, ^ and

^ , \n)z

- E(φ)I(μn, Xn)z = 0 .

Thus (4.5.4) takes the form

E([ξ, ξί)(S - ζf(S - φ = /(λ, μ)z ,

and we may conclude E([ζ, ξ])(S - ζ)\S - ξfz e [x] from (4.5.2).
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Generalizing the Hubert space terminology, a two sided sequence of
vectors {a?n}*—.« is called stationary if and only if the norm of any
finite linear combination Σ?=iαA+ft *s independent of h. If U is a
unitary operator in £ and x e X, then the sequence {£7wx}̂ _oo is station-
ary. Conversely, if {xn}n--oo is stationary and 2) is the subspace spanned
by this sequence, there exists a unique operator U e J3(2)) which satisfies
Uxn = #n+1, an integer. U is unitary in 2) and is termed the shift
operator of {xn}. We call a stationary sequence spectral in case its
shift operator is spectral.

The final statement of the following theorem replaces the problem
of characterization of reflexive spaces every unitary operator of which
is spectral by that of characterizing spectral stationary sequences. This
"local" form of the problem seems more appropriate since the spectrality
of every unitary operator in a space X may depend not on "regular"
properties of'X but on an irregularity which renders the class of unitary
operators very sparse.

4.6. THEOREM. Let U be a unitary operator in 3c. Then conditions
3.1.1, 3.1.2 and 3.1.3 are necessary in order that U be spectral. If 1
is reflexive, then each of the conditions 3.1.1 to 3.1.5 is necessary and
sufficient and it is sufficient to let f in these conditions range over
polynomials. For a reflexive X, U is spectral if and only if every
stationary sequence it generates is spectral.

Proof. The first statement follows from 4.2. and 3.1. It follows
from 4.5 and from the fact that σ(U), being a subset of the unit circle,
s an i?-set that if ϊ is reflexive, all the parts of Theorem 3.1 are ap-
plicable. Let g 6 R(σ(U)). Using Cauchy's integral formula, it may
be proved that there exists an admissible domain τ (in the sense of
[4, Def. 2.2]) which contains <J(U), such that g is uniformly approximable
on τ by functions of the form

(r may depend on g, but not on the approximants. Cf. [1, p. 398]).
Since σ(U) is contained in the unit circle, we may assume, diminishing
τ if necessary, that the complement of τ is either connected or consists
of two components at most, one of which contains the point ξ — 0. In
either case it follows from [13, p. 47, Th. 15] that the functions h, and
hence g, are uniformly approximable on τ by polynomials / in ξ and
ξ-\ Thus these polynomials form a dense subalgebra of R(σ{U)), and
by the continuity of the functional calculus, the corresponding /(Z7)'s
are dense in {g(U)\g e R(σ(U))} in the uniform operator topology. From
the proof of 3.1 it is seen that we may replace R(σ(U) and R(σ(U\ [x]))
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by any subalgebra of R(σ(U)) with these properties. Since U is unitary,
the conditions of 3.1 remain invariant if the involved functions are
multiplied by ξk, k an integer. Therefore polynomials in ξ will do.
Finally it follows from what has been shown above that the subspace
spanned by a stationary sequence {Unx}ζ=_oo is [x]. Thus the final
statement follows from the fact that 3.1.4 is the same as 3.1.1 for the
shift operator.

5«. Examples of non spectral unitary operators* Let Ω be a com-
pact Hausdorff space. The unitary operators in C(Ω) are the operators
of the form (Ux)(ω) = μ(ω)x(h(ω)), ω e Ω, where h is a homeomorphism
of Ω on itself, μ e C(Ω) and | μ(ω) | == 1. This is proved in [12, pp.
469-472] for the real case, but the proof can be modified to apply to
the complex case too by the use of an argument of Arens in a similar
situation (v. [9, p. 88]). The following theorem treats only the case that
h is non-periodic; for the case that h is the identity mapping Cf. Example
2.2 above.

5.1. THEOREM. Let Ω be a compact Hausdorff space, and let U of
the form (Ux)(ω) — μ(ω)x(h(ω)) (h, μ as above) be a unitary operator in
C(Ω). If h is non-periodic, then U is not spectral.

Proof. By 4.2, 3.1 and the fact that o{U) is contained in the unit
circle (actually, coincides with it), it is sufficient to show that there
exists no finite constants H such that

(5.1.1) \\f(U)) II < Hm*κ\f(ξ) |, / a polynomial in ζ.

Let us calculate | |/(17) | | . If f(ζ) = Σ L o ^ f c , then

(5.1.2) (f(U)x)(ω) = Σakμ(ω)*x(h?*(ω)) ,
fc=0

where h07c denotes the kth iterate by substitution of h(hoo(ω) = ω). By
hypothesis there exists an ω0 e Ω such that the points hOJC(ωo), k — 0, 1,
• • ,w are distinct. Since Ω is Hausdorff, there exist pairwise disjoint
open sets πk, k = 0, 1, •••, n such that hok(ωo) e πk. Since a compact
Hausdorff space is normal, it follows by Urysohn's lemma that there
exist functions yk e C(Ω) such t h a t yjc(holc(ωo)) — 1, yk{o)) — 0 for ω e π'k
and 0 < yk(ω) < 1 on Ω. We define x0 e C(Ω) by

) 2 Λ

Substitution in (5.1.2) gives
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Since \\xo\\ = 1, \\f(U)\\ > Σϊ-o I α* I (actually | |/(Ϊ7)| | = Σϊ-ol"*l). The
necessary condition (5.1.1) now takes the form: there exists an H < oo
such that for every polynomial f(ξ) = Σ*=<>#*£*>

Σ | α f c | < f l max|/(?) | .

To contradict this statement we use the following example of Hardy
[8, § 14]. The series

ϊ 7 =>
fc=2 log k

converges uniformly for | ξ\ = 1, while the sum of the absolute values
of its coefficients diverges. Therefore the polynomials which form its
partial sums furnish us with the required counter example.

5.2. THEOREM. In each of the sequence spaces lp, l < p < o o ,

p Φ 2, there exists a non spectral unitary operator.

Proof. If U is a unitary spectral operator in 96, then necessarily
[5, Assumption 1.14]:

( 5 . 2 . 1 ) M ( U ) = swp{\\x\\\xfyeJif\\x + y\\ = lf σ(x) n σ(y) = Φ} < oo .

This follows from the boundness of E by 1.2. Even if ί/is not spectral,
the conclusion of 1.1 holds because o(U) is nowhere dense; and thus
σ(x) and M(U) are definable. We show that in each of the considered
spaces there exists a unitary operator U with M(U) — oo.

Let p, 1 < p < oo, p ψ 2, be given. We denote by Hό a space of
the type lp>n or ^ (the last possibility is needed only for the remarks
made after the theorem). If {ByjU is a sequence of such spaces, we
denote by ΣΓ=i©£; the Banach space of all sequences {Xj} with x3 6 lj
and

( oo \ 1/p

Σ I I ^ lK) <oo (if p =
If for each j , T} e B(Xj), we denote by Σ Γ = i θ ^ the transformation Γ
defined on (part of) ΣΓ-i θ ^ by Γ{x, } = {Γ^j}

5.3. LEMMA. If ϊ = ^ β l i φ ϊ J α?wί /or eαcfe j Z7j is a unitary
operator in Hjy then U = ΣΓ-i ® Uj is a unitary operator in 3c
M(U)

Proof. That U is unitary is obvious. If Xj e Tί5 for a definite i,
we denote by xf the vector {τ/fc} e 3£ defined by /̂̂  = xjf yk — 0 for & ̂  i
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Since the operation * is linear and norm preserving, (ζ — Uό)xό{ζ) = x3

for ξ e pUj(Xj) implies (ξ — U)x3(ζ)* = xj where x3{ξ)* is analytic on
pσ(xj). Therefore σσ(xf) c; σσ(x3). It is obvious how to complete the
proof.

Since lp is linearly isometric to Σ~=i Φ ,̂w where % are arbitrary
natural numbers, 5.3 shows that we have only to find indices n3 and
unitary operators U3 in lPtn such that &u]?3M(U3) = oo. Let φj9 j — 1,
•• ,n, be the natural basis of ZPtW. Henceforth Ϊ7W will denote the
unitary operator in lp>n determined by the requirements Unφ3 = φ j + 1 ( m o (in ).
The following lemmas will show that supw M(Ϊ7n) = oo, which will finish
the proof.

We now use tensorial products as in [10]. If x — (xlf •••, xn) e lp>n9

V = (l/i, * ,2/J € ZPtTO, we define a? (g) ̂ / to be the vector (xλy19 xλy2, ••-,
XiVmt v*Vi, oo2y2f , cca#m, , x^i, a?n2/2, , xnym) of ίp,nm. This is a Kro-
necker product [7, p. 208], and the norm is a cross norm with respect
to it, that is | |#(x)2/| | = | | # | | | | 2 / | | . The tensorial product of linear
operators, T in lp<n and S in lPtm, is uniquely defined by the requirements

5.4. LEMMA. If T, S are linear operators in lp,n, lPt7ϊl respectively,
then στ®s(x (x) y) = {ηθ \ η e στ(x), θ e σs(y)}.

Proof. If T is an operator in a finite dimensional space and / is
the minimum polynomial of x with respect to T, then στ(x) is the set of
zeros of / (cf. [5, p. 589]). We may assume that neither στ{x) nor σs(y)
is empty since this case is trivial. In case στ(x) = {η}, σs{y) — {θ} the
minimum polynomials are of the respective forms (ξ — η)\ (ζ — θ)s

(t, s > 1). By induction on t and s and use of the identity

(T (x) S - yθ)(x ®y) = (T - 7])® Sy + ηx(g)(S - θ)y ,

one shows that the minimum polynomial of x (x) y with respect to T (x) S9

is of the form (ξ — ηθf, r > 1, and therefore σms{x (x) y) — {ηθ} (actually
we need only the case t — s = 1). In the general case στ(x) = {η19 •••,%},
σs(y) = {θ19 , θb] we have by the finite dimensional case of the spectral
theorem ([4, § 1] or [7, p. 132]) the resolutions x = Σ?=A, V = Σ5=i2Λ>
where στ(xt) = {^}, <75(^) = {^}. Let {^|^ e στ{x)9 θ e σs(y)} =
{/Γi, , κc} and let a;fc be the sum of the vectors xt (x) y3 such that
ηiθ} — κk. Since the α?/s are linearly independent and the /̂̂ 's are dif-
ferent from zero (by our assumption x Φ 0, y Φ 0), it follows that 2fc Φ 0.
Therefore, by the case of one point spectra, στ®s(zk) = {/cfc}. Since
% ®V — Σfc-î fc a n ( i since the minimum polynomial of a sum of vectors
with minimum polynomials relatively prime in pairs is their product
[7, p. 68], the statement of the lemma follows.
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5.5. LEMMA. // (m, n) = 1, then M(Unm) > M(Un)M(Um).

Proof. Un (x) Um is determined by requirements of the form
(Un(g) Um)φj = φjΊCy where φJf 1 < j < nm, is the natural basis of lPinm

and 7r is a permutation of the indices. Since (m, n) — 1, π is cyclic, and
it is easily verified that there exists a unitary operator V in i p w w such
that ί7wm = V(Un® Um)V'\ which implies that M{Unm) = M(Un®Um).
Since lPtΛ is of finite dimension, there exist vectors xω, y^ satisfying:
σUn(χW)n σφv>) = φ, || x<» + yv> \\ = 1 and || x& \\ = M(Un). Let χ«>,
τ/(2) play a similar role with respect to Um. Consider the vectors
x = a?̂ ^ (x) a?^2), y = a?ci) <g) ̂ o) + ^cυ (g) a cυ + ̂ ω (g) f , Since σ(Un) is
the set of roots of unity of order n, σσ (xci)) and σσ (y^) are sets of
roots of unity of order n. Similarly for σσ (x™) and σUm(y^). Since
(m, n) = 1, the representation of a root of unity order mw as a product
of a root of unity of order n by one of order m is unique. Therefore
it follows from 5.4 that 0Vn<gσ (#) ΓΊ σσn®um(y) — Φ- By the cross property
of the norm || x + y\\ = ]\ (χ& + y^)0(x^ + y^) \\ = 1 and || x \\ =

) ̂ ) 11 = M( Un)M{ UJ. Thus M( Unm) = M{Un® Um) > M( Un)M{ Um).

5 . 6 . L E M M A . For e v e r y given p , 1 < p < o o , p ^ 2
57 > 1 and positive integers k and m0 such that M(Ukm+1) > )?/or m > m0.

Proof. By calculating the eigenvectors of Z7W, one shows that the
vectors x'= (x19 * ,xn) with σσ (x) disjoint from σUn(y), where y = (1,
1, •••, 1), are those which satisfy Σ ̂  = 0. Thus

M(Z7W) > sup I l | a ? l 1 Σ ̂  - 0, a arbitrary} .

For 2 < p < 00 we chose x = (1, •••,!., —mj(n — m), , —mj(n — m),
where 1 is repeated m times, and

n —
a =

1 4- (VL

V m /
Then if n = Λm + 1, & > 2 and

m—• oo,

tends to
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where t = k — 1. Although the last expression tend to 1 as t —> oo, it
is not difficult to verify that it is greater than 1 for all sufficiently large
values of t; hence a suitable integer k = t + 1 can be found. The case
1 < p < 2 follows by duality: If 1/p + 1/g = 1 then Mq(Un), where the
subscript indicates that ί7w is to be considered as an operator in lQtn9 is
the maximum of the norms of the values of the resolution of the identity
E of Un. The resolution of the identity of £7* = U'1 is E. Therefore
MpiU'1) = Mq(Un). But Un is unitarily equivalent in lPιti to U~\ There-
fore Mp(Un) = Mq(Un); and since 2 < q < oo the lemma is true in this
case too. If p = 1, we may take cc = (1, , 1, — w + 1), α = — 1 ; while
if p — oo, we take the same as and α = n\2.

Finally to see that 5.5 and 5.6 imply supnM(Un) = oo, we have only
to use the fact that each sequence am = km + 1, m = 1, 2, , contains
an infinite subsequence of pairwise prime integers. As pointed out by
Dr. Dov Jarden such a subsequence is obtained by defining inductively

REMARKS. For p — 1, oo the proof of 5.2 yields unitary operators
which are not even prespectral. It applies also to subspaces which
contain all finite sequences. It also follows from 5.2 that if Ω is a
measure space which is not a finite union of atoms, then there exist
non spectral unitary operators in the space LP(Ω), 1 < p < oo, p ψ 2.
An operator U in lp, 1 < p < oo, p ψ 2, is unitary only if determined
by Uφj — \jφH, j = l, 2, •••, where {φ3} is the natural basis, π a
permutation and | Xj | = 1 ([2, p. 178]. The proof goes easily over to
the complex case). We decompose π into disjoint cycles (including the
possibility of infinite "cycles") and consider the unitary operators induced
by U in the subspaces spanned by the φ/s with j belonging to a definite
cycle. One shows that M(U) = sup M(V), where V runs over the
induced operators. Moreover, if we change the λ/s into 1 and the cycle
of F into a standard one, we obtain an operator W with M{W) = M(V).
Hence Condition (5.2.1) depends only on the length of the cycles deter-
mined by π. From Theorem 5.7 it will follow that if in particular at
least one of these cycles is infinite, (5.2.1) does not hold. On the other
hand, it follows from [5, Th. 3.11, Th. 3.12 (III)] that this condition is
sufficient for spectrality of U if 1 < p < oo.

5.7. THEOREM. Let lp, 1 < p < oo, p ψ 2, be the space of two-

sided sequences {αjjl-oo with the obvious norm. Let φJf — oo < j < oo,

be the natural basis of ΐp and U the unitary operator defined by

= <pj+1. Then U is not spectral.

Proof. To facilitate the writing we assume p < oo. From the proof
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of 4.6 through [6, Th. 18 (IV)] (cf. 3.1), it follows that if H{Un) is the
infimum of possible constants in Condition 3.1.1 for polynomials, then
M{Un) < H(Un). Let if be a positive number. Then by the proof of
5.2 there exists an n such that M(Un) > 2K, and therefore there exists
a polynomial g such that ||#(Z7W|| > 2K max^=11 g(ξ) |. If / is a poly-
nomial, f(Un) depends only on the values / assumes at the nth roots of
unity, and in a continuous manner. Therefore, by the approximation
theorem of Weierstrass, there exists a polynomial f(ζ) = ΣίUtAt* such
that \\f(Un)\\>2Kmnκ(n_1\f(ς)\ and 2max^=1 \f(ζ) | > max,^ \f(ζ) |;
hence ||/(Z7n) || > Kmsixιζlml\f(ξ) |. Identifying lPtΛ with the subspace of
ΐp spanned by φlf , φn, we see that there exists an x — Σ ^ I ^ J ^ such
that

(5.7.1) \\f(Un)x\\
|| x\\

It will simplify the notation if we assume, as we may, that the formal
degree s of / is of the form s = rn, r > 1. Let t be a positive integer
and consider the vector x' = Σmt=ίiΣ?-iαj£>(m-DM+.j Then

(5.7.2) f(U)x' - Σ Σ Σ
jjc = o m-i j = l

where the inner summation in the r.h.s. extends over the pairs jy k
satisfying (m — l)n + j + k — (u — l)n + v, where 1 < j < n, 0 <k <
s — rn and 1 < m < r + t. On the other hand

(5.7.3) f(Un)x 4 t βkajφj+Kmoά^ = Σ (Σ β^)φυ ,

where here the inner summation is over the pairs j , k satisfying
j + k = ^(modn) with the same inequalities. For r + l<u<r + t,
the coefficient of 9?(M_1)w+7) in (5.7.2) equals the coefficient of φv in (5.7.3).
Therefore

(5.7.4) \\f(U)x>\\>t^\\f{Un)x\\y

and on the other hand

(5.7.5) \\x'\\ = {r + tγ»\\x\\.

(5.7.1), (5.7.4) and (5.7.5) imply

> l ) 1 ")1"κmax I/(?) I .
/ ιiι-i
)

Letting ί tend to infinity, we get ||/(Z7)|| > Kmax\f(ζ)\. Since iΓ is
l ί l-i
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arbitrary and σ(U) is contained in the unit circle, this shows that U
does not satisfy Condition 3.1.1; hence it is not spectral.
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