
HOMOMORPHISMS OF CERTAIN ALGEBRAS

OF MEASURES

IRVING GLICKSBERG

The problem of determining all isomorphisms between the Lt alge-
bras of a pair of locally compact groups G and H has been considered
by J. G. Wendel [16, 17] and H. Helson [7] (in the abelian case); these
authors showed in particular that all norm-decreasing isomorphisms
arise essentially from isomorphisms between the groups (and are iso-
metries). In the abelian case a device suggested by Helson leads to
much more, and we shall determine all norm-decreasing homomorphisms
of certain algebras of measures (similar to Lj) on G into the algebra
of measures on iϊ(cf. 2.1 below.).

Let M(G) denote the Banach algebra of all finite, complex, regular
Borel measures on G, with convolution as multiplication. LX{G) forms
a subalgebra of M(G), in fact an ideal. Because of this, knowledge of
the norm-decreasing homomorphisms of Lx algebras into algebras of
measures on another group leads to the determination of all norm-de-
creasing isomorphisms between M(G) and M(H); indeed when G and H
are abelian we shall show that for each norm-decreasing isomorphism
of a (not necessarily closed) subalgebra of M(G) which contains Lλ{G)
with a similar subalgebra of M(H) there is an isomorphism γ of G
onto H and a fixed character g of G for which Tμ is just the measure
gμ transported to H via 7 (whence TLλ{G) = L^H) and T is an iso-
metry). This is exactly the abelian Helson-Wendel result extended to
superalgebras of L^ in the non-commutative situation we can only
obtain the analogous result for compact groups.

Aside from familiar facts about harmonic analysis (as given in [10,
15]) our main tools will be the following results obtained in [6] for a
compact group G:

(1) each multiplicative subgroup of non-negative elements of the
unit ball of M(G), other than the trivial subgroup {0}, consists of
translates of Haar measure of a fixed normal subgroup of G [6, 2.4];

(2) each non-zero idempotent in the unit ball of M{G) is Haar
measure of a subgroup multiplied by a multiplicative character of
this subgroup [6, 4.3].

It is a pleasure to record the author's indebtedness to K. de Leeuw
for many stimulating comments and suggestions.

NOTATION. AS usual C0(G) will denote the continuous complex
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functions on G vanishing at infinity; M(G) is of course C0(G)*. The
space of all continuous bounded complex functions on G will be denoted
by C(G).

When G is abelian, G~ will denote its character group with generic
element g; the respective identities of G and GΛ will be g0 and g0. In
general measures on G will be denote by the letter μ and those on H
by v with μg(vh) the mass 1 at g (h). It will be convenient to use μ
for the measure and also for the corresponding integral, writing μ(f) =

\f(g)μ(dg) where integration is always over the entire group. For

notational ease we shall take the Fourier-Stieltjes transform μ of μ to

be defined by μ(g) = \(g, g)μ(dg)( = μ(g)); in particular for absolutely

continuous measures, inversion will involve the familiar conjugation.
On occasion we shall need to multiply a measure μ by a function

/ : fμ will denote the measure we might define by fμ(dx) = f(x)μ(dx).
Finally it should perhaps be stated explicitly that the term "subalgebra"
should only be taken in the algebraic sense, and all references to
norms on subalgebras of M(G) are to the norm of M(G).

1. Preliminaries* If T is an isomorphism of Lλ(G) onto LX(H), and
G and H are abelian then one has a dual homeomorphism τ of f P onto
G" for which (TμY = μ o τ. This fact from the Gelfand theory formed
the starting point of Helson's investigation [7], which proceeded to show
τ had algebraic properties as well when T is norm-decreasing. Helson
observed [7, §2] that τ could be extended to map almost periodic func-
tions in a linear norm-decreasing fashion, but found no application for
his observation, which will be fundamental for our abelian results.

Our first result yields the algebraic content of the norm-decreasing
character of somewhat more general maps. Here and elsewhere || H*,
will denote the usual supremum norm for functions, and 0 the func-
tion identically zero.

THEOREM 1.1. Let G and H be a pair of abelian topological
groups, with G~ and ί P their (algebraic) groups of continuous charac-
ters. Let T be any map of ί P into G~ U {0} with zh0 = g0. If

II n
 A II \\ n Λ II

(i ii) Σ«Λ < Σ«Λli-1

for any trigonometric polynomial Σi-iaJ*Ί o n H> ^ e n τ~ι ^ ^s a

subgroup of H~ and the restriction of τ to this subgroup an algebraic
homomorphism.1

1 Actually we could take G^ and H~ to be any groups of (multiplicative) characters on
a pair of (not necessarily abelian) groups G and H. One need only replace G* and H*
(below) by the duals of the (discrete) groups G^, H~ (into which G and H map onto dense
subsets).
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COROLLARY 1.2. If τ: iϊ"->G"u{0} satisfies (1.11) and τ 4 e G"

then σ : h —• τ(h^)-ιτ(hh^ is multiplicative on the subgroup h^ιτ'\G^) of
ϋΓ\ and otherwise vanishes.

COROLLARY 1.3. If τ : £ P —> G~ satisfies (1.11) ίλen σ \h-> {τh^τh
is a homomorphism of H~ into G~. Conversely if σ is a homomorphism
(1.11) λoίdta. Finally identical equality obtains in (1.11) ijf r is one-
to-one as well.

Proofs. In (1.11) we are of course demanding that the obvious
linear extension of τ mapping trigonometric polynomials on H into those
on G be norm-decreasing, and thus we have a norm-decreasing exten-
sion of this map taking §l(iϊ), the almost periodic functions on H, into
2ί(G). Letting if* and G* be the almost periodic compactifications2 of
H and G we then have a norm-decreasing map T of C(H*) into C(G*)
with Tίί*^cG*^U {0}. As a consequence the norm-decreasing adjoint
map T* of C(G*)* - M(G) into C(Hψ - Λf(#*) is multiplicative, for
Γ*(A * /**)$) = #L * #,(2%) = μ^TlήμlTh) = T^μ^ίήT^μJJi) since 7% is
either 0 or a character. Hence (T*(/^ * μ2)Γ = ( T ^ Π T ^ Γ and
from the one-to-one nature of ^ we obtain T*(μ± * /̂ 2) — T*μx * Γ*jM2.

Moreover from ThQ — τΛ0 = g0 we see that Γ* preserves non-nega-
tivity; for μ>0 and \\μ\\ - 1 imply 1 == μ(g0) ^ μ(Th0) = T*μ(h0) <

II Γ*μ|| < ||/^|| = 1 so that Γ*^(l) = 1 = || T*μ||, and therefore T*μ>0.
Consequently Γ* maps the multiplicative subgroup {μg:g e G*} of

the unit ball of M(G*) into a subgroup of the unit ball of M(H*)
which consists of non-negative measures. Thus by [6, 2.4] (cf. in-
troduction (1)) the image consists of translates of Haar measure v of
some subgroup K of H*, and we can write T*μg = vy(g) where vy(g) is
the translate of v to the coset j{g) e H*jK. For h in Kx( — the subgroup
of JBΓ*~ = fί^ of all characters identically 1 on K, hence constant on
cosets mod K) we have (y(g), h) = vw(fe) = Γ*/ (̂&) - JH,(2%) = (g, τh)
for all gr in G c G * . But as usual this implies τ is multiplicative on the
subgroup KL of ϋΓ since, for fc^ fea in JK"1, (fif, τ{hxh^) = (γ(#), A^2) ~
(7(flf), k)(7(g), k) = (̂ , ^i)(^, ̂ "4) = to, τ4τ4) for all # in G. On the
other hand for £ 0 Kλ we have 0 - vy(g)(h) = Γ*^^) - ^g(ΓΛ) - (g, r^)
for all g in G, and thus τh = 0; consequently r~xG^ is precisely the
subgroup if1 of ίΓ\ and our proof of Theorem 1.1 is complete.

We might remark that the converse of 1.1 can be obtained in
somewhat the fashion of the corresponding assertion of 1.3 (below), and

2 It will be convenient to view G as a dense subset of G* and W(G) as the restrictions
to G of the elements of C(G*) [10, 15]. Similarly we consider the elements of G~ as the
restrictions to G of the elements of G**.
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equality obtains identically in (1.11) iff TH^CZG^ and, as in 1.3, τ is
one-to-one. Since we shall have no use for these facts proofs will be
omitted.

The proof of Corollary 1.2 follows immediately from noting that

(so that (1.11) holds for σ) while σ(h0) = g0. Evidently σ is independent
of the particular choice of hλ.

The direct portion of Corollary 1.3 is a consequence of 1.2, taking
h1 — h0. For the converse part we note that if σ is a homomorphism
then interpreting it as a map of iϊ*^ into G*^ we have a dual homo-
morphism γ of G* into if*, and

Consequently (since we may consider G and H as dense subsets of G*
and if*) we have

(1.12) Σ Whig) = sup
i = l I <3*

Σ
ί = l

= sup Σ '
y(G*) i= i

and (1.11) holds. Clearly identical equality obtains if 7(G*) = H*. On
the other hand since γ is continuous and G* compact, γ(G*) is a com-
pact subgroup of if*, and if γ(G*) ̂  if* some non-zero / in C(H*)
vanishes on τ(G*); since / can be approximated uniformly by trigono-
metric polynomials equality in (1.12) cannot always obtain. Thus identi-
cal equality is equivalent to γ(G*) = i/*, or dually, to the one-to-oneness
of σ, hence of τ.

We shall return to some reformulations and analogues of these re-
sults in §6.

2 Homomorphisms. In order to utilize the device suggested by
Helson we need not restrict our attention to Banach algebras. We
need only insist that our subalgebra A of M(G) have G^ U {0} as its
space of multiplicative f unctionals and be large enough to determine the
norm of each trigonometric polynomial on G. Unless something to the
contrary is stated G and H will represent locally compact abelian groups
throughout this section.

It will be convenient to extend the definition of the Fourier-Stielt jes
transform μ of μ in M(G) by setting μ(0) = μ(0) — 0, and regard
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G~ U {0} as the one point compactification of G~. Consider the following
conditions on a subalgebra A of M(G):

(2.01) For each trigonometric polynomial Σ?=iα«ί7i o n G

-

(2.02) The set of maps μ—>μ(g),geG~\j{0}, corresponds in a
one-to-one fashion to the set of all multiplicative linear functionals
on A, and AAcC(GAU{0}).

When both conditions hold A~ contains* sufficiently many functions
to determine the topology of G"U{0}; for (2.01) implies A" separates
any pair of elements of the compact space G~ U {0}, and thus each gx

in Gs U {0} has a base of neighborhoods of the form {g:\μi(g) — μi(g1)\<ef

i = 1, 2, , n], where μ% e A. A — LX(G) clearly satisfies these condi-
tion, and will of course be the most important example.

THEOREM 2.1 Let A satisfy (2.01) and (2.02). Then if T is a non-
zero norm-decreasing homomorphism of A into M(H) there is a compact
subgroup HQ of H, a continuous (not necessarily open) homomorphism
7 of G into HIH0, and characters g of G and h of H for which

(2.11) Tμ(f) = μ(g[S(hf) o γ]), / e CQ(H) ,

where S denotes the map of C0(H) onto C0(HIH0) defined by Sf(hH0) =

\ f(hhr)v(dhr) (where v is Haar measure on Ho); alternatively

(2.12) Tμ = hS*Γgμ

where Γ is the homomorphism of M(G) into M(HIH0) defined by setting
Γμ(f) = μ(fo γ ) ,/e C0(HIH0), and S* is the adjoint of S mapping
M(HIH0) into M(H). Conversely each such quadruple Ho, γ, g, h defines
a non-zero norm-decreasing T via (2.11) or (2.12).

Proof. For each h in ίΓ\ μ—* (Tμf(h) defines a multiplicative
functional on A, and thus we obtain a unique τh in G~ (J {0} for which
(Tμ)~(h) — μ(τh). Since the elements of A~ suffice to define the topology
of G^U{0} and the functions (TμY* are continuous on H~ one clearly
has τ: H^ —* G~ U {0} continuous.

On the other hand τ satisfies (1.11) as a consequence of (2.01):

(2.13) | |Σ<VΓ/U| = sup
I U 1 IJ l l l l

3 Of course this holds when A* is only a separating subalgebra of C(G^U{0}); but
then we can only assert that G~ forms a subspace of the space of multiplicative functionals
on A (taken in the w* topology).
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= sup

< sup
II

Tμ

Thus in order to apply Corollary 1.2 we need only verify that τ ^ e G "
for some hλ in H~; but such an hλ exists since otherwise τH~ = 0,
{TAf(H~) — 0 and thus TA = 0 by the one-to-oneness of the Fourier-
Stieltjes transformation. Consequently σ : h —> (rΛ1)""

1r(ΛΛ1) is multiplica-
tive on the subgroup K = σ~ι(G~) — Jfi^τ~\G~) of i Γ \ and of course
vanishes elsewhere. As we have seen τ, and thus σ, is continuous on
ϋ P so that tf-^O} is closed and K— σ~\G~) is open. Therefore K is
an open and closed subgroup of H~, whence H~/K is discrete, and the
dual Ho — KL of H~/K is a compact subgroup of H.

Dual to the continuous homomorphism σ\K: K—>G~ we have a
continuous homomorphism γ of G into JK"̂  = H[Kλ — HjH0, and thus
for h in K and # in G, (#, σfc) = (γ(#), h) = vy(9\h), where v7(9) is again
the translate to the coset j(g) of Haar measure v on iί0. Moreover the
formula

(2.25) (g, σh) = v^\h)

clearly also holds when h <£ K— H^, since both sides are then zero.

Combining (2.25) with σ(h)τ(hD = r(Mx), or σ(kh^1)τ(h^) — τ(h), we make

the following computation, with F e L^H^):

Tμ{F) = [F(h)Tμ(dh) = \¥(h)(TμΓ(h)dh

= \¥(h)ft(τh)dh = (ί^TOίff, τh)μ(dg)dh

-S){g, τhjdhμidg)

, h)dh){h, h^)v

, τhjμ(dg)

or, setting h = h'1 and £ =
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(2.26) Tμφ) - μ(g . [S0) o 7])

since L^JEΓX is dense in C0(H) and both sides of (2.11) are continuous
in /, (2.11) follows. The alternative form (2.12) follows when we make
the obvious notational transfer.

Conversely given HQ, 7, g and h, and thus 5* and Γ, the right side
of (2.12) clearly defines a norm-decreasing homomorphism of M(G) —»
M(H), as the composition of four norm-decreasing homomorphisms. To
see that T Φ 0 we need only verify that (2.11) remain valid for / =
h'eH~; for then

Tμφ) - μ(g[S(hh>) o 7])

while S(hhf)e(ίf/ί/oΓ if &&'e#o\ and then S(hhf) o γ ^ ^ e G A . Con-
sequently TA{k) = A(gfif') = A"(^^0 Φ {0} for an appropriate h'9 by
(2.02).

But that (2.11) remains valid for / — h! 6 JHΓ̂  follows from the same
sort of computation as the preceding; with F e L^H") one obtains

- J(fif, g)S(hP)(7(g))μ(dg)

- JJ(ff, d)(Λ, h)¥ϊh)v^\dh)μ{dg)

whence (Tμ)φ) = μ(g[S(hh') o 7]) for almost all Λ'. But the second ex-
pression vanishes for A' in the open complement of h~ιHt so that (by
continuity) the first also vanishes there. On the other hand for h! in
h~ιH$- (also open) we have μ(g[S(hhf) o 7]) continuous as a function of
hi since S(hh') 07 = o (M') where σ is the continuous homomorphism of
Hi~ = (iJ/jffo)̂  —> G^ dual to 7. Consequently both expressions are con-
tinuous functions of &' on h"1!!^ as well, and thus coincide on this open
set.

2.2 REMARK. When the subgroup HQ is trivial (i.e. = {hQ}) one may
write 2.12 in the more concise form Tμ = Γgμ; for clearly we have
Tμ = hΓgμ so that Γ/ι(/) = μ{g{{hf) o 7]) = M^(^ ° Ί)(f*iί) and we
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may replace g by g(h o γ) e G"\ This situation will of course occur if
each h in H~ produces a non-zero functional on TA, i.e. when r u P c G " ;
for then Hϊ = ίΓ = JET".

2.3 REMARK. If A is an ideal of a larger subalgebra Ao of ikf(G)
and A satisfies (2.01) and (2.02) there is the possibility of applying
Theorem 2.1 to certain norm-decreasing homomorphisms T on Ao. For
provided TA φ {0}, we may apply the result to the pair A and T\A to
obtain T\A= TX\A where Tx represents the homomorphism (given by
the right side of (2.12)) of all of M(G) into M(H); consequently (since
A is an ideal in Ao) for μ e A, μ' e Ao,

Tμr *Tμ= T(μr * μ) = Tλ{μ' * μ) = Txμ' * Txμ =

and (Tμ' - Txμ') * Tμ = 0. Hence Tμ' - Γ^' annihilates ΓA, and we
need only know that TA has no non-zero annihilators in M(H) (not
TA0) to conclude that Tμ' = ^ μ ' for all μ' in Ao. As a particular case

COROLLARY 2.31. Lei A satisfy (2.01) and (2.02) and Zet Ao be a
larger subalgebra of M(G) in which A forms an ideal. If T is a
norm-decreasing isomorphism of AQ onto M(H), then T is determined
as in Theorem 2.1, indeed as in 2.2 since Ho = {h0}.

Since μ*A = 0 implies μJC — 0 while A~(g) Φ {0} for each g in G
by (2.02), A has no non-zero annihilators in Ao. Thus since T is an
isomorphism, TA has no non-zero annihilators in TA0 = M(H), and
Tμ = hS*Γgμ. But if v denotes Haar measure of Ho one clearly has
(λy) * Tμ = Tμ so that we must have hv the identity of M{H)y hence

2A. The following example shows how completely wrong Theorem
2.1 is for arbitrary large subalgebras of M(G) in general; it was sug-
gested to the author by K. de Leeuw. Let G be any non-discrete
locally compact abelian group and, for μ in M(G), let μ — μp + μc be
the Lebesgue decomposition of μ into discrete and continuous parts,
i.e., μp is a countable linear combination of point masses (converging in
norm) and μc vanishes on all one point sets. Since the continuous
measures form an ideal and μf * μξ is still discrete, μ—*μv is a norm-
decreasing homomorphism of M(G) —> M(G), or indeed of M(G) onto
M(Gd)(Gd = G in the discrete topology); clearly the map is not induced
by any continuous γ :G—>Gd.

2.5. The restriction that T be norm-decreasing in Theorem 2.1 can
be replaced by apparently weaker conditions in certain cases. The fol-
lowing result has a much simpler proof when A = LX(G).
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THEOREM 2.5. Let A be a subalgebra of M(G) satisfying (2.02)
which is spanned by its non-negative elements and has sufficiently
many of these to determine the non-negative almost periodic functions,
i.e.,

(2.51) / e SI(G) and μ(f) > 0 for all μ > 0 in A imply / > 0.
If T is any non-zero homomorphism of A into M(H) which preserves
order (μ > 0 =Φ> Tμ > 0) then T is norm-decreasing. If A also satisfies
(2.01) then Tμ = S*Γμ,μeA.

Proof. As in Theorem 2.1 we obtain τ : ί Γ -> G" U {0} with Tμ{h) =

μ(τh). The functional μ—• Tμ(h0) cannot be zero for then 0 = Tμ(l) =

11 Γ//11 for μ>0, whence ΓA = 0 since the non-negative elements span

A. For μ > 0 in A, μ(τλ0) = 7>(fe0) > 0 so that τh0 > 0 by (2.51), and

thus τh0 = <70. Consequently for μ > 0, | | μ | | = μ(0o) = μ(τft0) = Tμ(h0) =

\\Tμ\\\

Let τ0 denote the linear extension of τ mapping trigonometric poly-

nomials. If p is a non-negative trigonometric polynomial on H and

μ > 0 is in A then μ(τop) = Tμ(p) > 0, so that ro2> > 0 by (2.51). Thus

τ0 preserves the order of real valued trigonometric polynomials, and

since τh0 = g0, — 1 ^ p <̂  1 implies — 1 ^ τop ̂  1. But for any trigono-

metric polynomial p = Σ?=i#A> if £>* = ΣΓ=i^ί^"ί t h e n (P + 2>*)/2 and

(ί) — p*)/2i are real valued, with values bounded by — | |p |U, | |p |U. Hence

l|τfl(p + p*)/2|U ^ IIPlU, | |τo(p - p*)/2|U = | |ro(p - p*)/2ί|U ^ | |p |U, and

therefore ||-ε-αϊ>|| ^ 2||2>||oo.
Consequently r0 extends to a bounded map of Sl(iϊ) into 2ί(G), which

we may view as a map of C(H*) into C(G*); calling the extension r0

we have Tμ(f) = μ(τof), μe A,f e C(H*), since this held for trigono-
metric polynomials. Moreover this identity implies r0 (as extended)
preserves order by (2.51), so the adjoint r* : M(G*) —> M(H*) must also
preserve order. As before we conclude from τoho = ̂ 0 that | | r *μ | | = \\μ\\
ΐov μ >0 in M(G*). Therefore r* maps the point masses on G* into
the unit ball of ikf(£Γ*), and thus their w* closed convex circled hull
into the same set. Since the hull coincides with the unit ball of
M(G*), IIτ0*II = IIτo | | ^ 1, and, for μ in A,

sup \Tμ{f)\= sup | J H ( T O / ) | ^ sup \μ(τof)\ ^ \\μ\\
H/IUίSi ll/llco^i | |τ0/|joo^i

where / varies in Sί(ίί). But the norm of Tμ as a functional on
coincides with its norm as a measure ([4], [6, §5]), whence
| |μ | | , and T is norm-decreasing.

For the final statement in 2.5 we need only note that since τhQ—g0,
4 At this point the proof for A — L\ is essentially complete for T is clearly norm-

decreasing on simple functions (rather, on the corresponding measures) and these are dense.
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and since our present τ coincides with that obtained in the proof of

Theorem 2.1, we may take hλ = h0 in deriving (2.26), so that h = h09

g = gQ in (2.12), completing our proof.
It should perhaps be noted that portions of the above proof can be

used to obtain an analogue of Theorem 1.1 in which (1.11) is replaced

by "Σi=iaiτhί > 0 if S i U a A > 0 " ; f° r clearly our argument shows
this condition implies (1.11).

If the group if has a connected dual we can replace " norm-de-
creasing" in Theorem 2.1 by " bounded".

THEOREM 2.6. Let A be a subalgebra of M(G) satisfying (2.01)
and (2.02), and suppose H~ is connected. If T is any bounded non-
zero homomorphism of A into M(H), then T is norm-decreasing; con-
sequently there is a homomorphism 7 : G —• H and a g in G~ for which
Tμ — Γgμ, μ e A. In particular if A is a closed subalgebra, all non-
zero homomorphisms of A into M(H) arise in this fashion*

Proof. As in the proof of Theorem 2.1 we obtain a continuous
map τ : H~ —> G~ U {0} with τ ^ G " Φ φ; further, the linear extension of
r mapping trigonometric polynomials is bounded by a computation an-
alogous to (2.13), and we may view this as extending to a bounded map
τo:C(H*)->C(G*). Again τ0* : M(G*) -> M(H*) is multiplicative (as in
1.1), for τ*μ{h) = μ(τoh) = μ(τh), or (τ*μ)~ = μ <> τ, μ e M(G*).

Now (for any locally compact abelian G) if we define μ e M(G*)

corresponding to μeM(G) by setting μ(f) = \ f(g)μ(dg)ff e C(G*) (so
JG

that μ represents the restriction of the integral corresponding to μ to
almost periodic functions) then μ-^μ is an isometric isomorphism of M(G)
into M(G*) ([4], or [6, §5]), and, as functions on the set G~t μ=^μ. Moreover
as a consequence of a theorem of Bochner-Schoenberg-Eberlein [4], M(Gy
consists of just those μ in M(G*) with μ continuous on the space G~.
Thus, for μ in M(G), since τ is continuous and (r*/ϊ)Λ = μoτ = μ°τ,
we have {τtμT the transform of some measure σμ in M(H), i.e.,
τ^μ = (σμy. Clearly σ is a multiplicative map of ikf(G) into M{H).
Since τ - 1 G^ Φ φ for any h therein we have \oμg{h)\ = \τ*μg{h)\ =
\μg(τh)\ = \μg(τh)\ = 1 for all g in G, whence σμg Φ 0. Consequently
if E denotes the set of all point masses on G, σE forms a bounded
non-zero subgroup of M(H) so that (i-P being connected) by a theorem
of Beurling and Helson [3, §5] σE consists of unimodular multiples of
point masses on H. Thus E maps into the unit ball of M(H) under σ,

5 Such homomorphisms being automatically bounded since A is a Banach algebra and
M(H) is semisimple.
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or equivalently E~ maps into the unit ball of M{H*) under τ*. But
E~ is w* dense in the set of point masses on G*f and thus τ0* carries
all point masses on G* into the unit ball of M(H*). As in the proof
of Theorem 2.5 this implies || Tμ\\ < \\μ\\, μe A. The final assertions
of 2.6 now follow from 2.1 and 2.2, since the connectedness of H~
precludes the existence of any non-trivial compact subgroup Ho of H.
A consequence of our proof is

COROLLARY 2.61. Let H" be connected, and let τ : ΈΓ-* G"U {0}
be any non-zero continuous map for which

for all trigonometric polynomials Σ?-i α A o n H- Then M can be re-
placed by 1, τH~aG~, and h—* (τh^~λτh is a homomorphism.6

For the map again extends to a bounded map τ0 of C(H*) into
C(G*) with ||τ01| = ||r0*|| ^ 1 so that M can be replaced by 1. Since a
translate of τ~λG~ provides us with an open subgroup of H" by 1.1,
r~2G^ = H* and we need only apply 1.3.

2 7. A result of Leibenson [9], improved by Kahane [8], can be
stated as follows: the only maps τ of the circle group T1 into itself for
which / o r has an absolutely convergent series whenever / does are of
the form τ(t) — tλ tn, where tλ e T1 and n is an integer. The following
corollary of 2.6 yields a stronger assertion as a special case (G~ —
jfjp = T1, A — Li(G)); the result is of course essentially a dual formula-
tion of 2.6.

COROLLARY 2.71. Let A be a closed subalgebra of M(G) satisfying
(2.01) and (2.02), and let H~ be connected.7 Then any map τ of H*
into G~ for which

feA~ implies / o r e M(HΓ

must be of the form

where g eG~ and σ is a continuous homomorphism of H~ into G"
6 Note that continuity cannot be dropped from our hypothesis: for a map of R^ which

merely interchanges two elements produces a bounded map of trigonometric polynomials
on R.

7 In this and our subsequent results involving a connected dual (viz: parts of 3.5, 4.2,
4.3, and 5.1) (2.01) can always be replaced by the requirement that | | /?||oo <I /£sup {| μ(p)\:
μ£A, \\μ\\ ̂ s 1} for all trigonometric polynomials p.
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Proof. Let Tμ be that element of M(H) for which (Tμf = μ o τ,
μeA. Clearly Γ is an algebraic homomorphism of A into M(H), which
must be bounded since A is a Banach algebra and M(H) is semisimple.
Moreover T is non-zero, since otherwise AΓ(τH~) = 0, contradicting
(2.02). Thus 2.6 applies to yield a continuous homomorphism γ:G—>H
and a ^ in GA with Tμ = Fgμ, μe A, whence as before

/*) - Tμ(h) = Γ ^ ) = j"(ff$ ° 7)) = jft(ff(Λ o γ))

for all μ in i , ft in ίΓ\ Consequently τ(h) = g(h 07) = gσ(h) where
a : H~ —• G" is the continuous homomorphism dual to 7.

It should be noted that we cannot obtain the type of boundedness
required in 2.6 by simply assuming A is a Banach algebra under some
norm.

An analogous result, in which connectedness is replaced by more
stringent requirements on τ, is a consequence of 2.5 and Bochner's
theorem. We shall omit its most general statement, taking our algebra
A to be LX(G) so that no specific hypotheses concerning the algebra
appear.

COROLLARY. 2.72. Let τ be a map of ΈΓ into G" for which φoτ
is positive definite on H~ whenever φ is a positive definite element
°f C0(G~). Then τ is a continuous (but not necessarily open) homo-
morphism.

Proof. Since the Fourier-Stieltjes transform of a measure is a
linear combination of four positive definite functions we may define Tμ
as before for μ in A = Lλ(G) to obtain a non-zero homomorphism of
LX(G) into M(H). Moreover, μ>0,μe Lλ{G) imply μ is a positive de-
finite element of C0(G"), and thus (Tμ)" = μ o τ is positive definite.
Thus (by Bochner's theorem again) Tμ > 0, and we may apply 2.5 to
obtain Tμ = S*Γμ, μe Lx(G)f in the notation of Theorem 2.1. But for
h 0 Ht we have Lx(Gf(τh) - (TL,(G)Γ(h) = (S*ΓL1(G))"(ft) = 0; hence
from TH^CLG" we conclude that H^ = H~ and Ho is trivial, Tμ = Γμ
and therefore Tμ(h) = μ(τh) = μ(h 07), so that τ appears as the dual
to 7, completing our proof.

The same proof (except for the final step) applies if one takes τ
only to be a non-trivial map of ΈΓ into G"u {0} (i.e., with T'HJT Φ Φ);
one obtains the fact that Tμ = S*Γμ, μeLX(G), and concludes that τ
is a continuous homomorphism on the open subgroup τ"λG" of H" (in
order to consider φ o τ as defined on all of ΈΓ one should include 0 in
the domain of φ, with <p(0) = 0).

2 8 It is tempting to try the same approach in the non-commuta-
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tive situation, replacing characters by finite dimensional matricial rep-
resentations; apparently only in case H is compact can we obtain any
consequences without a deeper investigation.

For any map σ of functions and matrix U = (ui5) of functions let
σU represent the matrix (σ(utJ)). Then if U is any bounded continuous
finite dimensional matricial representation of H,v—*v{U) is a bounded
representation of M(H). Moreover if T : LX{G) —> M(H) is any bounded
homomorphism, then μ —> Tμ( U) is a bounded representation of Lλ(G)
and, as is well known, must be of the form μ-^μ(U), where U is a
continuous bounded matricial representation8 of G. Viewing C(H) as a
subspace of M(if)*, the adjoint T* maps C(H) into L^G)* = L^G),
and we may clearly identify U and T*C7 = ( ϊ 7 * ^ ) as identical matrices
of elements of L^G). Consequently we can take T*utJ as a continuous
function, indeed an almost periodic function, on G.

Now if H is compact the Peter-Weyl theorem assures us that we
can view ϊ7* as mapping C(H) into Sί(G); moreover this map τ is clear-
ly norm-decreasing if T is. Each μ in M(G) provides us with a func-
tional μ on 2I(G), and since τ* : 2ί(G)* —• M(H) is norm-decreasing,
||r*jδ|| < Hμll < Hμll so that σ:μ—>τ*μ is a norm-decreasing map of
ikί(G) into M(H). But σ is automatically multiplicative: for

σ(μ * μ')(U) = (JM * ^)^(^^) = μ*μ\U) = μ(U)μ'(U)
= σμ{U)σμ'{U) =

for all [/, so that σ(// * μ') = σ(/̂ ) * o (/̂ ') by the Peter-Weyl theorem.
Thus E = {tfμα: ^ e G} forms a multiplicative group in the unit ball of
M(H).

Unfortunately the results of [6] do not determine all groups in the
ball of M(H) in the non-abelian case, but only those consisting of non-
negative measures. E will be such a group if T (and therefore ϊ7*,
τ, τ* and σ) preserves order; moreover we then have μ —> Tμ(l) a non-
zero representation of L±{G) if T Ψ 0 (otherwise 0 = Tμ(l) = | |2> | | for
all μ>0, hence for all μ). Since μ-+Tμ(l) also preserves order,
T*l = 1. As a consequence T is automatically norm-decreasing (cf.
footnote 4), and E Φ {0} since σμg(l) = μ,(rl) = /^g(Γ*l) = 1. We thus
have E a set of translates of Haar measure of a normal subgroup Ho

of H, and can write as before σμg = vy(g\ y(g) e HjH0.
But the map g -> μg of G into 2t(G)* (taken in the w* topology) is

continuous, so that g —• τ*μg = v7(g) is w* continuous, and one can easily
conclude that γ is a continuous homomorphism of G into HjH0. More-
over since g —> μg is w* continuous we can represent μ as the w* con-
vergent vector valued integral \μgμ(dg), μe M(G). Applying τ* we

8 That is, a homomorphism into a group of (possibly singular) matrices.
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τ*μ = ^τ*μgμ(dg) = \v^μ(dg) so that τ*μ(f) = ji

γ),/e C(H), in our earlier notation. Finally we ha
obtain y γ
μ(Sfoγ)9fe C(H), in our earlier notation. Finally we have τ*μ = Tμ,
μ6Lλ{G): for τ*μ{U) = μ{τU) = μ(T*U) =z Tμ{U), all [/. Hence we
may write Γ = S*Γ.

Actually if I7 is any non-zero norm-decreasing homomorphism what
we really need to know is that some one-dimensional representation of
H induces a non-zero representation of LX(G). For then we have multi-
plicative characters χ' and χ of H and G respectively for which Tμ(χ') =
μ(χ); consequently χ'Tχ^μil) = Tχ^μiχ') = χ-^(χ) = μ(l) and the norm-
decreasing map To: μ—> χ'Tχ^μ has T*l = 1, whence it is easily seen
to preserve order (as in 1.1). Thus Tμ = (χ')~1S*Γχμ.

THEOREM 2.9. Let G be any locally compact group, H any compact
group. Then any non-zero order-preserving homomorphism T: LX{G) —>
M(H) is of the form S T . If T is merely norm-decreasing and T*χf

is a non-zero element of LJβ) for some multiplicative character χ' of
H, then Tμ = χ"S*Γχμ, where χ", χ are multiplicative characters of
H and G respectively; indeed χ" = (χ')-1> χ = T*χ'.

3 Isomorphisms* An almost immediate consequence of Corollary
2.31 is the fact that isometric isomorphisms between M(G) and M{H)
arise in the same simple fashion as in the case of Lx algebras. Actually
we have a stronger result.

THEOREM 3.1. Let G and H be locally compact abelian groups,
and let A be a subalgebra of M(G) containing Lλ{G), B a similar sub-
algebra of M{H). Then for any isomorphism T of A onto B which is
norm-decreasing on LX{G) there is an isomorphism γ of G onto H and
a character g of G for which

Tμ(f) = μ(g(f o γ)), / 6 C0(H), μeA.

Thus T is an isometry and Tλ(G) — Lλ{H).
Before proceeding to the proof of Theorem 3.1 we might note that

Lλ(G) can be replaced in our hypothesis by any subalgebra of M(G)
satisfying (2.01) and (2.02) which is an ideal in A.

Proof of Theorem 3.1. Applying Theorem 2.1 to the restriction of
T to Lλ{G) we obtain characters gλ and hlf and operators S* and Γ for
which Tμ = h1S*Γg1μ, μe L^G). Consider the norm-decreasing isomor-
phism To = h^Tgϊ1 of Ao = gxA onto Bo = h^B. Ao contains LX(G), and
Bo contains Lλ{H)9 while Toμ = S*Γμ for μ in L±(G). Evidently
v * Toμ = Toμ, μeLλ(G), where v is Haar measure on Ho. Since v is an
idempotent, μ—>v* Toμ is a homomorphism of Ao into M(H) which is
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one-to-one on L^G). Consequently it is one-to-one on all of Ao: for
v * Toμ — 0 implies v * T0(μ * μ') = 0, μ' e LX(G), whence μ* μ' = 0 by the
one-to-oneness on L^G), and μ — 0. But if J3"0 ̂  {&0} we have Ht a
proper open and closed subgroup of H~ so that we can find a v in
LiίflΓ), v =£ 0, with ^(ίίo1) = 0, by the regularity of Lλ{H). Since έ is
the characteristic function of iJ0~S (2 * vf = Pί> = 0, and 5 * y = 0; on the
other hand v — Toμ, μ e Ao, μ Φ 0, so that v * v Φ 0 by the one-to-oneness
of μ —> 5 * T0/i, and we conclude that jfiΓ0 = {K} Thus 7 appears as a
continuous homomorphism of G into iT, and we may now write Toμ =
Γμ.μeL^G).

As a consequence9 we have (TQμ)~(h) = (FμT(h) = μ(/£ 07) = μ(hoj),
μeL^G), with fcoγeGΛ, so Toμ-+(Toμy(h) is a non-zero functional on
TJjλ{G). Repeating a previous computation, we have, for μ in Ao and
// in Li(G)

Γ0/i * To// = To(/^ * //') - Γ(μ * //') = Γμ * Γ^ f = Γ/i * TQμ' ,

Li(G) being an ideal, so that (Toμ - Γμ) * T,Lλ{G) = 0. Thus for each

λ, (Toμ - ΓμΓ(h) = 0 whence 7 ^ = Γμ, μeAQ. Consequently ϊ > ( / ) =

hΓgμ(f) - Γgμ{hf) = gμ(h o γ . / o γ) = / i ^ / 0 7 ) ) for // in A, and it

remains to show 7 is an isomorphism of G onto H.

First 7(G) is dense in H; for otherwise we have a non-zero / in
C0(H) with / o 7 = 0, while v( f) Φ 0 for some v in Lx(iJ), 1; = TQμ,
whence 0 Φ v(f) = Toμ(f) = /^(/° 7) = 0. Moreover 7 is one-to-one since
if 7(0i) = 7(&) then μ = μH- μg% has Γμ = 0 (for /</o 7) =/(7(&)) -
f(j(g2)) = 0). But then for // in L^G) we have μ * μf e L^G) and
Γ0(μ * μ') = Γ(μ * μ') = Γμ* Γμf = 0 whence μ* μ' = 0 for all // in
Li(G), and clearly μ = 0, & = ^2 Indeed the argument shows Γ is one-
to-one on M(G).

Consequently it is sufficient to show 7"1 is continuous on γ(G); for
then 7 is a homeomorphism, 7(G) is therefore locally compact and, be-
ing dense in H, must coincide with H as is well known. Suppose then
that the net hδ = 7(ffβ) -+K — 7(ffo) Clearly Γμg8 = vH. For μ in Ao

with Toμ in L^ίΓ) we have vH * Toμe L^H^T.A, = ΓA0; clearly
A/̂ αβ * £θ = Λ̂δ * ^ = yΛδ * TV* s o that μg8* μe Ao since Γ is one-to-one
on M(G), and further T o (/^ * μ) = vftβ * Γoμ. But || Γ o ( ^ * μ ) - T,μ\\ =
\\vH* Toμ - Toμ\\ -> 0, Γoμ being in L^fί), and since Γo^l^jfί) is auto-
matically continuous, \\μ98 * μ — μ\\ —• 0. As a consequence {#δ: δ > δ0} is
contained in some compact KaG for some δo; otherwise a cofinal subnet
tends to infinity and lim \\μgB * μ — μ\\ = 2| |μ | | for each such μ. If g
is any cluster point of {gs} in K then, for each g, μg * μ(^) is a cluster

9 This follows as in the final part of the proof of 2.1,
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point of {μgs * μ(g)}, which of course converges to μ(g) since
llj"oa * J" - /Ίl -* ° T h υ s - t*o * J" = i" a n d Toi" = Γμ = Γ(μg * μ) =
VΊ{9) * /7* = ŷfα) * Toμ; since Toμ is an arbitrary element of Lλ(H) we
clearly have y(g) = fe0 and 0 = g0. Consequently {g8} converges to g0 by
the compactness of K, and 7"1 is continuous.

Finally we have ΓLX{G) = L^JHΓ) since strong continuity of the map
g —• μg * μ is equivalent to strong continuity of h-^vh* Γμ, and Lx con-
sists of just those measures for which strong continuity holds, by a
theorem of Plessner. Consequently TLλ(G) = Lλ(H) and our proof is
complete.

Applying 2.5 and 2.6 to T\Lx(G)y we obtain

COROLLARY 3.11. Let T be any isomorphism of A onto B for which
μ > 0, μe Lλ(G) imply Tμ>0. Then T is an isometry Γ induced by
an isomorphism γ of G onto H.

COROLLARY 3.12. If H^ is connected any isomorphism T of A
onto B is on isometry determined as in 3.1.

THEOREM 3.2. When G and H are arbitrary compact groups, the
conclusions drawn in Theorem 3.1 and Corollary 3.11 continue to hold.

Proof. Consider first the situation indicated by 3.1, and let μ°, v°
be the Haar measures on G and H. Then Tμ° is a non-zero idempotent
in the unit ball of M(H), and thus, by the result (2) cited in the in-
troduction, of the form χλv where v is Haar measure of a subgroup of
H, and χt is a multiplicative character of this subgroup.

But A * μ° = Kμ\ K the complex field, so B * (χ.v) = K(χxv). Tak-
ing M(H) — C(H)* in the w* topology, the linear map v'—> v' * (fty) of
M(H) into itself is of course continuous, and clearly is of norm ^ 1.
In particular the unit ball of B maps into D (χ^), where D is the
unit disc {z: | z | <̂  1} in K. Since each 24 is w* adherent to the unit
ball of L^fyczB, we obtain vh * {χλv) e D(χ1v) for each h in iϊ, and the
carrier of v must be translation invariant. Consequently v = v° and
#! appears as a character of the full group H.

Thus μ —> Tμίχϊ1) is a non-trivial one-dimensional representation of
L2(G): for Tμ\χ^) = χytχΓ1) = 1. As in 2.8 we obtain a multiplicative
character χ of G for which Tμiχϊ1) = μ(χ); since //(χ) = 1, χ = 1, and
by 2.9 we have ϊ > = χβ*Γμ, μ e Lλ{G). Setting Toμ = χ Γ 1 ^ we obtain
an isomorphism of A onto BQ = χΓ1- ,̂ with Toμ = S*Γμ, μe L^G), and,
in particular, Toμ° = χΓ1?7^0 = v\

As in 3.1, 7 must be one-to-one; otherwise we have a μ Φ 0 in
Λf(G) with Γμ = 0 so that :Γ0(μ * //') = S*Γ(μ * //') = S*Γ/i * S*Γμ' = 0
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for all μ' in Lλ(G), and10 μ * L^G) = 0, μ = 0. Moreover if the compact
image j(G) of G in HjHQ were not all of HjH0 we should have an / in
C(HjHQ) with /=£ 0 , / > 0,/oγ = 0; thus if p denotes the canonical
map of H onto HIHQ,

0 < v%f o p) = 2V^(/o /o) = S*Γμ\f o p) = Γμ\f) = //>(/ o 7) - 0

consequently γ maps G onto fl/fli* and therefore is a homeomorphism
and isomorphism between these groups. But now Γ appears as an
isometry mapping M(G) onto M(HIHQ), and since S* is easily seen to
be an isometry, 2\ = TQ\LX(G) = S*Γ|LχG) is isometric. This combines
with To// = vQ to show 7\ and Tϊ1 preserve order: for

μ ^04^ μ* f* =
0 .

Consequently Γ2 maps {μ:0 < μ < μ0} onto {y : 0 <̂  v ̂  v0}, or, more
generally, the algebra Lj(G)μ* = {f-μQ:fe L^G)} onto £„(#) iΛ As
an isometry T7! thus maps closure onto closure, or Lλ(G) onto LX(H),
and we are forced to conclude that Ho is trivial since its Haar measure
acts as an identity on TJJ^G) = LX(H). Hence γ is an isomorphism of
G onto H, and Tλμ = Fμ. As before we conclude that Γ0/i — Γμ,
μeA:ίor with //; e LX{G), Toμ * Γo//' = TQ(μ * //') = Γ(μ * //') = Γ// * Γμr =
ΓJM * 2V*' and (TΌμ - Γ//) * LX{H) = 0. Thus we have 2^ = χxΓ^ = Γχμ,
as in 2.2, or Tμ(f) = /i(χ (/07)), proving the analogue of 3.1. The
analogue of 3.11 follows since our T must then be norm-decreasing on
LX(G) as in 2.8.

3 3 Returning to the abelian case, the results of Sreider [14] for
G — R indicate that G~ forms a smaller part of the maximal ideal
space of M(G) than one might initially presume. As one would suspect
from the one-to-one nature of the Fourier-Stieltjes transformation
however, G~ would seem still to occupy a rather dominant role in the
Gelfand representation of M(G); this view is certainly reinforced by 3.1
since it shows the norm-decreasing automorphisms of M(G) can only
induce self-homeomorphisms of the maximal ideal space which leave G~
invariant, and indeed preserve its algebraic structure.

3A. A variant of the proof of Theorem 3.1 yields the form of all
norm-decreasing isomorphisms of Lλ(G) onto a closed subalgebra of
L^H); when G~ is connected this yields the answer to the question:
what (proper, closed) subalgebras isomorphic to Lλ(G) can Lλ(G) contain?
Clearly if G1 is a proper open subgroup isomorphic to G then LX{G)

10 If μ^L1(G) = 0 then for f,FβC(G) we have 0 = J $ f(gι9 Mdgι)F(g~%°(dg2) =
$ ) , whence μ = 0 since such convolutions f*F are dense in C(G).
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provides such a subalgebra; when CΓ is connected these are the only
candidates.11

THEOREM 3.5. Let A be a closed ideal in M(G) satisfying (2.01)
and (2.02) and let T be an isomorphism of A onto a closed subalgebra
B of Lλ(H). If T is norm-decreasing then Tμ — hS*Γgμ (as in 2.1)
where γ is an isomorphism of G onto an open subgroup of HjH0. In
particular if H~ is connected any isomorphism of A onto B is of the
form μ —> Γgμ, where γ maps G isomorphically onto an open subgroup
of H.

Proof. By 2.6 the second assertion follows from the first. By 2.1
we have Tμ = hS*Γgμ; as before we can eliminate g, h, and may as
well assume Tμ = S*Γμ. Since A is an ideal in M(G) and μ * A = 0
implies μ — 0 by (2.02), we conclude exactly as in 3.1 that γ is one-to-
one.

Moreover if γ"1 isn't continuous on γ(G)cίZ"/iί0, for some neighbor-
hood U of g0 we have <γ-\VH^C[U9 Φ φ for each neighborhood V of
ho; let gv e j-^VHo) f] Ur and let j(gv) = hvH0 where hve V. Since

T(μ * μgγ) = S*Γ(μ * μQγ) = S*Γμ * ^<'r> = S*Γμ * vhy = Tμ * » v

(where v7(ί/) is the translate to <γ(g) of Haar measure on Ho as before)
we conclude from the strong convergence of Tμ * vh to Tμ and the
automatic continuity of T" 1 (B being closed) that Hμ*/^ — μ\\—*0.
Noting that μ^ μg — μ for all μ in A implies g — g0 by (2.02), our
previous argument yields the fact that #F —> #0, contradicting #F e U\
Thus γ is a (topological) isomorphism, γ(G) is locally compact and there-
fore closed, and we need only show γ(G) open to complete our proof.

Let Hλ be the inverse image of y(G) under the canonical homomor-
phism of H onto HIH0, a closed subgroup of H. If / 6 CQ(H) vanishes
on ίZΊ we clearly have S*Γμ(f) = 0 so that the regular Borel measure
S*Γμ vanishes on all Borel subsets of the complement of Hλ. Since
S*Γμ is a non-zero element of Lλ(H) for some μ, Hx clearly contains
some compact set C of positive Haar measure, and thus must be open12;
hence γ(G) is open and our proof complete.

1 1 It is of course not the answer otherwise. For example let An be the algebra of
integrable / on the circle T1 with f(eiθ) =/(β*(β+2*/n)); then setting g(t) =/(ί1/w) yields a
well defined element g of Li(Tί), and /-> g is easily seen to be an isomorphism of Λn with

1 2 For we can find a Baire subset E of H containing C with E\C of (Haar) measure
zero; then the Borel measurable function &-» <pE(1I)<PE~Kh~1hr) - φc{h)φo~1(h-1h') (for hr

fixed, φE the characteristic function) differs from zero only on a subset of (E\C){j(h'E\hfC)
so that ΨE * <PE~Kh!) = \φoih)φo~ι{h~ιhr)dh. As usual the fact that φE * ΨE~X Φ 0 on a
neighborhood C/ of ft0 yields for hr 6 C7 a h in C with /̂ r 6 /tC"1 cz iϊi whence Ucz Hλ and
Ifj is open.
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4. Some other isomorphisms* The role of condition (2.02) in §2
was confined to providing us with a map τ of character groups dual to
a given homomorphism of our algebra A. In certain situations such a
τ arises naturally in the absence of (2.02) and provided (2.01) holds, our
approach may again be applicable. For example suppose A is a closed
subalgebra of M(G) satisfying (2.01) for which G~ forms a subspace of
the maximal ideal space 5DΪ of 4; further suppose G~ is connected.
Then any endomorphism T of A for which the dual map τ : 3Jί —• 9K
sends G~ into itself necessarily has τ(g) = gx σ(g), g e 6Γ\ where σ is
an endomorphism of G*. For T is necessarily bounded so that r in-
duces a bounded map of 3ί(G) into itself (by an analogue of (2.13), using
(2.01)), and Corollary 2.61 applies. Consequently T is itself determined
as before; similarly if G~ is not connected but T is also norm-decreas-
ing, or order-preserving while (2.51) obtains, we can apply Corollary
1.3 or the remark following 2.5 to the same end.

Exactly such a situation arises in connection with the Arens-Singer
theory of generalized analytic functions [1], in particular in Arens'
subsequent generalization of the conformal mappings of the disc [2].
There (among other things) Arens is interested in the automorphisms13

of a certain closed subalgebra Ax of Lx(G)yG locally compact abelian;
one has a fixed closed subset G+ of G satisfying [1, §2]

(4.01) G+ is a subsemigroup of G, i.e., x,yeG+ imply xyeG+,
(4.02) the interior of G+ is dense in G+ and generates G;

Ax = Lλ(G+) is then the set of all elements of Lλ(G) vanishing off G+.
As Arens and Singer showed, Lλ{G+) has G~ as the Silov boundary of
its maximal ideal space; consequently (by a well known property of the
Silov boundary) any automorphism T of L^G*) induces a self-homeomor-
phism τ of its maximal ideal space which maps G~ onto itself. More-
over the fact that G+ generates G shows (2.01) and (2.51) hold for L^G*).
For the closure G+ of G+ in G* is a generating subsemigroup of G*,
while any closed subsemigroup of a compact group is a subgroup [5, 11].
Thus G; = G*, and G+, as well as its interior, is dense in G*; since
point masses concentrated at interior points can clearly be approximated
by elements of the unit ball of Lλ(G+) in the weak topology defined by
almost periodic functions, we obtain (2.01) and (2.51).

Consequently if G~ is connected we have τ{g) — gx σ(g), g e G~, by
2.61, where σ is an automorphism of GΛ. Writing elements of LX(G)
as functions rather than measures, we thus have (Tfy(g)=f(g1σ(g))
~{QifY(σ{g)) = Άiΰif) ° ΎT(θ)> where γ"1 is the automorphism of G dual
to σ, and k > 0 compensates for the change in Haar measure produced by
γ (of course k = 1 if G is discrete). Clearly Tf=k(g1f) o γ says yG+=G+

1 3 These are not Arens' full set of generalized conformal mappings, which correspond
to the automorphisms of his algebra ΛQ.
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and we have additional information about τ. Thus in the classical case
of the Arens-Singer theory (where G is the group Z of integers, G+
the non-negative integers, and Lx(G+y may be viewed14 as the algebra
of analytic functions with absolutely convergent Taylor series on the
disc \z\ ^ 1 (the maximal ideal space of Lλ(G+))) γ must be the identity,
so that τ reduces to a rotation on \z\ = 1, hence15 is a rotation of
\z\ < 1. In other words the only self-homeomorphisms τ of the disc
which (via F —• F o τ) map the set of analytic functions with absolutely
convergent series on the disc onto itself are rotations.

Again in the case G = Z x Z,G+ = {(m, n): m, n > 0}, where LX(G+)
can be viewed as the algebra of analytic functions of two complex
variables with power series absolutely convergent on | 2 | < l , | w | g ; i ,
there are clearly only two candidates for γ ((m, n) —> (n, m) and the
identity), and thus the general automorphism is of the form

or

where c and d are fixed unimodular constants; in other words each
automorphism is induced by separate rotations of each disc \z\ < 1,
\w\ <1, plus a possible interchange of variables. Clearly this extends
to n complex variables.

Generalizing our setting slightly we have

THEOREM 4.1. Let G and H be locally compact abelian groups with
closed subsemigroups G+ and H+ satisfying (4.02), and let L1(G+)f

Lλ{H+) be defined as above. Then if either group has a connected dual
an isomorphism T of L^G^.) onto L1(H+) is an isometry of the form
Tf — k(gf) o γ, where k is a positive constant and γ an isomorphism of
H onto G with jH+ = G+. Without connectedness the same applies to
order-preserving or norm-decreasing isomorphisms.

4 2 Clearly most of what we have said applies equally well to any

closed algebra satisfying (2.01) for which G~ yields the Silov boundary.

And any closed subalgebra A of L^G), with A~ a translation invariant

14 More precisely Z/i(G+)^ is the set of restrictions to \z\ = 1 of these functions
(since ^ still is the Fourier transformation and not the full Gelfand representation, cf. [1O,
P 72]).

1 5 For τ is analytic as the function representing the characteristic function of {1]
under the full Gelfand representation. Alternatively we could note that knowledge of τ or
the Silov boundary determines r among all automorphism-inducing self-homeomorphisms oί
W\ since here rotation of the full disc is clearly such a homeomorphism it coincides with
r on the full disc.
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set of functions on G~ which separate the elements of G~ U {0}, has G~
the Silov boundary Θ of its maximal ideal space. For G~ forms a sub-
space of the maximal ideal space (cf. footnote 3), while if μ —» μ° is
the Gelfand representation of A, | |μ o |U = lim \\μ(n)\\lln = ||/β||oo = \μ(g)\
for some g in G~9 for each μ in A, and 9 c G^. But since A~ is transla-
tion invariant we clearly have d a translation invariant subset of GΓ\
and d — 6Γ (this is precisely the argument of [1]).

Consequently we obtain as before

THEOREM 4.3. Let A be a closed subalgebra of Lλ{G) which is closed
under multiplication by elements of G~, B a similar subalgebra of
LX{H), and suppose A satisfies (2.01) while B merely has B~ a separat-
ing set of functions on H~ U {0}. Then if £ P is connected any iso-
morphism T of A onto B is an isometry of the form Tμ — Γgμ {nota-
tion as in 2.1), where 7 is an isomorphism of G onto H. Without
connectedness the same applies to norm-decreasing {or, if A satisfies
2.51, order-preserving) isomorphisms.

Here 7 is the isomorphism dual to the isomorphism a we obtain
from 2.61, etc., rather than its inverse, which is the 7 of 4.1.

5. When G is discrete a general theorem of Silov [13] shows that
Li(G) is the direct sum of a pair of ideals if and only if G~ is discon-
nected. When G~ is connected Lλ{G) may still be the vector space
direct sum of a closed ideal and a closed subalgebra, and Theorem 2.6
then reveals the exact situation.

THEOREM 5.1. Let G~ be connected, and LX{G) — A@I where A is
a {non-zero) closed subalgebra and I a {non-zero) closed ideal. Then G
is the direct product of a discrete subgroup Gj and an open subgroup
G2 for which A = Lλ{G2) and 1 = {μ : μ e L,{G), μ{gλGt) = 0}, where gλ e G2

X.
Conversely any such decomposition of G and character gλ orthogonal to
G2 yields a decomposition of Lλ{G) of the type described.

Proof. Let T be the projection of Lλ{G) onto A, a nonzero homomor-
phism. By 2.6, Tμ = Fgλμ where Γ is induced by a continuous endo-
morphism γ of G. Let σ be the endomorphism of G~ dual to γ, so that
goΎ = σ{g) and Tμ{g) = μ{gλ{g oγ)) = μ{gλσ{g)). Since T2 = T, μ{g,σ{g)) =
T2μ{g) = Tμ{g±σ{g)) = μ^^g^g))). Consequently σ(g) = σ{gλσ{g)) =
σ{g1)σ{σ{g)) whence (setting g = gQ) g0 — σ{gλ) = ^ 0 7 and σ o σ = a.
Dually 7 0 7 = 7, and thus the algebraic subgroup G2 = y(G) of G, on
which 7 acts as an identity map, is closed (for γ{g8) —± g implies 7(7(03)) =
7(9i) -+ 7{g) and —• g whence g = j{g) e G2). Moreover the fact that
<7o = 9i°y says gλeGt.

But G2 is open as well. For Γμ is a non-zero element of Lλ{G) for
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some μ in Lλ{G), while Γμ(f) = μ(f oγ) = 0 f or / e C0(G) vanishing on
G2 = 7(G), so that the regular Borel measure Γμ vanishes on all Borel
sets in the complement of G2; thus G2 contains some compact subset C
of positive Haar measure, and must be open (cf. footnote 12).

Set Gx — {gyig)'1: g eG}, clearly an algebraic subgroup of G. Then
9 = (QΎioY1) Ύ(g) yields a direct product decomposition of G, G = GX§Z)G2:
for geG1nG2 implies g = g'^g'Y1 = 7(flf) = 7(#')7(#')~1 = g0- Since G2 is
open, Gx is clearly discrete, and evidently γ is the projection of G onto
G2 corresponding to our decomposition.

Let μ9Λ be the restriction of the measure μ in Lλ{G) to fl^Ga, so

that μ = Σ ^ e ^ / ^ Λ a n d

Since

and 0! ^ = 7(0) for 0 e ^Ga we have Γ/i = Σ^eβ, AVr1 * ^^lί?2 B u t

clearly implies Γ, and therefore T, maps L^G) into L^G^; indeed it
shows Γ and (since gτ^Gi) T leave elements of Li(G2) fixed so that A =
TLλ(G) — Lλ(G2). On the other hand /, being the kernel of T7, consists
of just those μ in LX(G) with Γ ^ μ = 0, i.e. with μ(gxσ(g)) = 0,geG~.
Thus μ e I if and only if μig^G")) = 0 or μ{gλGt) = 0 since σ, as the
dual to the projection 7 of fGχ 0 G2 onto G2, is the projection of G^ =
Gϊ®GΪ onto Gi1-.

Conversely given G — Gx^ G2, ̂  e G2

X one need only set Tμ =
Σ^eβ^f x * (git*01**2) to obtain a projection of L^G) onto L1(G2); writing
g[gf2 (with g[εG2, g'2eGt) as the generic element of G^ an easy com-
putation shows Tμ(g[g2) — μ{gλg

f

2) so that T is clearly multiplicative and
J, as described, is its kernel.

If G^ is disconnected our present tools can only be applied to those
decompositions for which | | T | | = 1 (that other cases occur can be seen
from the results of [12] for G the circle group); one can then obtain
an analogous result, somewhat complicated by the fact that 7 appears
as a homomorphism of G into GIG0, Go compact, and indeed the decom-
position of Lλ arises from a decomposition of GIG0, GjGϋ = GJGQ ® G2IG09

and A appears as S^L^G^GQ).

6. Some reformulations^ When G and H are compact abelian
groups Corollary 1.3 has an interesting reformulation; our final section
will be devoted to this result and some analogues.

THEOREM 6.1. Let G and H be compact abelian groups and let Ί
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be any norm-decreasing linear map of the Banach space C(H) into
C(G) for which TH~cG~. Then there is a homomorphism 7 of G into
H for which Tf = (Th0) -foy,fe C(H). In particular if Th0 = g0

then T is a Banach algebra homomorphism when C(G) and C(H) are
equipped with ordinary multiplication.

Further the range of T is dense iff 7 is one-to-one, and then
TJEP — G^ and T is onto, while T is an isometry iff γ(G) = H.

Although we could obtain a proof by noting that T is merely the
linear extension of τ = T\H~ we obtain in the proof of Theorem 1.1,
an appeal to Corollary 1.3 is more direct. Clearly τ satisfies the hypo-
thesis of 1.3, and thus σ : h —> {τh^τh is a homomorphism of ΉΓ into
GΛ. Since ΉΓ and G~ are discrete, and a thus continuous, we have a
continuous dual homomorphism γ : (g, σ(h)) — (j(g), h). Thus

) = (9,

or ΓΣ ath = τH ( Σ aAΣ

Since trigonometric polynomials are dense Tf=τh0 (fo<γ),fe C(H).
For the final statements, we clearly need only consider the case

Th0 = g0. Note that if 7 is not one-to-one then Tf — f o γ says the
range of T consists of functions constant on the cosets of the non-
trivial kernel of 7, and thus the range cannot be dense in C(G). On
the other hand if 7 is one-to-one, then (by compactness) it is an iso-
morphism of G with a subgroup j(G) of H. Thus for any character χ
of 7(G) we have a character g of G for which χ o 7 = £, and since χ =
Λ|7(G) for some h in JEP we obtain ί o γ = p γ = g, whence GΛ = TΉΛ
Further if i*7 e C(G) then any continuous extension / of Fo 7-1 e C(j(G))
to all of i ϊ (available by Urysohn's lemma) yields / o 7 = F, and T is
onto. Lastly, if γ(G) is proper we have an non-zero / € C(H) vanish-
ing on 7(G) so that Tf = /© 7 = 0, and Γ is not even one-to-one, while
if γ(G) = £Γ then Γ is clearly an isometry.

In one case specific mention of characters as such can be eliminated,
yielding the weaker result: if T is a linear norm-decreasing one-to-one
map of C(H) into C(G) taking the positive definite functions in the ball
of C(H), P0(H), onto P0(G), then f—iTh^Tf is multiplicative. For
with one-to-oneness the set of extreme points H~ U {0} of PQ(H) maps
onto those of P0(G), G" U {0}.

In this form we have an indication that a similar result can be
obtained for the Lλ algebras of locally compact abelian groups.

THEOREM 6.2. Let G and H be locally compact abelian groups and
PX{G), P^H) be the integrable positive definite functions. If T is a
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linear isometry of the Banach space L±(G) onto Lλ(H) with TPλ(G) —
Pλ(H) then T is an algebra isomorphism.

Before proceeding to a proof of 6.2 we should perhaps note an
abstract version. Recall that an extreme positive (extendable) func-
tional on a commutative Banach * algebra is a * preserving multiplica-
tive functional. Then

THEOREM 6.3. Let A and B be commutative Banach * algebras
with (without) identities, and suppose B is semisimple and symmetric.
Let T be a linear isometry of the Banach space A into B for which
the adjoint map Γ* takes the positive (extendable) functionals on B
onto those on A. Then T is a * isomorphism of the algebras A into B.

Proof. Let P(A), P(B) be the set of positive (extendable) functionals
of norm 1 on A, B. We know Γ*, being an isometry, maps P(A) onto
P(B). Since it is one-to-one Γ* must map the set P(A)e of extreme
points of P(A) onto P(B)e. But these sets consist of * preserving multi-
plicative functionals, and since each multiplicative functional on B is *
preserving by hypothesis, and thus an extreme positive (extendable)
functional, Γ* provides us with a map of yjlB, the maximal ideal space
of B, into 2J .̂ Consequently (with ~ now the Gelfand representation),
(TaaT(M) = (ααT(T*AΓ) = α(Γ*M)<z'(Γ*M) = (Taf{M) . (Γα'Γ(M).
Since B is semisimple, Taa1 = Ta 2V, and we need only verify Γα* =
(Γα)*. But since M and Γ*M are * preserving for M in SΰlBf (Ta*T(M) =
α*(Γ*M) = ά(T*M) = (TaΓ(M) = (Ta)*~(M), so Γα* - (Γα)* also fol-
lows from the semisimplicity of B.

The proof of Theorem 6.2 now follows quite simply, for, as is well
known, the positive (extendable) functionals on L^G) form the polar
cone of Pλ(G). Thus the adjoint of Γ satisfies the requirements of 6.3
when A = LX(G), B = LX(H), and Γ is an algebra isomorphism.
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