ERROR BOUNDS FOR AN APPROXIMATE SOLUTION
TO THE VOLTERRA INTEGRAL EQUATION

JOHN HiLzmMAN

In 1945 Michal [2] obtained several results which he asserted were
useful for approximating the solution to the Volterra integral equation.
These results were concerned with certain equations in Fréchet differenti-
als having as their unique solutions the resolvent kernel and the exact
solution to the Volterra integral equation of the second kind. Michal
treated the resolvent kernel S[K |z, t] and the solution y[K|x] as func-
tions' of the given kernel K(z,t), the setting being the Banach spaces

T = {G(x, t) | G(x, t) is real and continuous on a <t < x < b}
and

I = {g(x)|g(x) is real and continuous on a < x < b}
with the norms

(1) [|G(x, 1) || = max |G(x, t) | (a <t < a<b),
Il9(%) ]| = max | g() | (@ <2 <b),

respectively. In another work [3, pp. 16-17] Michal showed that the
solution y[K|x] can be expressed by a Taylor-type expansion in Fréchet
differentials of y[K | ] about an arbitrary K,(x, t) from 7. In this paper
we shall use Michal’s results to obtain approximations to the solution of
the Volterra integral equation with error bounds.

I wish to thank Professor A. T. Lonseth for suggesting this course
of investgation and the Referee for recommendations which have im-
proved this paper.

Consider the integral equation

(2) v@) + | K, wviit = )

where K(x,t) is in T and f(x) is in I. It is known that the exact solu-
tion to (2) is given by

(3) U@ = 1) + | S vt
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1 The symbols S[K|w, t] and y[K | x] were used to indicate the functional dependence
of S(z, t) and y(x) on K(x, t).
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where the resolvent kernel S(z,t) isin T. Let Kz, t) from T be ano-
ther kernel such that Sy(z, t), the resolvent of Kz, ?), is known and
that || A(x, t) || = || K(x,t) — Kz, t)]|| is small in the sense of (1). Then
by (3) the solution to (2) with kernel Kz, t) is

(4) ui@) = 1) + | Siw, 70t .
Now treat y(x) as a function of the kernel K(x,t). The first Fréchet
differential dy(x) of y(x) with increment h(zx, t) (applied to K(z,t)) is
dy(x) = —S [h(x, £) + S S(z, 2)(z, t)dz}y(t)dt
[2, p. 2563]. In particular, the Fréchet differential of y(x) evaluated at
Kz, t) with increment h(z, t) = K(x, t) — Kz, t) will be
(5) dy(@) = — S [h(x, £ + S Syx, 2)h(z, t)dz]yo(t)dt .
Furthermore, by Theorem 2 of [2] the differential system
{dyo(x) = - S [, ) + St Si(w, Dz, Hdz (D)t
yo(@) = f(x)  (Kyx,t) =0)

has a unique solution which is given by (4). Thus a first order approxi-
mation to the solution y(x) of (2) will be

Yo(®) + dy) .

The exact solution to (2) is given by the Taylor expansion [3; 1.
p. 112]

(6) ¥(@) = 3(e) + 33 dux)
where, in terms of composition powers?,
(7) dy(x) = (=1)5! [h + Sh)’ =y, .

Thus knowledge of the higher order differentials will allow closer approxi-
mations to y(x).

We now take up the problem of establishing error bounds for any
order of approximation to y(x) from (6). If A,(7=1,2,+++,m) is in T
and ¢ is in I, and

x x z
2 VW=S Viz, 2)W(z, t)dz, W2 = S Wz, 2)W(z, t)dz, Wn = S W(x, 2)Wn-1(z, t)dz, and
¢ ¢ ¢

x
Wnxg= S Wn(z, t)g(t)dt
a
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A=Ad, - A, = S S . S A, 2) A2 2) -+ -
& & 13
An(zn—v t)dzn—l i dzl ’

it is seen that

b —al*-t 2

(8) lai< B=alr iiina)

and

(9) lAxgl < Lol Zal” y .
n. j=1

Let P,_;[h(S;h)] denote the sum of terms obtained from the com-
position A"~%(S,h)" by a permutation on the n places occupied by

Bl +«+ W(S,;h)(S,h)

oo (Sh) = B*Y(Sh) .
nei .
For example, by setting
P, ,[(S;h)] = B(Seh) + R(Sh)h + (Soh)h?

and

P, [1(S;h)] = R(S,h)* + (Seh)R(Seh) + (S;h)*h
we can write with brevity

[+ Sohl’ = hy + Pya[M(Soh)] + Pol(Soh)] + (Soh)*
Now let
¢ =Mz, )], m = ||yfx)ll, B=[[S,)|l, and u =|b—a].
Then from (7), (8), (9), and the mechanics of composition we obtain
[ D7 dryo(@) || = [ (—1)"[h + Seh]" * 4, ||

= ||h"xyy + Py [M(Sh)] 9y + + -+ + Pl,n—l[h(SOh)] *Yy + (Soh')n* Yol
< ” h* *Yo “ + H P —1,1{h(soh)] * Yo H R H (Soh)n *Yo H

(10) < mc"'u”' + (n) me™u"+*B 4o (n) meruB®
n!

1) (m+ 1) /) (2n)!
nyn o (1) __(uB)’
< me™u %(9) )

mlcu(l + uB)]”
n! )

<
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Thus transposing the desired nth order approximation to y(x) from
the right side of (6) to the left side and applying (10) we get

v~ i) ~ S5 e =

- @)

j=n+ 3

11) < 3 m(G)e’

J=n+1
<mle — % ()0 ]
J=0

where 6 = cu[l + uB], For small values of & we readily discern the
asymptotic relation

(12 v — i) ~ S i) = o

A simple numerical example will be given next.
Consider the Volterra equation

(13) (@) + % So (3 + @ — Cly(t)dt = x exp [1/357]

where K(x,t) = 1/3xt[3 + «* — t*] is in T, f(x) = x exp[1/32*] is in I and
a=0,b=1. Take Kz, t) = xt exp [1/3(x* — t*)]. The resolvent kernel
for K(z,t) is Syx,t) = —xt. By (4) the solution to (18) with kernel
Kz, t) is
(14) Yo(x) = x exp [1/3x°] + Sz — xt* exp [1/3t°]dt = « .

0

By virtue of (5), the Fréchet differential of y(x) evaluated at Kz, t)
with increment

hx, t) = K(x, t) — Ky, t) = %_ Bt[8 + o — t7] — wt exp [1/3(a° — )]
is
dyo(@) = S L 248 + o — £ — 3) exp[1/3(2* — t9)]
(15) S w2 —zt(3 42—t — 3)exp[1/3(# — ts)])dz}tdt

6

Thus a first order approximation to y(x) will be
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10
16 ~ 2z
(16) yr) =~ + 162

It is easily established that
1z, 1) || < 0.04, || Sy(z, D) Il =1, [l yo(x) [| = 1 .
Hence, with 6 = 0.08, it follows from (11) that
(17 lly(@) — yo(x) — dyx) || < 0.0033 .
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