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Introduction^ Riemann surfaces were originally introduced as a tool
for the study of multiple valued analytic functions. In Riemann's
work they appear as covering surfaces of the complex plane with given
branch points. Since then Riemann surfaces have been considered from
several different aspects.

Here we shall follow the point of view assumed by Beltrami and
Klein, who visualized these surfaces as two-dimensional submanifolds of
Euclidean space whose conformal structure is defined by the surrounding
metric.

Recent results of J. Nash1 on isometric imbeddings of Riemannian
manifolds assure that all models of Riemann surfaces with the natural
Poincare metric can be C°° isometrically imbedded in a sufficiently high
(51) dimensional Euclidean space. However, the question still remains
open whether or not every Riemann surface has a conformally equivalent
representative in the ordinary three-dimmensional space.

Although the dimension requirement seems restrictive, there is
reason to believe that, since only conformality is required, at least the
compact surfaces can be conf ormally imbedded. We shall not be
directly concerned here with this existence problem instead, we shall
present a family of elementary surfaces which may contain all conformal
types and whose conformal structure can be easily characterized.

In the genus one case, the conformal structure is usually described
by a complex parameter v which gives the ratio of two principal periods
of an abelian differential of the surface. It is always possible to
choose these periods so that their ratio v lies in the region 3Jϊ of the
Gauss plane defined by the inequalities:

Smv < 0, - ί < 9tev ^ £ | v \ > 1 for <$\w < 0, | v | ^ 1 for 2ΐev ^ 0 .

It is well known that every Riemann surface of genus one has in 2Jί
one and only one representative point.

It is easy to verify that the representative points v of the tori of
revolution lie in the imaginary axis and cover it completely. Thus it
seems plausible that the affine images of the tori of revolution should
cover all conformal types in the genus one case; however, we have
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found no proof of this fact. Indeed the characterization of the parameter
v for an imbedded surface leads in general to rather difficult problems.

For this reason, for quite some time there have been no known
examples of surfaces whose representative point in SDΐ lies off the
imaginary axis. In 1944, 0. Teichmϋller2 proved the existence of
these surfaces by showing that there are small deformations of the
tori of revolution for which the variation of v is not purely imaginary.

Led by these observations we have tried to develop a method of
uniformizing a given Riemann surface that could be of practical
application for some wide enough family of surfaces. To make our
considerations applicable to surfaces of higher genus we needed to
introduce some parameters to take the role that v plays in the genus
one case. To this end we have adopted as a canonical form of a
Riemann surface the result of the Schottky uniformization. In fact,
some imbedded surfaces can be considered topologically " marked" in a
natural way, and the Schottky uniformization associates with every
marked surface of genus g (> 1) a complete set of geometrical invariants
which can be expressed by means of 3# — 3 independent complex
parameters.

In view of the importance of these parameters we deemed neces-
sary to include in the first section of this paper a description of the
Schottky uniformization and some general facts associated with it. In
the second section we present a definition of " M-surfaces". These
are imbedded surfaces which may have edge type singularities along
curves but can be made into Riemann surfaces in a natural way. To
generate these surfaces we adopt a process which uses surfaces of genus
zero as building blocks to construct surfaces of genus one and sur-
faces of genus one to construct surface of higher genus.

In the third section we present a method of constructing the
Schottky uniformization of a given M-surface. This method is more
general than it appears in the context since from the existence of
the Schottky uniformization, every marked surface can be considered
an M-surface (dropping the condition that the building surfaces of
genus zero should be globally imbedded.) As will be shown in the
fourth section, this method assumes practical importance when the
building blocks of M-surfaces are ordinary spheres. These special
M-surfaces we have called "natural" .

To present our results in this case we made use of anallagmatic
coordinates of spheres as introduced by E. Cartain in [2] for the sake
of completeness a brief introduction to these coordinate is also included.

In the last section a few properties of natural M-surfaces of genus

2 "Beweis der analytischen AbMngigkeit des konformen Moduls einer analytischen
Ringfl&chenschar von den Parametern", Deutsche Math. 7 (1944), 309-336.
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one are studied, and some of the results are used to construct the
Teichmίiller models. At the end a process is given by means of which
all natural M-surfaces can be made into C°° smooth canal surfaces.
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1* A choice of conf ormal parameters for compact Riemartn surfaces*

1Λ Here and in the following Σ shall denote a given 2-sphere
" a coordinate in Σ" shall mean an extended valued complex coordinate
introduced by a stereographic projection of Σ upon the Gauss-plane.
Let z be such a coordinate. Since z is defined up to a Moebius transfor-
mation of Σ onto itself, we can assume that the points 0, 1, oo are
situated wherever we may wish. Whenever it does not lea^to am-
biguities, we shall make use of the same symbol for a point of Σ and
its complex coordinate.

If A is a Jordan curve and a a point of Σ not lying in A, we
shall denote by A(a) the connected component of Σ — A which contains
a. A(a) will be called the interior of A with respect to a. If A
separates a from another point β of Σ we have of course

Σ = A(a) + A + Λ(β).

Let now at, βt (ί ~ 1, 2, •••, g) be 2g distinct points of Σ and
a). (% — l, 2, , g) given complex numbers of absolute value greater
than one. Let τt be the Moebius transformation of Σ onto itself defined
by the equation

(1) l*L=L*=ωJL^
TZ βT,Z - βt Z - βt

We assume for a moment that aγ = 0 and βx — oo. Under this
coordinate system we have

Let px and ρ2 be the smallest and the largest of the absolute values

I a% I , I βi I i = 2, 3, , g .

If \ω1\> (llη)(p2lpi) for some 0 < rj < 1, a circle with center at 0
and radius r = ηρι is transformed by τx onto a concentrical circle of
radius
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rr = \ ω 1 \ r > ρ 2 .

Thus if I ω1 | > p2fp1 there are infinitely many circles A such that
the points a2, β2; •••; agy βg are all interior to the anulus

Λ(oo) n M ( 0 ) .

Before expressing this fact in an invariant way we shall introduce
a notation. If a and β are two distinct points of Σ by P(a, β) we
shall denote the pencil of circles which admit a, β as a couple of
inverse points.

We have thus shown that:

I. Provided \ co1\ is sufficiently large we can choose a circle A in
an infinite number of ways so that

( a ) AeP(aly ft)
(b ) the points a2, β2; : ag, βg are contained in the domain A(β1) Π

Let A1 be one of these circles.
We shall show now that:

II. Provided the | ωt |'s are sufficiently large the circles Ai can be
chosen in an infinite number of ways so that

( a ) Λ6P(α 4,/3 4)
( b) the closed disks

are exterior to each other.
Because of I we can prove II inductively.
Suppose that the circles A19 A2, •••, Ai_ι have been chosen in such

a way that
( a ) A3eP(a3, βj) (j = 1, 2, > > - ^ - 1) ,

( b ) the closed disks A(#i), Mi(/3i); •••; ̂ i-iί^-!), T V ^ - I O V I ) are
exterior to each other,

( c ) the remaining points aJf β3 (j = i, i + i, •••, ̂ ) are contained
in the domain

Π {Λ03) Π M ^ α , ) } .
j = l,ί-l

We temporarily assume that a% = 0 and /3t = CΌ . We let <S be the
set consisting of the closed disks

and (if i < g) t h e points
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Under this coordinate system let ft and ρ2 be the minimum and
the maximum value assumed by \z\ as 2 varies in S. Clearly the
argument can be completed since, for the same reasons as before, if
\ωi\ > pJPu the circle A can be chosen in an infinite number of ways
so that

( a ) AeP(ai} βt)

( b ) the set S is exterior to A{at) and τtA(βt). Let At be one of
these circles.

A further investigation on the nature of the inequalites to which
the I α>4 |'s are to be subjected, for such a construction to be possible
would be of some interest, but for our immediate purposes it is not
needed.

We would like to point out, however, that if for a given set of
complex numbers {a19 βlf ωx\ •••; ag, βgy ωg} the construction in II is
possible, then it is also possible for any other set {aί9 β19 ω[\ •• \ag, βg, ωg}
such that

\ω'i\>:\ωi\ i = 1, 2, •••, g .

1»2 Let SSRg be the subset of the 3^-dimensional complex cartesian
space composed of those points

m~ {a19 βlt ωλ; •••; ag, βfff ωg}

for which it is possible to choose g Jordan curves A19 A2, , Ag of Σ
such that

( a ) each Ai separates at from βi9

( b) the closed sets Λ(αJ, τ v ζ p j , , Λg(ag)f τgΛg(βgf are exterior

> to each other.

III. The points of 9Jίg give rise to compact Riemann surfaces of
genus g.*

If m<*" {a19 β19 ωx; •••; agf βg9 ωg} and Λ19 A2, •••, Ag are chosen

to satisfy (a) and (b), we set

R = Π {Mβi) n

We then identify the points of the boundaries A% and z%At of R by
means of the transformation τ,. In other words we set Q ~ TtQ for
each Qe At. We do this for i = 1, 2, •••, g. Let X denote the result-
ing space.

We shall make X into a Riemann surface introducing local uni-

formizers.
3 Here the π's are again given by (1).
4 The construction presented here is to some extent contained in a paper of Schottky

published in Crelle's Journal (1887, cfr. [8]). See also Hurwitz-Courant [5], p. 462.
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If P is a point of X which is interior to R and N is a neighborhood
of P contained in R we take as a local uniformizer any coordinate in
Σ which does not attain the value oo within N.

If P is a point of X which lies on one of the Λ's, say Au we have
to proceed in a different way.

First we take a neighborhood N of P in Σ which is so small that
it is contained in the set

R U τ^R .

Then we define a corresponding neighborhood iV* of P in X by
setting

JV* = {At{βt) n N} + τ4{Λ4(α4) Π N} =Rf](N+ T.N) .

If z(p) is a coordinate in 21 which does not attain the value <χ> in
N, we introduce as a local unif ormizer in iV* the function on X which
takes the value z(p) for p e R Π N and the value z^^p) for a point p
of R Π τ4iV.

We proceed in a similar way for each of the curves At. The
resulting manifold is a Riemann surface of genus g; it will be denoted
by Γ(m; A19 A2, •••, Ag) and referred to as a "Schottky model".

1.3 We shall give statement III a more precise meaning by show-
ing that

IV. Any two surfaces Γ(m; Alf A2y , Ao) and Γ'(m; A[, A'2, , A'g)
{same m), are conformally equivalent.

Let G be the group of Moebius transformations generated by the
r4's. G constitutes what is usually called a "Schottky group".

We shall denote by Γ(m) the set obtained from Σ by deleting the
limit points of G.

The following properties of G are well known (cfr. for instance [4]
pages 37 to 66), and can be easily established:

( a ) The group G is free.

( b) The sets D = fl {Mβd Π M4(α4)} and D* = Π

are fundamental regions of G.

( c ) The images of D (as well as those of Π) decompose and cover

completely the set Γ(m), i.e. f{m) = Σ τ ί 3 = Σ

These relations yield

( 3 ) D=ΣD{\τDr

(4) Z>' = Σ D' Π τZ)

6 We should emphasize that Γ{m) is a disjoint union of the images of D and Z)'.
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since D and Df are bounded away from the limit points of GQ both
these sums, after a finite number of terms, terminate with a string of
empty sets. The equality in (3) is also equivalent to

(5) D - Σ - D Π τ-ιD'
rβG

and (4) can be written in the form

( 6 ) fl^Σ^n τ~ιD') .

We define a mapping7 φ: D^> D' by setting

φp = τp for p e D f] τ^D' .

Since the unions on the right hand sides of (5) and (6) are disjoint
φ is well defined. Clearly φ preserves the identification of points in Γ
and Γ' and thus defines a topological mapping of Γ onto /"", in addition
it maps every sufficiently small neighborhood of Γ conformally onto
neighborhood of Γ9.

From this the assertion follows.

\A+ The abstract Riemann surface represented by any one of the
surfaces Γ(m; A19 A2J •••, Ag) shall be denoted by Γ(m); it shall be
referred to as "the Schottky model corresponding to m."

Suppose now that there exists a Moebius transformation of Σ onto
itself which sends the points a19 &; ag1 βg respectively onto the
points a[, β[; •••; ag9 βg and assume that the parameters ωu ω2, •••, ωg

have been chosen in such a way that both m~ (au β19 ωx\ •; ag, βg9 ωg)
and mf ~ (a[, β[, ωx\ •••; ag, β'g, ωg) lie in 3)ϊff. Then the corresponding
models Γ(m) and Γ{m') are conformally equivalent. Under these circum-
stances, it is natural to identify any two points m and mr of 3Jlg for
which we have

o)t = ω\ ,

( 7 ) if g ^ 2 OS,, alf a2, β,) - {β\, a[, αj, β[f i^2,*--9g,

if g ^ 3 (aif a19 a29 β,) = (a'i9 a[9 a'%9 β[) i = 3, , g .

If Γ is a Riemann surface of genus g, the Jordan curves A19 A2, , Λg

will be said to form a "canonical semi-basis" if they can be completed
to a canonical basis for the cycles of Γ.

The Riemann surface Γ will be said "marked" if a canonical semi-

6 The limit points of G are contained in the sets τ^Λjiaj), τϊ^jΛjiβj) and nAj(aj)
(i, i = l, 2, ~,g).

7 Here and in the following a ''mapping" shall mean a "one-to-one mapping".
8 By the symbol (x, y, z, w) where x, y, z, w are given distinct complex numbers we

mean the cross-ratio (x - y){z - w)/(x - w)(z - y).
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basis has been chosen in Γ. The surface Γ marked by A19 A2, •••, Ag

shall be denoted by the symbol Γ(A19 A2, •••, Ag).
We shall consider two marked surfaces Γ(A19 A29 , Ag) and

Γ\A\9 A'29 , Af

g) as the same object whenever Γ ~ Γ' (conformally) and
At is homotopic to A\ (for ί = 1, 2, •••,#). With these identifications
the following theorem holds:

V. The points of %Jlg are in a one-to-one correspondence with the
marked Riemann surfaces of genus g.

Proof. Clearly, every Schottky model Γ(m; A19 A2, , Ag) can be
considered a marked surface by the choice of A19 A29 , Λg as a canonical
semi-basis.

But the converse is also true: namely, to each marked surface
Γ(A19 A29 , Ag) there corresponds a Schottky model, uniquely defined
up to a Moebius transformation, and thereby a point of 2K,. This cor-
respondence is easily established after constructing the so-called "Schot-
tky covering surface" of each marked surface. This concept is well
known (see for instance [4], pp. 256-257), but for the sake of comple-
teness, we shall sketch its definition.

Let Γ(A19 A29 •••, Ag) be a given marked surface.
Let M19 M2J * ,Mg be a completion of A19 A29 •••, Ag to a canonical

basis, and ^J? denote the free group generated by the cycles M19

M29 " 9Mg.
We imagine the surface Γ{A19 A29 , Ag) cut along the curves At to

yield a planar region X bounded by the 2g Jordan curves A19 A29 , Ag;

Aΐ1, A;\ •••, A~19 of Γ. We then reproduce an infinite number of exact

replicas XM of X, one for each M e ^f. The closed sets XM are then

glued together according to the following rules:

( i ) If M = M*M* (and the first factor of Λf * is not Mϊ1) then the

points of the curve Aϊ1 of XM* are identified with the corresponding

ones in the curve A% of XM.

(ii) If M=M:1M* (and the first factor of ikP is not Λf,) then

the points of the curve At of XM* are identified with the corresponding

ones in the curve AΪ1 of XM.

With these identifications the set Σ XM becomes a covering surface

of Γ. We shall denote it ΓΛ and call it the "Schottky covering surface7'

o f Γ(A19 Λ , ••-, A g ) .
What then remains to be proved is a consequence of the following

well known properties of the surface ΓΛ. (cfr. for instance [5] pp.
483-484 or [4] Chapter X).

9 We tacitly assume, without restriction, that the curves Λι do not intersect each other.



THE CALCULATION OF CONFORMAL PARAMETERS 129

( a ) ΓΛ is of planar character, it can be conformally mapped into
the sphere Σ,

( b ) The mapping μt of ΓΛ <-> ΓΛ which sends each region XM of

ΓΛ onto the adjacent region XMiM is a cover transformation of ΓΛ.

( c ) The group of cover transformations of ΓΛ is free and admits

the mappings μ19 μ2, •••, μg as generators.

( d ) If φ is any conformal mapping of ΓΛ into Σ, the cover trans-
formations of fΛ induce in Σ, through the mapping φ, a set G of
Moebius transformations which is a Schottky group. The generators of
G are given by the Moebius transformations

τx = φμ&~x

9 τ2 = φμ2φ-\ , τg = φμgφ~x .

( e ) The image φXE of XE (where by E we mean the identity in
Λ?) constitutes a fundamental region for G; its boundary consists of the
curves φA19 φA21 •• ,φAg; φAϊ1, φA2

ι

y •••, φA"1, and φAi1 is t h e image

of φAi under the transformation τi for each i.
Thereby φXE and T1T21 •••, τg originate a Schottky model which is

conf ormally equivalent to Γ(A19 A2, , Ag).

( f ) If φ' is any other conformal mapping of ΓΛ into Σ, φrφ~ι

induces a Moebius transformation of Σ; thus, if we set

and

τ.z-β, 'z-β,' τ\z-β\ ι z - β \

(under some coordinate system in Σ), the corresponding points

m ~ (alf β19 o)ΐ9 ag9 βg, ωg)

m' ~{a[, β[, ω\\ •••; α j , B'g, ωf

g)

of 9Jϊg are to be considered the same since the equalities in (7) will
necessarily be satisfied.

1 5 After Statement V it is natural to adopt the following:

DEFINITION. If Γ(A19 A2> , Ag) is a given marked Riemann surface
and m~ {a19 βlf w±; •• \ag9 βg9 ωg} is the point of Wlg corresponding
to it, the complex numbers

ω19 ω2y , ωg

( 8 ) ωi+g.x - (βt, alf a2, βx) (ί - 2, . , g if g ^ 2)

α> i + 2 g_3 = (α i f α x, α 2 , A) (i = 3, , g if flr ^ 3)
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wil l b e c a l l e d "the conformal parameters" of Γ(Δlf A 2 , •••, A g ) .
In the following we shall say that a marked Riemann surface

Γ(Alf A2, • ••, Ag) has been "uniformized" if the mapping of ΓA into Σ
and the conformal parameters of Γ(A19 A2, • ••, Ag) have been charac-
terized.

It is interesting to note that Schottky in [8] expressed the abelian
differentials and their periods as analytic functions of the parameters
°ti> fin ωi> •••; ag> βgy <og; unfortunately, there are some restrictive
hypotheses in his proofs, and the results, although explicit, assume
formidable expressions.

2. Some special models of compact Riemann surfaces*

2.1. The three-dimensional Euclidean space shall be denoted by Ez.
Any smooth (four times continuously differentiable), non self-intersecting
surface of Ez, homeomorphic to a sphere, shall be called a p-sphere.

A p-sphere shall always be assumed to have been assigned a specific
orientation.

Let J be a Jordan curve of a p-sphere Γ. If a is a point of Γ
not lying in A, as before, we shall denote by A(a) the connected com-
ponent of Γ — A which contains α.

We can define an orientation of A by specifying which of the two
connected components of Γ — A is to be the interior or the exterior of
A; conversely if A has been oriented, we can accordingly speak of the
interior and the exterior of A in Γ. To this end we shall adopt the
following convention:

If Q is a point of A, t and b are unit vectors having respectively
the direction of the positive tangent to A and the positive normal to Γ
at Q, and if the unit vector n, normal to A and tangent to Γ at Q,
points towards the interior of A, then the ordered triplet t, n, b should
form a left handed frame.

Any oriented surface of E3 can be made into a Riemann surface in
a natural way by means of the conformal structure induced by the
surrounding metric. In this fashion every ^-sphere can be considered
a compact Riemann surface of genus zero, and therefore it can be map-
ped conformally onto a sphere.

2.2. Let Σ be a sphere, and z a complex coordinate in £. If Γ is
a p-sphere, let z = φp be a conformal mapping of Γ onto Σ. By means
of φ we can transfer to Γ several conformally invariant properties of
Σ. We shall define the cross-ratio of any four points α, β, γ, δ of Γ
by setting

( 1 ) (a, β, 7, δ) = (φa, φβ, <P7,
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The right hand side of (1) is independent of the mapping φ. In fact,
if ψ is any other conformal mapping of Γ onto Σ, the mapping τ = ψφ-1

of Σ onto itself is conformal and necessarily a Moebius transformation.
A Jordan curve A of Γ will be called a p-circle if the cross ratio

of any four points of A is real; i.e., if the curve φA is a circle in Σ.
If A is a ^-circle of Γ and a, β, 7 are distinct points of A by an

"inversion with respect to J υ we shall mean the transformation σ
defined by the equation

(2) {σp, a, β, 7) = (p, a, β, 7)

the bar meaning complex conjugation. Clearly φσφ~x is in Σ an inver-
sion with respect to the circle φA.

The most general conformal mapping r of Γ onto itself is determined
by the images α', β\ γ' of any three distinct points a, β, 7 of Γ, and
its equation can be written in the form

(τp, a\ β\ 7') - (p, a, β, 7) .

Such a mapping will be referred to as "a Moebius transformation of
the ^-sphere Γ".

We will find it convenient, in order to avoid having to refer back
to the sphere Σ, to consider Schottky models imbedded in a p-sphere.
Indeed, the construction of these models can be carried out for ^-spheres
in exactly the same way it was done in the last section for ordinary
spheres; thus we shall not repeat it.

2 3 Let Γx and Γ2 be two p-spheres which intersect along a Jordan
curve A. Suppose that there exists a conformal mapping φ of Γ1 onto
Γ2 which leaves fixed the points of the intersection A.

The mapping φ is unique.
In fact, if ψ is another conformal mapping of Γx onto Γ2 which

leaves the points of A fixed, then the mapping ψφ"1: Γ2+^Γ2 leaves*
more than three points fixed and must necessarily be the identity.

This shows that φ is completely determined by the conditions
imposed on it by three distinct points of the curve A, hence φ may not
exist if the intersection of Γt and Γ2 is arbitrary.

A class of examples of couples of intersecting ^-spheres for which
such a mapping exists can be obtained by constructing surfaces which
have a common axis of revolution and intersect along a common parallel,
then taking their images under arbitrary Moebius transformations of
space.

Suppose now that the finite ordered set of p-spheres Γo, Γlf , Γn~t

is such that for each i = 1, 2, •••, n:
(a) The surface /Vi intersects the successive one Γέ along a Jordan
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curve A which we shall suppose sufficiently well behaved. (We set
-A — A> Γn — Γo).

( b ) There exists a conformal mapping Δ% of /Vi onto Γi which
leaves fixed the points of the curve A

( c ) A-i has on points in common with A
Let each A be oriented in such a way that the interior of A in

/Vi contains the curve A-i Let A7 and At denote respectively the
interior of A in Γ^x and the exterior of A in Γ4. With this notation
we have

AA" + A + A+ - Λ .

The ordered set of p-spheres Γo, Γ19 , Γn-λ will be said to generate
4'a link of ikf-surface", if in addition to (a), (b), (c) it satisfies the fol-
lowing conditons:

( d ) The exterior A+-i of A-i in Γt-X contains the curve A
( e ) No two of the sets A-i+A+-ifΊA~ have any points in common.
These conditions being satisfied, the set

L = A + A* n A- + A + A+ n A" + + A.-i + ^i-i n A"

constitutes a compact, piece wise smooth, surface of genus one. We
shall make L into a Riemann surface.

For each ί = 0, 1, •••, n — Γ° let ψi be a conformal mapping of Γ4

onto a given sphere 21.
Let φn = 9>0, J w = Jo, Γ>! = Γn-!, J_χ = An-lf etc...
If p0 is a point of A+ ΓΊ A"+i and i\Γ a neighborhood of p0 in Γέ,

small enough to be contained in At Π A~+i> we take as local unif ormizer
in N the function 2; = φφ, where z is any coordinate in Σ which does
not assume the value cx> in φtN.

If p0 is a point of A> l e t N be a neighborhood of p0 in Γ t small
enough to be contained in the domain {J4A

+-i} ΠA"+i We take as a
"neighborhood of p0 in L the set

ΛΓ* = {Jϊ'N} n A" + Nf] A + ΛΓ n A" .

We introduce as local uniformizer in N* the function defined by setting

z = ^ίΛp for p e {JfW} Π Aϊ

and

z = <ptp fovpeNO {A, + At}

Again, z is any coordinate in Σ which does not assume the value infinity
in <PiN.

10 Here and in the following we shall assume a link to consist of at least 3 jo-spheres.
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The conformal structure thus introduced in L agrees in a natural
way with that induced by the surrounding metric of Ez. Of course, in
general along the curves At there will be discrepancies between angles
measured in #3 and angles measured in L.

The surface L will be referred to as a "link of Λf-surface" or
briefly a "link". It will be denoted by L(Γ0, Γ19 •• ,Γn. 1).

2Λ. We shall now construct surfaces of higher genus by putting
together several links. There are several ways to achieve this. For
our purposes it will be sufficient to construct only surfaces which consist
of a p-sphere Γo with many handles, each handle being part of a link
containing ΓQ.

Let Llf L2, , Lg be the links

\,0t Γ2.U ' * 9 A,W.,-l)

With the same notations as before we shall use the symbols AiJf

Λij, Φίj where the first index will denote which link the object represented
belongs to, and the second index, which position it occupies in the link
itself.

Suppose that Llf L2, •••, Lg satisfy the following conditions:
( f ) The initial surfaces Γ 1 0 , , ΓgΛ are all the same p-sphere Γo.
( g ) No two of the sets Lι — ΓQ have any point in common.
( h ) The closed sets Γo — Att0, Γo — Ajtl (i, j = 1, 2, •••, g) are all

exterior to each other.
Then the set Ξ defined by

Ξ = LX n L2 n n I/, + Σι (£« — Λ) >
l . f l f

or, which is the same, by

B = Σi (A* + AΛ) +tQyto n Λ:J + Σι (Li - r0)

shall be called an "M-surface".
Ξ can be made into a Riemann surface using the same local

uniformizers which were introduced for the Lt

9s themselves.
However, some care has to be applied in the choice of permissible

neighborhoods, and this is solely for points of the surface Γo.
We shall illustrate the situation with representative cases:
Suppose that P is a point of Ξ that is in ΓQ.
If P e Π {Λ+oΠ A"i}, then we can take as a neighborhood of P in
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Ξ any neighborhood of P in Γo which is small enough to be contained
in Π {A

,g

If P e AjΛ9 we choose first a neighborhood N of P in Γo which is
small enough to be contained in the domain

Jj>n {Δln x Π Ajt0] + AJΛ + Π {4% Π Λ"i} ,

then we take as a neighborhood of P in Ξ the set

iv* = {jjĵ iSΓ} n Ajt0 + Nn AJtQ + Nn At,.

If Pe AjΛ, we choose a neighborhood iV of P in Γ j ( 1 so small that

Nd ΔjΛ{Π (Ato Π Λ.ΰ)} + ^ j ( 1 + At, Π ̂ 7)2 .

We then take as a neighorhood of P in Ξ the set

iv* = {j-ijsΓ} n Jj.i + # n Λ.I + ^ n Λ i

3 Characterization of the conformal parameters^

3.1. Let Ξ ~ (Lx, L2, , Lg) be a given M-surface, and E(A1Λ, A2Λ,
•••, Ag>1) denote the surface Ξ marked by the set of curves

A l t l f A i Λ f •••, A g Λ .

We shall now present a construction of the Schottky model cor-
r e s p o n d i n g t o E(Altl, A 2 Λ , •••, A g ί l ) .

Let us first take under consideration the case that Ξ consists of a
single link L(ΓQ, Γ19 •••, Γn^).

We imagine to have cut L along the curve A1

Using the mapping A2 we can collapse the portion Aλ + At Γ) Λς of
L into the p-sphere Γ2. The new set

with the points of its boundaries x̂ and z/2J! identified by the transforma-
tion z/2, can also be considered a Riemann surface.

We shall briefly describe the neighborhoods and the local uniformizers
at the points of the set Δ2{Aλ + At[\A2} + A2.

If j)6 4 4 we choose Nap in Γ2 so that

Δ^N c Δλ{Λί Π A~) + Λ + ^i+ Π Aς ,

we then take

iV* = { J Γ ^ Γ W } n AT + N Π Λ { Λ + Λ+} .

As a uniformizer in iV* we take the function
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z = ψφ for p e N Π 4 {A + A+}

z = ψiAiΔφ for p 6 {A'MjW} Π A"

(provided that 2 ^ co in JV).
If peA{A*ΠA"} we choose iVap so that

NaΔMt n 4-}

then set JV* = N and z = <̂ 2£> (assuming z Φ oo in N).
If p e A we choose NBP SO that

2V c A{A+ n A~} + 4 + 4+ n Aΐ,

then set iSΓ* = iNΓ and « = φ2p (assuming z Φ oo in JV).
L and Xx are conformally equivalent.
In fact, the function ψx defined by

ψ,p = p for p e Λ + J2

+ π As + + Λ + ^ Π

ψ ^ = z/2p for p e Λ + At Π A~

induces a conformal mapping of L onto Xx.
We proceed in a similar way, and collapse the subset

4{Λ + At n A~} + Λ + Λ+ n Λ~

of Γ2 into /̂ 3 by means of the mapping ΔBf the subset

ΛΛ{Λ + .̂+ n A~} + A {A + A+ n A"} + A + A+ n A~

of Fg into Γ4 by means of the mapping ΔA, e t c . , the subset

of Γfc_! into Γk by means of the mapping Δk, and set

Xk^ = JΛ A{A + A+ n A"} + + Λ{A~i + A+-i n A"}

+ A + A+ n AΪ+1 + . + An + AT n A" + 4 .

Again, X ^ is made into a Riemann surface, by introducing local
uniformizers in such a way that the function ψ^^ defined by

ΨK-IP = P for p e A + At n ^Γ+i + + A + At Π A" ,

^ - i P = Δkp for p e A - ! + yίfc
+_x Π ^ ,

for p e A + A+ Π A~

induces a conformal mapping between L and X ^ .
In this fashion, at each step of the process L and Xk-X are kept

conformally equivalent, in particular for k = n we obtain that L is
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conformally equivalent to the subset

Xn-X = ΔnΔn.λ z/2{A + At n A;} +

+ 4 R - i + A+-i n A-} +An + Λ+ n A" + A

of the p-sphere Fo. Of course the points of the boundaries A and
ΔnΔn-λ ••• Δ2Alf of Xw_i are to be considered identified by the mapping
ΔnΔn-x Δ2 or, which is the same11, by the transformation τ — ΔnΔn.x

• Δ2Δλ.

3 2 We shall now prove that

I. Xn-λ is a Schottky model in ΓQ.

Since τ is necessarily a Moebius transformation of Γo, all we have
to show, to justify our assertion, is that τ is hyperbolic or loxodromic,
that it has two fixed points aeΓ0 — Λf and βeτΛϊ, and that

ZD Aλ(a) .

Now for each k we have

Λί/Vi - A") = Λ + Λ+

and since

we have

(1) ΛA+-i =3 A+ .

Thus if

Λ-i 4{Λ-Λr} 3Λ+-i,

because of (1) it will follow that

(2) z/fc Λ{Λ-Λ"} =^Λ+.

However, we have Λ{Λ) — Λ"} = Λ + At 3 Λ+; hence (2) is true and
for k = n we have

(3) τ{Γ0-Λ~} = > A + = > Λ - 4 - .

Since Γo — Aι is closed and At is open, the boundaries A and τAx of
Γo — ̂ Γ and τ{Γ0 — Aϊ} cannot have any point in common. Therefore,
if α* and β* are two points of Γo such that α* e Γo — Δϊ and β* e Aϊ,
otherwise arbitrary, from (3) follows:

u ΔnΔn-χ . J 2 and Λ ^ - i ^2^1 agree along Λ\.
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τ^A^a*) c A(#*)

and

τΊW) c Λ08*)

From these inclusions we can deduce that τ is neither parabolic nor
elliptic:

In fact, if τ were parabolic with 7 as a fixed point, then

7 = lim τ-na* = lim τnβ% .

But this would imply that

7 € Ji(α*) f

which is absurd.

If τ were elliptic and p e Δ^a*), then τ^p e Ax(a*) and thus τ~lrp
would be contained in an open set Ό c A^a*); consequently r" κΰcΛ(«*)
for all n*zl; but for a suitable value of n τ~nD would cover p. This
Iwould imply that every point of A(α*) is interior to A^a*) which is
kbsurd.
ί Thus τ is hyperbolic or loxodromic and its fixed points are determined
foy the limits

a = limτ-w{Γ0 - Λ"}

β = lim ΓMΓ .

With this notation under any coordinate system in Γo the equation of
r takes the form

τ^ — a z — a
= O) -

τz ~ β z - β

vith \ω\ > 1. Finally, since aeΓQ — Aϊ, from (3) we obtain

3 3«. We shall now consider the general case.
Let B ~ (I/!, L2, , Lg), imagine Ξ(Λ.i» A,u % -̂ g.i) c u t along the

curves

Ve then apply to each link L4 the previous construction. Each handle

Λ.x + AM n Λ:, + + Λ.»,-i + A\- ι n ΛΓQ (ί = 1,2, , g)
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of Ξ, is flattened into Γo by means of the mapping ψi defined by the
equalities:

ψiP = Ai>n. Δi>zΔiι2v for p 6 ΔiΛ + A*i Π AΓ,2

ψiP = Δitn. J i i 3 p for p e A,2 + A*2 Π Λ",8
( 4 ) . . /

ψiP = ^t,ntp fo r p € .^i.^-! + At» r i n A~o.

The resulting subregion X of the p-sphere Γo can be considered to be
the intersection

x = xW l_x n -Xn,-! n n x ^ ^

of the Schottky models Xnrl corresponding to each link of B.
The pairs of boundaries ΛiΛ and Δi>7lι ••• ΔitZΔit2ΔiΛ of X should be

considered identified by the mapping Δiιn Δi>3Δiι2 or, which is the
same thing, by the mapping τ έ = Δi>ni Δί>2ΔiΛ. Furthermore:

II. X is a Schottky model conformally equivalent to S.

Proof. As a by-product of the proof of Statement I we obtain that
( a ) Each mapping τt (i = 1, 2, , g) is a hyperbolic or loxodromic

Moebius transformation of Γo.

( b ) The fixed points aif βt of τt are respectively contained in

Γo — A~i and Δϊtl.
( c ) In any coordinate system in Γo the equation of τt writes

( 5 ) ^ ^ z a

TtZ βi Z Pi

with | ω, | > 1.
( d ) Each Ti satisfies the inclusions (see (3))

or, changing notation:

( 6 ) τJLlaΛ^Λ

Since A.oO**) i s ° P e n w e c a n safely conclude that (6) implies

Condition (c) in the definition of a M-surface requires the closed sets

Γo - A+o = AAβt), Λ - Ajx = Λ}Λ(a3) (i, i = 1, 2, , g)

to be disjoint. However, the inclusions
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τtA.i(«i) => A.o(«i)

imply

: A.0O8,)

hence we must have

Therefore also the closed sets

τΛΛ(βi)f ΛJΛ(as) (i, j = 1, 2, . , g)

are disjoint. With this, the conditions for X to be a Schottky model
are all satisfied.

The conformal equivalence of X to Ξ is a consequence of the fact
that the function ψ defined by the equalities

ψp^p for p 6 Lx n L2 n Π Lg - Σ A.i

and (see (4))

ψP = ψ*ί> for p e Lt - Γo + ΛiΛ (i = 1, 2, , 0 )

induces a conformal mapping of B onto X.

3 4 The mapping ψ, or rather its analytic continuation in Ξ,

uniformizes the marked surface S(A,i» A,i» •••» ^g.O

Let BΛ represent the Schottky covering surface of S(A.i> A.i» •> ^α.i)
and X^ the region obtained by cutting S along the curves A1Λ, JiΛf , A.i

Let the cycles AIΊ, Af2, •• ,ikfff of a completion of A1Λ, A2Λ, •• ,ΔgΛ

to a canonical basis of S be chosen in such a way that each Mt inter-
sects the curves Att3(j = 1, 2, •••, w4) in the order

A.*,* A , f i 4 - i > •••> A,s> A . i

As before, let . ^ ^ be the free group generated by the Mt'& and XM

for each Meκy/ί an exact replica of XB.
Then we have

where again the boundaries of the X^'s are identified according to the
rules (i), (ii) stated in § 1.4.

For each Me^έt let τMeG12 be the Moebius transformation cor-
responding to M under the isomorphism of ^// onto G defined by setting

12 As before G 4enotes the group generated by the τVs,
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Mt< >τ, (i = 1, 2, ...,flf)

The mapping ψ of BΛ into Γo is then obtained taking

ψp = *V|rp for p e ΐ M - Σ AΓί ,

and the region of Γo onto which B^ is mapped is given by the union

ψBΛ = Σ
e

This shows that X is the Schottky model corresponding to
B(Λ1Λ, Λ2>1, •••, Agtl) and therefore that the conf ormal parameters of
S(Λ.i> Λ2>i> * * f Λ.i) a r e characterized by the invariants ωt and the fixed
points ai9 βt of the transformations τt.

4 Links of spheres*

4 1 Given two oriented spheres Γx and Γ2 intersecting along a
circle J , there always exists a conf ormal mapping J of Γx onto Γ2 which
leaves unchanged the points of A.

The mapping A can be constructed in the following way:
Let τ be a Moebius transformation of E3 which sends a point of

A onto the point at infinity. The circle A is taken by τ onto a straight
line τA and the spheres Γx and F 2 onto two planes τΓ19 τΓ2 intersecting
along τA. If πx and 7Γ2 denote the two planes through τA which bisect
the dihedral angle formed by τΓ± and τΓ2, the two transformations τπχ

and τπ 2 obtained by reflection across πx and π2 respectively, map τΓλ onto
τΓ2 with preservation of angles and leave unchanged the points of τA.

The corresponding spheres τ"γπλ and τ~λπ2 generate the inversions
τλ — τ~λτπi:, τ2 = τ~Ύτπ^ which map Γλ onto Γ2 with preservation of
angles and leave unchanged the points of A. These two spheres are
called the spheres of antisimilitude of Γx and Γ2 (see also [3] page 230).

To see which of τt and τ2 defines the conf ormal mapping A, suppose
that we transfer the orientation of Γx and Γ2 onto τΓτ and τΓ2 by means
of τ. The product R = τπ^uH is a rotation of TΓ radians around τA,
therefore whatever may be the orientations of τΓx and τΓ2, R generates
a sense reversing transformation of τΓ1 and τΓ2 onto themselves. The
same will also be true for the product

R' = τ-χRτ

with respect to Γx and Γ2. Since rx = {τ^τ^τ^τ} {τ^τ^τ} = R'τ2, either
τλ or τ2 is orientation preserving (as a transformation of Γλ onto JΠ2).
But each of them is a sense reversing transformation of E3, therefore
the transformation A is given by that one of τx and τ2 which sends
the interior of Γx onto the exterior of Γ2. The one of τ~τπx and τ~Ύπ2
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which generates Δ will be called the "direct" sphere of antisimilitude
of Γ1 and Γ2.

We can thus construct M-surfaces by means of collections of inter-
secting oriented spheres. Such ikf-surfaces will be called "natural".

Natural ikf-surfaces form a wide family for which the canal surfaces13

are limit elements. It seems reasonable to conjecture that every Riemann
surface can be realized as a natural M-surface. We shall later show
that every natural ikf-surface can be deformed into a C°° canal surface
without altering its conformal structure. For these reasons we found
it of some interest to present a brief study of the conformal parameters
of natural ikΓ-surfaces. This will lead to a few results concerning the
conformal imbedding of Riemann surfaces of genus one.

Before presenting these results we need to introduce a few tools.

4 2» The conformal geometry of the 3 dimensional space is simplified
by the use of "anallagmatic coordinates". An introduction to these
coordinates can be found in a paper by E. Cartan [2] or in a book by
R. Lagrange [6]. Here we will give only a brief description of them.

The collection of all planes, properly or improperly real spheres,
and points of E3 shall be called the "3 dimensional anallagmatic space";
we shall denote it by j ^ 3 .

A one-to-one correspondence between the points of a 4-dimensional
real protective space ^ 4 ~ (aOf alf a2, a3, α:4) and the elements of sfz

can be generated in the following way:
To each point a ~ (a0, alf a2, aa, α4) of ^ 4 , if xlf x2J x3 denote the

cartesian coordinates of a point of E3, we can associate the equation

(1) ao(x\ + x\ + xξ) — 2a1x1 — 2a2x2 — 2a3x5 + a4 = 0 .

If a0 = 0 this equation defines a plane of E3.
If aQ Φ 0 (1) is equivalent to the equation

α0/ V aj \ aj a2

0

which defines a real sphere, a point or an improperly real sphere accord-
ing as the quadratic form

(3) (α, a) = at + a\ + α? - α0α4

is greater, equal or less than zero.
This correspondence between ^ 4 and s/z is clearly invertible. The

five real numbers a0, au a2, a3, a± (determined up to a common factor
of proportionality) thus associated to each element of J^f3i are called the
"anallagmatic coordinates" of that element. When expressed in anal-

13 Surfaces which are envelopes of spheres (see [1]).
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lagmatic coordinates, the Moebius transformations of Ez become the
homographies of ^ 4 which leave invariant the binary form

(4) (*, β) = aJ3x + a2β2 + adβd - ^{aβ, + aβ0) .

This form is assumed as a scalar product in ^ 4 . We have to
distinguish it from the Euclidean scalar product

( 5) Λ: y = xλyx + x2y2 + xzyΆ ,

which will also figure in our subsequent formulas. To this end vectors
with 5 components will be denoted by means of Greek characters and
vectors with 3 components by means of Latin characters. We shall
always denote (4) by (α, β) and (5) by x y, x x often by JC2, a point
a of ^ 4 briefly

a ~ (a0, a, α4) ,

and the binary form (4)

(6 ) (α, β) = a b - i(a0β4 + aβ0) .

To represent oriented spheres of Ez it is convenient to normalize
the anallagmatic coordinates by making use of the factor of propor-
tionality so as to express orientations in an invariant way (see [2]).
This is achieved by requiring that:

(1) If a ~ (aQ, a, α4) corresponds to a point of E3 we should have

a0 + a, > 0

(2) If a corresponds to a real oriented sphere Γ of E3 and
ξ ~ (xQ, x, x4) corresponds to an interior point of Γ we should have

(α, a) = 1

(α, ξ) > 0 .

(3) If α corresponds to an oriented plane π and ξ to a point of
the half-space towards which the positive normal of π is directed, we
should have

(a, a) = 1

(a, ξ) > 0 .

(4) If a corresponds to an improperly real sphere, we should have

(α, α) = - 1

a0 + a4 > 0 .

The transition from Euclidean to normalized anallagmatic coordinates
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can be carried out according to the following rules:
(a) If p ~ ξ is a point of E3 and λ > 0 then

ξ = λ(l, p, p") .

(b) If Γ ~ a is a sphere or radius R and center in c, oriented so
that c is an interior point

a - 1 ( 1 , c,&- R2) .
it

(c) If Γ ~ a has the same center but imaginary radius

a = 1 ( 1 , c, & + i22) .
it

(d) If π ̂  α is a plane which contains the point Q and has the
unit vector n as positive normal

a = (0, n, 2/ι Q) .

By means of these formulas it can be easily verified that:
( i ) The cosine of the Euclidean angle formed by two oriented

spheres Γx^a and Γ2 ~ β is given by the binary form (6).
(ii) A point p ~ ξ belongs to a sphere Γ <•>*> a if and only if

(a, ξ) - 0.
(iii) The equation of the inversion Δ generated by a real sphere

Γ r^i when expressed in normalized anallagmatic coordinates takes the
form14

(7) Λ£ = f - 2 ( £ , «)8,

where ξ denotes a variable element of <f̂ 4.
The normalization (1) for anallagmatic coordinates of points of E3

is invariant under products of inversions generated by real spheres. In
fact, from (7) follows that if i = l/jβ(l, c, c2 - R2) and ξ = λ(l, py p2)
then

( 7 ) * Δξ - l ^ £ l
R2

with

Pf = c + , " ,a(p - c) .

Thus z/f satisfies condition (1) whenever f does.

See also [6] pages 25-26.
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Using (7) we can readily obtain the anallagmatic coordinates of the
direct sphere of antisimilitude of two given intersecting oriented spheres
Γx ~ aλ and Γ2~ a2. According to the considerations in § 4.1, the sphere
Γ <— 8 is the direct sphere of antisimilitude of Γx and Γ2 if and only if
the inversion Δ which it generates, transforms the oriented sphere Γλ

onto the sphere Γ2 oriented in the opposite way; thus in anallagmatic
coordinates we should have

Δat = - a2,

and by (7)

( 8 ) « ! - 2 ( α l f . 8 ) ί = - α 2 ,

or

( 9 ) (α l f ί ) i = 5 L ± α f i .

To find (alf 8) we multiply both sides of (9) scalarly by aλ obtaining

(10) (au S)=± i/TΞψϊί

where by φ we indicate the Euclidean angle formed by Γ1 and Γ2.
Now, (al9 8) does not vanish, for otherwise (8) yields aλ — — α2; and
since the orientation of 8 does not affect the outcome of (7) we can
choose the positive sign in (10) so that we obtain

(11) 8-

4,3 The conformal parameters of natural ikf-surf aces admit a purely
algebraic characterization in terms of the anallagmatic coordinates of
the generating spheres.

Suppose first that L~(Γ0, Γlf •••, Γn^) is a given natural link,
and that Γt ~ at (ί = 0, 1, , n — 1). Set Γn = Γ09 an — α0 and φt equal
to the angle formed by Γt^ and Γt (ί = 1, 2, •••, n).

Let Γ'i ~8t be the direct sphere of antisimilitude of Γi^1 and Γ% and
Δt be the Moebius inversion generated by 8t. In other words

2 cos

The results of § 3.2 imply that the Moebius transformation which
defines in Γo the Schottky model corresponding to L is given by the
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product of inversions

T = zLzL 1 ΔΛ .

The conformal parameter of L is related in a simple way to the
eigenvalues of r.

The study of this transformation can be simplified if we introduce
a complex coordinate in Γo and make use of the results established in
§3.2.

To construct a stereographic projection p — φz of the complex plane
π onto the sphere Γo we can proceed in the following way:

We first choose a basis in ^ 4 which consists of α0 and four other
normalized vectors y0, εly ε2f yx representing respectively

( a ) y0 and yx: two distinct real points of ΓQ.
( b ) εx and ε2: two real spheres containing the points represented

by y0 and yly orthogonal to each other and to the sphere Γo.
We then normalize y0 and y1 so that

(Ύo, Ύΰ = - 1/2 ,15

and set for each z = x + iy of π:

φz = λo(yo + ίcβx + yε2 + {α?2 + ^Z2}̂ ) ,

where the indeterminate λ0 is only restricted to be a positive real
number.

Introducing the two complex points

the equation of φ assumes the more suggestive form

(12) φz = λo(yo + zy + Z7 + zzy±) .

To find the inverse of φ, we observe that if

ξ = λoyo + Xy + Vγ + λ ^

represents a real point of ΓQ we must have f = ξ and (f, f) = 0; this
yields

and

This means that such a f can always be written in the form

is The scalar product of two normalized vectors of &ί which represent real points of

is always negative.
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ξ = λ/y0 + Ay + Ay + AAyΛ .«
^ \n Ajn Xn Xn 'λ 0 .

Thus we can set

(13) φ-*ξ = A .

In view of the results of § 3.2, the mapping τ — An Jif restricted to
Γo, is a loxodromic (in particular hyperbolic) Moebius transformation.
Let us denote then by A and B its two fixed points in Γo and assume
that A is the source and B is the sink.

If we set

I Λ A%\ *u (A ΐf I?2>\

and take for ε1 and e2 any two spheres satisfying condition (b), since
φ-1 maps A onto the origin and B onto the point at infinity of π, the
equation of the Moebius transformation τ* = φ~λτφ of π will assume the
simple form

(14) τ*z = peiΘz ,

with p > 1 and — π < θ <̂  π.
Thus for each point

ξ = λ o γ o + λ y + Xy + ψJfl ,
λ 0

we have (using (13), (14) and (12)):

τξ =: ψτ^φ-^ξ = φτ*— = φpeiθ —
X X

XQ XQ

or

τξ = Ά ( χ o y o + ^ λ y + ^ λ y + ^ ^
λ 0 \ λ 0

A priori the indeterminate λj is only restricted to be a positive real
number. However, the ratio λj/λo depends solely upon the transforma-
tion τ.

16 By λβo we mean an extended valued complex number.



THE CALCULATION OF CONFORMAL PARAMETERS 147

In fact, since τ preserves the scalar product of ^ 4 we must have

{τξ, y0) - {ξ, τ- 1^) ,

(15) {τξ, yx) - {ξ, τ- 1^) ,

(roy, ryx) = (y0> yx) .

Since y0 and yx represent fixed points of τ

τy0 =

for some positive real numbers JM0 and μx. Substituting in the equations
(15) we obtain

λ ° - 1 a - 1 u - o
λ 0 jt> />

This gives

τy =

τy = e~iθy .

• λυAj

~ j - ,

and since λ is arbitrary

Finally, the relation ΔfiL^ = — α, for ΐ = 1, 2, •••, n implies

With this we have shown that the eigenvalues of τ are (—l)w,
/o, eίθ, e~ίθ. Thereby the relation between these eigenvalues and the
conformal parameter of L is established.

Only little has to be added concerning the general case.
If S ~ (Llt L2, , Lg) is a given natural M-surface and Γo is the

common initial sphere of the L/s, we operate separately on each link
Lt and determine the transformation τt generated by the spheres of Lέ.

These transformations alone carry complete information regarding
the conformal parameters of Ξ.

However, unlike the case of a single link, the eigenvalues of the
τ/s are not sufficient by themselves to characterize the conformal
parameters of B, since they yield only the first g of them. The real
eigenvectors of these transformations have to be determined also, and
among them those representing the fixed points Ai9 Bt of each τi have
to be selected. Then, according to the definition (formulas (8) of § 1.5),
the remaining parameters are given by the coordinates of the points
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B2\ A3, B3; •••; Agf Bg in a coordinate system in Γo for which AXBX and
A2 have coordinates 0, oo and ί respectively.

4.4. With the same notation as in §2.3, let L ~ (Γo, Γlf •• ,ΓW_1)
be a natural link and A be the intersection of the sphere Γi-1 with
the sphere Ft. If ω = />eiβ is the conformal parameter of L, we shall
say that /? is the thinness and # the torsion of L.

The thinness of the link L can be estimated in terms of the ca-
pacities of the annular domains Λt-λ Π A7". In fact, we have the fol-
lowing:

THEOREM. Suppose that each annulus A+-i Π AΓ has a capacity ct

satisfying the inequality

(16) (
log Pi

for some ρi > 1. Then the thinness p of L satisfies the inequality

(17) p ^ ftft pn ,

fcβ eg^aϊ sίgr^ /̂ oZcίs if and only if (16) are equalities and the
spheres Γo, Γlf , Γw_2 are all orthogonal to the spheres of a hyperbolic
pencil.

To prove this theorem, we need a few preliminary considerations.
If τ is a loxodromic transformation of a sphere Γ\ i.e. if for some

coordinate system in Γ

ω

τz — β z — β

the number | ω \ (which can always be supposed greater than one) will
be called the "stretching factor" of τ.

Let A and A' be two circles of Γ having no points in common and
suppose that a0 and β0 are the two points of Γ which belong to the
elliptic pencil generated by A and A'. Let a0 and β0 be ordered in such
a way that the disks A(a0) and Δ'(β0) are exterior to each other.

LEMMA I. Among all Moebius transformations of Γ which map
A(a0) onto A'(a0) only those which admit a0 and β0 as fixed points have
the smallest stretching factor.

Proof. Let us choose a complex coordinate in Γ which is such that
aQ = 0, β0 = oo and A has the equation | z \ = 1. The equation of Λ'
will then be
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\z\ = p

for a suitable p > 1.
If τ is a Moebius transformation of Γ which sends A(a0) onto A'(a0)

its equation can be written in the form

TZ — a __ z — a

τz - β " z — β

with a e A(aQ), β e Ar(β0) and | ω | > I1 7. Now, τ must send the points

1/α and 1//3 respectively onto the points p2\a and jO2/ .̂ In other words,

we must have

(18)a, b PTa ~ a ^ω1!*-*, P2IP ~ a

 = , M z l

ρ2\a-β lla-β pηβ-β 1/β-β

and

(19) (α, β, 1/α, 1//3) = (α, β, ρ2lά, ρ2lβ) .

Equation (18)a gives

__ p2 — aa 1 — aβco — —- _— f

1 — aa ρ2 — aβ

equation (19), after a few eliminations, yields

p2 — άβ p2 —

1-aβ 1-aβ

Therefore we have

_ 2

1 — aa

But αα < 1 (since α e Λ(aQ)), thus

and the equality sign holds if and only if aa. — 0. However, when
a = 0 equations (18)a,b give /3 — oo. This proves the assertion.

Let the Moebius transformation (τz — a)\(τz ~ β) — ω(z — cήfcz — β)
define in Σ a Schottky model M(τ). Any circle A such that the closed
disks Λ{a) and τA(β) are mutually exclusive cuts M(τ) into a region
A(β) Π τA(a) which is an annulus. As a consequence of the previous
lemma we can show that:

17 This follows from an argument similar to that presented in § 3.2,
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LEMMA II. Among all circles A for which A(a) and τA(β) are
disjoint, only those belonging to the pencil P(α, β) cut M(τ) into an
anulus of minimum capacity.

Proof. Let a0 and β0 be the two points belonging to the elliptic
pencil generated by A and τA, and assume that oc0e A(a) and β0 eτA(β).18

If c denotes the capacity of the anulus A(β) n τA(a) the stretching
factor of every Moebius transformation which sends A(a) onto τA(a) and
admits a0 and β0 as fixed points is given by p = e1/c.

By Lemma I we must have

I ω I :> ellc

or, which is the same (since | ω | > 1)

c ^ I/log I ω I

with equality possible if and only if a = a0 and /3 = β0. Q.E.D.
We can now give a proof of the theorem.
If c denotes the capacity of the annulus

AT - τA: = Δn... z/2{Λ + Λ2

+ n A"} + •

+ zUA-i + AT-i n Λ-} + A + A+ n A",

from a well known inequality of potential theory (cfr. [7]) we obtain

(20) I S I + I + . . . + i ,
c cλ c% cn

and the equality sign holds if and only if the circles Δn AA>
Δn Δ^A2, •••, ΔnAn-19 Ao, A belong to the same pencil. Since the thin-
ness p of the link L is equal to the stretching factor of the transforma-
tion ΔnΔn^ Δu from Lemma II we get

(21) p ^ ellc ,

thus from (20) and (16) the desired inequality follows.
To prove the last statement of the theorem, we observe that the

equal sign will occur in (17) if and only if, (16) being equalities, equality
holds simultaneously in (20) and (21). However, this happens if and
only if all the circles Δn AA» A ••• AA» •••> AA-n A, A belong
to the pencil generated by the fixed points a, β of the transformation

τ = AA-i A

Let then Γ be any sphere orthogonal to ΓQ and containing α and

!β This is always the case after a suitable labeling of a0 and
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β. Since Γ is orthogonal to AQ, Γ will be orthogonal to Γn.x and Γ'n (the
direct sphere of antisimilitude of Γn^ and ΓQ.)

Therefore ΔnΓ = Γ and consequently Γ is orthogonal to Δn{ΔnAn_^ =
A-i ^ will then be orthogonal to Γw_2 and to Γf

n^ (the direct sphere
of antisimilitude of Γw_2 and / V J . But this implies that Δn^ΔnΓ = Γ
and consequently Γ is orthogonal to Δn-1Δn(ΔnΔn-1Δn-2) = Λw_2, etc.
Proceeding in this fashion we obtain that Γ is also orthogonal to
Γn_3, /V4, •••, F 2 , Γλ. The spheres orthogonal to Γo and containing α
and β form a hyperbolic pencil.

Conversely if the spheres Γo, Γlf •••, Γw_x are orthogonal to the
spheres of a hyperbolic pencil P, so will also be the spheres of anti-
similitude Γ'2t Γ'2j , Γf

n\ consequently each sphere of P will be invariant
under any of the transformations Δlf Δ2, •••, Δn.

We can then easily deduce that the circles Δn Δ2Δ19 , ΔnAn-lf Ao

are orthogonal to the spheres of P and thus they all belong to the
pencil generated by the two points a and β intersection of ΓQ and the
spheres of P. But a and β are the fixed points of the transformation
4A-! 4.

Our proof is thus complete.
Although it will not be needed in the following we would like to

point out that the inequality (17) holds also for general links. In fact,
Lemma II is valid in the stronger form:

"Among all smooth Jordan curves A for which A(a) and τA(β) are
disjoint, only the circles of the pencil P(a, β) cut M(τ) into an annulus
of minimum capacity."

This statement follows from standard potential theoretical consider-
ations.

5 Some special links,

5 1. Let πλ denote the w-plane and wlf w2 two complex numbers
for which

1fw2 < 0 .

Let G denote the group generated by the translations

— W + Wx

^ ' τ2w = w + w2 .

If we identify the points of π which are images of each other under
the transformations of <?, we obtain a Riemann surface of genus one
Γ(wu w2).

The surface Γ(wu w2) can also be thought of as the parallelogram
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= {w : w = λ^x + μw2; O ^ λ ^ l , 0 <: μ <;

with opposite sides identified by the transformations (1).

This standard construction generates every Riemann surface of genus

one: as a m a t t e r of fact, as w1 and w2 vary, Γ(wl9 w2) assumes every

conformal type and each an infinite number of t imes.

I t is clear t h a t two Riemann surfaces Γ(wlf w2) and Γ{w[, w2) are

conformally equivalent if and only if t h e lattices

L <**>> {m1w1 + m2wΛ

τ, , ™» m, = o, ± i , ± 2 , . . .

can be superimposed by a similarity. Now it is well known that this

is possible if and only if the two ratios

w2 w2

are images of each other under a transformation of the restricted

unimodular group; in other words if and only if there exist integers

α, 6, c, d for which ad — be = 1 and

av

cv + d '

The set

m = {v.Zmv < 0; -1/2 < 9ϊe v ^ 1/2; M > 1

for 9ΐe v < 0; | v \ ^ 1 for 9ΐe y ^ 0}

is a fundamental region of the restricted unimodular group; thus two
Riemann surfaces Γ(wlf w2) and Γ'(wu w2) will be conformally equivalent
if and only if the complex numbers wλ\w2 and w\\wf

2 have the same image
point in 9Jί.

If we have a Schottky model M(τ) defined by a Moebius transforma-
tion

S f < J <P>U-*<»**>

of some sphere Σ, a conformally equivalent model is given by the surface
Γ(log p + iθ, 2πϊ). In fact, the function w = log (z — a)/(z — β) defines
a conformal mapping of M(τ) onto Γ(\og p + iθ, 2πi).

The point

V ~~~2JV 2π
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belongs to SDΐ if

\2πJ
| + ( i ^ Y > 1 when θ > 0

Thus can we conclude that two distinct Schottky models M(τ) and
M(τr) whose conformal parameters ρeίθ and ρfew satisfy the inequalities
(2) are never conformally equivalent.

We shall proceed to show that there exist natural links which are
not conformally equivalent to any of the models Γ(log p, 2πi).

5.2. Let a = l/jβ(l, c, c2 - R2), a, = l/jβ(l, c19 c\ - R2) and
α2 = 1/-R(1, c2, c\ — iί2) be three given spheres19 of equal radius and
suppose that ccx — cc2 — 2δ, δ < i? < cxcj2.

Let J x and Λ2 be the circles of intersection of α, αx and α, α2

respectively, πx and π2 be the planes containing Ax and J2, cί the
intersection of π19 and π2 (proper or improper), p the intersection of d
with the plane through c perpendicular to d, and /?!, i?2 represent the
points of contact of the two planes through d which are tangent to a.

We would like to compute the capacity of the annulus

D = Λ(A) n Λ(A)

To do this it is sufficient to compute the stretching factor of a
Moebius transformation of a which admits px and p2 as fixed points and
sends A(JPI) onto Λ(/>i).

Let 7ϋ denote the plane through c and d, and o the sphere through
A2 which is orthogonal to α. Clearly the product

r = rστπ

of the inversions τπ and τσ with respect to π and σ generates a
transformation of α which is of the type requested. We shall compute
its equation.

We indicate by a and b two unit vectors with the directions of c^
and cp respectively. Let us assume for simplicity that the origin of
the coordinate system of Ez is at c. We then have

a - 1 (1 , 0, -i22)

π = (0, a, 0) .
19 Occasionally we shall make use of the same symbol to denote a geometric object ancl

its representative i n " ^ .
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Setting φ — pccλ = pcc2 and ψ = pcpλ =

πx = (0, —sin <pα + cos φb, 28) ,

π2 = (0, sin φa + cos <pδ, 2δ) ,

= — ( 1 , P?, Pi) = 1577^ (1, - ^ s i n ^ α + Rcosψb, R2),
P/λ 2iί Sin ψ

p2, pi) = —-Λ (1, iZsinψα + Rco&ψb, R2) .
2i2smψ

By its definition a belongs to the pencil generated by yx and γ2, as
well as to the pencil generated by a and π2.

Thus for suitable values of μ, λ, μ\ λ'

(3) a = / ^ + λy2 = //'α + λ'π2 .

Observing that since {a, a) = 1 and (y^ ^ ^ —1/2 we must have λ = —IIμ,
equating the middle components of (3) we obtain

λ2 — 1

Now

^σ7i = 7i - 2(yi, σ)σ = λ2γ2 and analogously τσγ2 = (l/λ2)ylβ

Thus for the stretching factor /? of the product τστπ we get

( 4 ) p = λ2 = t a n ^ + tan Λ/Γ

tan >̂ — tan ψ

this determines the capacity of D20.

53. It is easy to show that every point of 9Ji which lies in the
imaginary axis can be obtained as an image of an imbedded surface.

In fact, the image of a torus in 9Jί is always pure imaginary, and
as we vary the radius of the generating circle, keeping the center fixed,
we can describe the whole imaginary axis.

We shall exhibit a family of natural links with the same property,
and at the same time illustrate our way of computing the conformal
parameters of natural links.

Let α, 6, c be unit vectors forming a left handed orthogonal triplet
and set

2 0 The obvious argument based on the fact that the stereographic projection is a cross-
ratio-preserving transformation would lead to the same result with more or less the same
effort.
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a, = -l/l, cos i— a + sin i—b, 1 - R2

R\ n n

(assume n Ξ> 3). It can be readily verified that aoyau •••, an^1 define
a natural link for every value of R greater than sin π In and less than
one.

Let A% denote the intersection of α ^ with aif and the sets Λϊ, At
have the same meaning as in § 2.3, To compute the conf ormal parameters
of the link

L(n, R) - A + Λ+ Π Λ" + + Λ*-i + ΛJ-i Π Aι ,

according to the results of § 4.3 we should study the transformation τ
product of successive inversions with respect to the spheres

2 vR2 — sm2 π/n
1,2,

This does not present any difficulty. In fact, we observe that each
of the α/s is orthogonal to the plane

e1 = (0, c, 0)

and the sphere

°
Thus all the spheres of P(e1, e2) (the pencil generated by ex and e2)

are orthogonal to each of the α/s and therefore also to each of the St's.
This implies that the spheres of P(slf ε2) are all invariant under the
transformation τ. Consequently also the points yQ and %, which a0 has
in common with the spheres of the pencil P(elf β2) are invariant under
T. We can then conclude that τ admits the decomposition

τε2 = ε2

with a suitable p > 0 (if %, and ^ are properly labeled p will result
greater than one).

Thus the torsion of L(n, R) vanishes independently of n and R.
To determine the thinness p we use the formula (4) of last section and
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obtain for the capacity ct of each anulus A^ + Λ*-i Π Aΐ

_ U it! cos π\n + sin ττ/n i/ l — R2

1 iϋ cos π\n — sin π/n i/ l — R2

Applying the theorem of § 4.4 we obtain

— R2\n

- RV
/ϋ? cos π\n + sin π/w T/1 — R2\n

~VR cos π\n - sin π\n Vl

Clearly for any given n > 3 this function increases from 1 to ω as
R decreases from 1 to sinπ/w.

It is interesting to note that if R is kept fixed in (5) and we let n
tend to infinity we obtain

lin p = e 2 * ^ - .
W->oo

This result is not surprising since the link L(n, R) then approaches
the torus enveloped by a sphere of radius R as its center describes a
circle of radius one,

5A. The fact that each link L(nf R) has torsion zero could have
been predicted. We can show that if a natural link admits a plane of
symmetry or a sphere of inversion (which amounts to the same thing)
then its torsion must vanish.

We shall consider two representative cases.

Case 1. All the spheres of the link are orthogonal to the sphere
of inversion.

Let a0, alf , αn_i be the generating spheres and ε be a real sphere
such that

(oti, e) = 0 (i = 0, 1, . . - , w - 1 ) .

From this follows that the spheres of antίsimilitude Slf δ2, •••, Sn

will also be orthogonal to ε and therefore

(6) τε = z / ^ ^ Λe = e .

We suppose that y0, yly y, y decompose τ, and set (as in § 4.3)

zy0 = — y09 τyx = pyu τy — eiθy, τy = e~ίθy ,
P

Since ε is orthogonal to α0 it must be of the form

(7) ε = λo yo + λtf! + Xy + M
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however, for a natural link p > 1 (cfr. theorem of § 4.4), and thus the
hypothesis eiΘ Φ 1 is incompatible with (6) and (7).

Case 2. The spheres of the link are interchanged by the sphere of
inversion. By means of two or more additional spheres we can reduce
(without altering the conformal structure of the link) every possible
situation to the following one:

The spheres α0, alf , an^ are an even number n — 2p and further-
more the sphere of inversion e is such that

The spheres of antisimilitude will then be related in the following way

Sn = τeSl9 δn_x — rεδ2, , Bp+1 = r ^ .

This implies that the transformation τ = J ^ . i Ji can be written in
the form

τ = τzΔxΔ% Δ9τzΔvΔ9-x Λ

or, setting σ = ΔΏά^x Jj:

Assuming that y0, ^ are the source and the sink of the transformation
τ, for a suitable p > 1 we have

In view of the unicity of γj (since p φ 1) we must have

( 8 ) τyy0 = %, - 2(γ 0 , β)β = λy x

for some λ > 0 (cfr. the properties of the normalization in § 4.2). Scalar
multiplication of (8) by y0 yields 2(y0, ε) = ± V λ so that choosing the
positive sign (the orientation of ε is irrelevant) we obtain

(9) e = iy0-VrλV1.
v K>

Considering the spheres α4 in the different order

&P> otp+1, , α0, alf , α p _ x ,

we obtain again the same link; the source and the sink of the corre-
sponding Moebius transformation r* = aτzσ~λτz will then be the points
Vo = σtYo and y[ — σylβ Therefore we must also have

2 1 By τs we mean the inversion generated by ε.
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(10) ε = J = y ; - V~μy[

for some μ > 0.
We set y — (ε1 — iea)/2, y — (ex + iea)/2 where βi and e2 are any real

spheres containing y0 and yλ orthogonal to each other and to the sphere
αo; from (9) follows that

TzΎ = y, τεy = <y .

Now (</γ, <J<y0) = (y, y0) = 0 and similarly (σy, σyj^iσy, σyo) = (σy, σy,) = 0,
therefore in view of (10) we deduce

τεστsy = τεtfy = σy , τeστzy = τεtfy = σy ,

and

τy — σ~ισy = y , τy = σ-Vy = y .22

which is what we wanted to show.
Case 2 illustrates the intuitive fact that if a link L admits a plane

of symmetry then whatever torsion L might inherit from one of its
symmetric parts is taken away by the other. This property is not peculiar
to natural links but it holds for all Riemann surfaces of genus one im-
bedded in E3.
We shall give only a sketch of the proof for the general case.

If a surface admits a plane of symmetry then it admits an anticonfor-
mal (sense-reversing angle-preserving) mapping onto itself. This fact by
itself is sufficient to exclude that the corresponding parallelgramm lattice
could be a general one, it must have rectangular or rhomboidal genera-
tors.23

However, the case of rhomboidal generators can be excluded also.
The anticonformal mapping generated by a plane of symmetry in E3 will
always leave invariant two distinct closed curves of the surface as loci
of fixed points. On the other hand, if a rhomboidal lattice is a general
one, the reflections which preserve the identification of points admit also
two distinct invariant curves, but only one of them as a locus of fixed
points.

5.5. In contrast with the results of the previous section, it is not
difficult to construct natural links whose torsion does not vanish. The
simplest models of such links can be obtained using five linearly indepen-
dent spheres.

22 A shorter but less illustrative proof could be derived from the fact that the equation

Tsγ = vy together with (8) leads to an absurdity.
2 3 We owe this observation to Professor H. Royden.
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In fact, we can show that
// a link L is generated by five spheres oc0falf •••, tf4 then its torsion
vanishes if and only if the vectors a% are linearly dependent.

The torsion of L vanishes if and only if there exist vectors which
are invariant under the product of inversions τ = Δ5Δ± Δx generated
by the spheres h%. Now, the transform of a vector ξ by τ (after a re-
peated application of formula (7) of § 4.2) can be written in the form

2 (f, 2(4

and the equation

4f , Sb)S5

- 0

can be satisfied when and only when the δ/s are dependent. On the
other hand if we let a denote the matrix whose columns are the vectors
aiy S denote the matrix whose columns are the vectors Sif and set
μi = i/l + (a,_x, α,)/2 24 we have

1/2//
1/2//

0

0

0

I 0

Il2μ2

0

0

0
0

l/2^3

Il2μs

0

0
0

0

1/2/*,
l/2/£4

l/2μ.
0

0

0

1/2//

and

(11)
detα

Thus the δ/s are dependent or independent together with the α/s. This
proves the assertion.

This result does not quite solve our original problem of constructing
models whose representative point in 3Ji is off the imaginary axis, at
least as long as we do not know when the point θβπ — i (log p)/2π is
contained in 2JΪ. We shall get around this difficulty by showing that our
models can be made sufficiently thin (cfr. the inequalities (2) of § 5.1).
To this end we shall exhibit a family of links within which this defor-
mation is possible.

Let Co, Clf •••, C4 be points of Ez arid P denote the closed polygonal
line CQC^ C4C0. Suppose that each segment CiCi+1 (i = 0, , 4; Cδ = Co)
has length equal to twice that of the unit of measure, and set 2φi =

angle Ci^CiC^^ Let at be a sphere of radius R and center Ct, i.e.,

cfr. (10), (11) of § 4.2.
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(12) α, = ±{1, Ct, C\ -
K

In order that the spheres at fulfill the conditions (α), (6), (c), (d), (e) of
§ 2.3, so that they can be used to define a link, it is sufficient to require
that for each i — 1, •••, 5 ai-1 intersects a% and does not intersect
α i + 1(Setα6 = ax). We shall thus assume that P is such that

(13) φt > ττ/6 + tf, or C^C^ > 2(1 + ε) .

for some 0 < σ < π/3, 0 < ε < 1, and restrict i2 to satisfy

(14) 1 < R < 1 + ε .

Let L(P, R) denote the link defined by such a choice of P and R.
From (12) follows that

(15) det a = —

1 / ^ ^ 2

1 C2 Cϊ

c, cj

therefore the torsion of L{P, R) vanishes if and only if the vertices of
P lie on the same sphere. Now, it is geometrically evident that if we
keep P fixed and let R decrease to 1 the capacities of the anuli A*-i Π ΛΓ

will decrease to zero (see also formula (4) of §5.2) and thus by the
theorem of § 4.4 we can predict that the thinness of L{P, R) will tend
to infinity.

This proves the existence of links whose torsion does not vanish and
whose representative point is in 501.

More accurate results about the links. L(P, R) could be obtained by
a direct calculation of the eigenvalues of the corresponding Moebius
transformations. However, without going into tedious computations we
can show that: the portion of 3Jί covered by the images of the links
L{P, R) contains a strip of constant width around the imaginary axis.

It can be shown (see [6] pp. 26-28 and 154-155) that the character-
istic polynomial of the Moebius transformation generated by a set of
linearly independent spheres S19 δ2, * ,δ 5 is given by the expression

(16) as(λ) = det

λ δ,, δ2)

+ λ
2(Blf Sδ)

2(δ2,δ5)

2λ(*lf ίβ) 2λ(δ2, δδ) 1 + λ

On the other hand, from the results of § 4.3 we have



THE CALCULATION OF CONFORMAL PARAMETERS 161

(17) x(X) = (λ2 - 2 cos ΘX + l)(λ2 - 2 cos ftσλ + l)(λ + I)25 .

(we have set cos hσ = l/2(/> + l/i°)) Evaluating (16) and (17) for λ = 1
and equating the results we obtain

(18) sin h2σj2 sin2 θβ = - det || («„ «j

If we recall the definition of the scalar product ((4) of § 4.2) we see that
it is

/ 0 0 0 0 -1/2 \

0 1 0 0 0

(«„«,) II = δΓ

this means that

det

0 0 1 0 0

0 0 0 1 0

V —1/2 0 0 0 0 )

= -l/4{detδ} 2 .

Substituting in (18) we obtain

(19) sin 0/2 I = 1/2 i :det δ I
sin hσ{2

We now observe that for a link L(P, R) we have (at-it at) = 1 — 2/R2 and
setting r = VR"1 — 1 , (11) gives

detδ =

so that, using (15), (19) yields

R5det a
2V

1 C

(20) I det

I sin 0/2 I = 4 C\
25r5 sin hσ/2

We shall get upper and lower bounds for sinλίj/2.
Let y° be the sink of the Moebius transformation corresponding to

L(P, R), and set

Since 8, = l/r(l,
§ 4.2 we obtain

?) with 4̂έ = (C^ + C4)/2, recalling formula (7)* of

2 5 (λ + 1), since the number of spheres is odd.
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GX GX--GX

But each Gt is a point of the corresponding sphere aif thus we get

(21) (1 +

The theorem of § 4.4 gives a bound from below. Let Ct denote the
capacity of the anulus Λf-i Π ΛΓ, using (4) of §5.2 and some geometrical
considerations we obtain

Ct = iny, + τ/1 -
sin φ* — l/l — i?2 •r

thus

(R sin ψx + l/l - i22 cos2 φ$ sin ^>5 + l / l - JS2 cos2^5)
2 .

• «

since we keep R < 2 sin φt each of the factors in the numerator of the
right hand side is greater than one therefore

(22) P>λr-

Finally (21) and (22) used in (20) yield (assuming r ^ 1):

1 f~^ /""'

det

(23)

/ 0 ^ 0

/4 C 4

det

g I sin 0/2 I ^ 1 C4 C
2

24(1 - r10)

These inequalities imply our assertion:
For each polygon P ~ C0C1 C4C0 let D(P) denote the value of

det

C\

1 C4 C
2

If Po is a regular pentagon of side 2 then the link L(P0, R) is certainly
well defined when 1 < R V 2 . Simple geometrical considerations to-
gether with formula (5) of § 5.3 show that the link L(PQ, i/lΓ)has a thin-
ness p0 for which log p0 < 2π. Let then P vary among the polygonals
which satisfy the following conditions.

(1) D(P)Φ0.
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(2) The link L(P, VY) is well defined.
( 3 ) The point v{P) = (θ(P)/2π) - i (log p(P))l2π corresponding to

L(P,1/ 2) is contained in the region | Rev | < 1/2, | v | ^ 1.
Assume 1 < R < VΎ and set v(P, R) = (0(P, JB)/2τr) - i(log ρ(P, R))l2π
where Θ(P, R) and p(P, R) represent the thinness and the torsion of
L(P, R). _

For every fixed P, as R decreases from V 2 to 1, the point v(P, R)
describes a curve M{P) which starts from a point outside 3JΪ, enters
9K for a suitably small value of R and tends to infinity from within
m as R -> 1.

The first inequality in (23) shows that each curve M(P) is bounded
away from the imaginary axis. Then, if we let P approach Po, because
of the second inequality in (23), M{P) will tend to the imaginary axis
and sweep a neighborhood of the type asserted.

A family of polygons satisfying the conditions (1), (2), (3) can be ob-
tained from the following model. Let (x, y, z) be a cartesian coordinate
system in E3. Let

Co - (1/sin π/5, 0, 0), Cx = (x(φ), y(φ), z(φ)), C2 = (-cot τr/5,1, 0)

C3 - (-cotττ/5, -1,0), C4 = (x(ψ), ~y(ψ), -z(ψ))

with

x(ψ) = 1/2 + 2 sin π/5 sin ττ/10 cos ψ

sin 27Γ/5

y(ψ) = 1/2 + 2 sin ττ/5 cos ττ/10 cos ψ

z(ψ) = 2 sin π/5 sin ψ ,

and set P(ψ) ~ CQCι{ψ)C2CzClψ)CQ. The points C* have been chosen so
that P(0) is the regular pentagon of side 2 which lies in the plane x, y,
has its center at the origin and a vertex in the positive real axis. When
ψ varies C1(ψ)J C4(ψ) describe the circles H, K loci of points whose dis-
tances from C70, C2 and Co, C3 respectively are equal to 2. A short cal-
culation gives (for ψ < ττ/2)

(24) D{P) = 25 sin ττ/5 sin π/10 sin i/r(l - cos -ψ ) .

It can be easily seen that the links L{P(ψ), l/ΊΓ) are well defined when
defined when | ψ \ < τr/4 (the only critical distance in this range is C1C4

and it is well above 2\/Ύ).
Numerical estimates of the width of the strip covered are poor,

since (21) is rather crude. Nevertheless using (23) and (24) with
R = 1.2 and p ;> 11 we obtain | θ \ > 2 degrees.
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5.6. We shall conclude by showing that each natural M-surface can
be deformed into a conformally equivalent C°° canal surface. Our con-
struction is based on the following observation.

Let Γ be a Riemann surface, iVa subregion of Γ and A the boundary
of N. Let ΛΓ* be a Riemann surface with a boundary A* and suppose
there exists a conformal mapping Δ of ΛΓ* onto N which is defined and
continuous up to Λ*. Then we can make the set

Γ* = (Γ - iSΓ) + iV*

into a Riemann surface conformally equivalent to Γ. The proof is im-
mediate. We introduce local uniformizers in F* so that the mapping
φ(P) of Γ* onto Γ defined by

P for PeΓ*-N*

Φ(P) = J P for PeiV*

is conf ormal.26

We shall illustrate the use of this observation in a simple case.
Suppose Γ is imbedded in Ez. Assume that N is a simply connected
piece of a surface of revolution whose boundary is a parallel. Let iV*
be any other simply connected piece of surface of revolution which has
the same boundary and the same axis as N. The existence of the mapp-
ing Δ in this case is trivial. The observation can thus be applied, and
we can deduce that Γ and Γ* = (Γ — N) + iV* must inherit the same
conformal structure from E3.

If Γ is C°° across A and we want Γ* to possess the same property,
then we have to restrict JV* to osculate N along A to an infinite degree.

Our next application will be the smoothing of natural M-surfaces.
Let L be a given natural link and suppose that we want to render
smooth the edge formed by the spheres Γx and Γ2 of L. Let A be the
circle of intersection of Γx and Γ2. For simplicity we shall assume that
the whole space has been subjected to a Moebius transformation so that
Γλ and Γ2 have become spheres of equal radius, their centers being interior
points. Let A~, A+ be the portions of Γx and Γ2 which are exterior to
Γ2 and Γ1 respectively, π the plane of A; πλ and π2 two planes parallel
to π at a small distance ε from π. Assume that πx and π2 intersect A"
and J + respectively and set

A = πλ Π A" , A2 = π2 Π A+ .

Let a be the straight line which contains the centers of Γx and Γ2, v
a half plane bounded by α; ^ and fc2 the semicircles Γ1 Π v, Γ2 n v
respectively. Let

26 In § 2.3 we have proceeded in a similar way.
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A1 — v 0 A , A — v f) Λ , A2 = v f] A .

Let N be the portion of L generated by the rotation of the arcs
AykxA and Ak2A2 around α.27

We shall choose k to be a curve of v which joins Ax to A2 and fits
with kx and k2 at its end points in a C°° fashion. Let N*{k) be the
surface of revolution generated by rotation of the arc AJcA2 around α.
It is easy to see that when the non-Euclidean length of the arc AJcA2

in the half-plane v is equal to the sum of the non-Euclidean lengths of
the arcs AxkxA and Ak2A2 there exists a conformal mapping Δ of iV*(&)
onto N which leaves invariants the points of Ax and A2. And then, in
view of our observation, N*(k) can be used to replace N in L. It remains
to be shown that such a k can be found.

Let us first choose k to be the semicircle of v which joins Ax with
A2 and is orthogonal to α. Since k is then a geodesic, using the triangle
inequality, we obtain

(25) n. ϊ?.l.AxkA2 < n. ξ?.l.AxkxA + n. W.l.Ak2A2 .

Now, k can be deformed at its end points to fit with k19 and k2 as
smoothly as we please, increasing its length as little as we wish. There-
after, if necessary, we can increase the length of k to change (25) into
an equality.

To complete our argument we must show that L can be rendered
smooth without introducing self-inter sections. However, it is clear that
k can be chosen to be a simple curve contained in the circle of center
A and radius the (Euclidean) length of the segment AAl9 for any given
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