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One of the most frequently encountered situations in mathematics
is the existence of a Galois correspondence between two partially ordered
systems. An abstract formulation of this concept has been given by
Garrett Birkhoff [1, pp. 54-57] and Ore [5], in the following terms.

DEFINITION. Let A and B be two partially ordered sets, and let
# : A-^B and + : A-^B be two mappings such t h a t :

( i ) if pλ < p2 in A, then p\ < p\ in B
(ii) if qx < q2 in B, then q2

+ < qf in A; and
(iii) for any p e A and any q eB, p < q*+ and q < q+K

Then the mappings # and + are said to define a Galois correspondence
between A and B.

The number of ways in which a Galois correspondence can arise is
quite large, and most of them are very well known instances of what
is usually called "duality theory" . Perhaps the commonest source is
the existence of a relation between the elements of two sets. Birkhoff
has described this procedure as follows. Let S and T be two sets, and
let p be a relation from S to T. That is, p is a subset of the cartesian
product S x T; we write spt to denote (s, t) e p, as is customary. For
any subset Sλ c S, define S\ to be the set of all those elements teT
such that sφt for all sλ e Sτ. Similarly, for any subset Tx c Γ, denote
by Tt the set of all those seS such that sptx for all txe 7\. Then the
mapping #: A—>B and + : B—>A define a Galois correspondence between
the Boolean algebra A of all subsets of S and the Boolean algebra B of
all subsets of T.

This example has some special features which are not available for
general partially ordered systems. If φ denotes the empty set of S, then
φ* = 2\ and if S, and S2 are any two subsets of S, then (S, U S2)* = Sf U S*.
A similar result holds for the other mapping + . This is due to the fact
that Boolean algebras are special cases of lattices which satisfy the
conditions of the following result.

LEMMA. Let A and B be lattices, each having a greatest element
1 and a least element 0, and let % : A—>B and + : B—>A define a Galois
correspondence between A and B. Then 0# = 1, 0+ = 1, and {pλ\/p^f —
P*Λp\, 07iVg2)

+ = qΐΛtfί, for any p19 p2eA and glf q2eB.
This result is well known and, in any event, easily proved. (The
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symbols 0,1 denote ambiguously the least and greatest elements of both
A and B.)

This suggests that these two conditons might perhaps be taken as
more primitive embodiments of general duality concepts. In so doing,
of course, one loses the full generality of partially ordered systems.
The purpose of this note is to consider mappings of Boolean algebras
which have these two properties. It will be shown that, in this case,
the method of Birkhoff described above is not only sufficient for const-
ructing a Galois corresponcence but is also necessary.

To be precise, we introduce the following terminolgy.

DEFINITION. Let A and B be two Boolean algebras. By a polarity
of A into Bf we shall mean a mapping # of A into B satisfying the
two requirements : (i) 0* = 1, and (ii) for any p, q e A, (pVqY = p*ΛqK

Some recent developments in the duality theory of Boolean algebras
may be used to characterize completely such mappings. It may be well
to summarize these developments.

If A is any Boolean algebra, its dual space X is a Boolean space—
that is, a compact, totally disconnected, Hausdorff space. The algebra
A is isomorphic with the Boolean algebra Φ{X) of all continuous functions
from the space X to the (discrete) two-element Boolean algebra Φ. The
algebra A will, in fact, be identified with the algebra <£(X), so that each
element peA is a continuous function from X to Φ, and each such
function is an element of A. This relationship between Boolean algebras
A and Boolean spaces X is the basis of the duality theory of M. H.
Stone [6, 7].

Let A and B be two Boolean algebras, with dual spaces X and Y
respectively, so that A = Φ(X) and B — Φ(Y). By a hemimorphism a
of A into B is meant a mapping a: AB such that (i) αO = 0, and (ii)
a{p\Jq) = ap\/aq, for any p, qe A. Every hemimorphism a of A into
B defines a relation, denoted by α*, of 7 into X, as follows : ya*x if
and only if p(x) < ap(y) for every peA. The relation α* so defined
has two special topological properties. If E is any subset of X, let
α*-1!? denote the set of all those yeY such that ya*x for some x e E.
Then α* has the property that α*-\P is a clopen set in Y whenever P
is a clopen set in X. (A clopen set in a topological space is one which
is both closed and open.) Another way of expressing this property is
to say that α*-1{cceX: p(x) = 1} = {yeY: ap(y) = 1}, for each peA.
Moreover, if y e Y is any point, then the set of all those x e X such that
ya*x is compact.

Conversely, let p be any relation from the space Y to the space X.
For any element peA, we define a function p*p from Y to Φ by
setting ρ*p(y) = lub {p(x): ypx]. It is easily seen that p*Q(y) = 0 for
every yeY and that p*(pVq)(y) = P*p(y)Vp*q(y) for any ye F a n d any
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two elements p, q e A. If p has the property that ρ~λP is a clopen set in
Y whenever P is a clopen set in X, then p*p will be a continuous function
for each element peA, and hence p* will be a hemimorphism of A into J5.

If α is a hemimorphism of A into 1?, and if α* is the relation from
Y to X described above, then α** is also a hemimorphism of A into £>.
One easily shows that α** = a. (Any mapping α has a dual relation
α*, defined as before in order that a = α**, it is necessary and sufficient
that a be a hemimorphism.) On the other hand, suppose that p is a
relation from Y to X such that ρ~λP is clopen in F whenever P is clopen
in X; then jθ* is a hemimorphism of A into J5, and hence ô** is a
relation from Y to X. A necessary and sufficient condition that p = ^**
is that for each t/e7, the set {#e X: ?/|0£c} is compact. Such a relation
is called a Boolean relation. The correspondence between hemimorphisms
and Boolean relations just described is one-to-one. This extension of
Stone's duality theory is due to Halmos [2]. See also Jonsson and Tarski
[4] and Wright [8].

Cognizance should be taken of the fact that topological considerations
may be ignored when the algebras A and B are the algebras of all
subsets of two sets, say of S and T, respectively. If A = Φ(X) and
B = Φ(Y), then the Boolean spaces X and Y are the Stone-Cech com-
pactifications of the discrete spaces S and T respectively. Then a
Boolean relation from Y to X defines a relation from T to S, and any
relation from T to S may be extended to a Boolean relation from Y to X.

The duality between hemimorphisms and Boolean relations is sufficient
to describe completely the structure of polarities, because the theory of
polarities is coextensive with the theory of hemimorphisms. (If p is an
element of a Boolean algebra, we denote the complement of p by the
symbol p\)

THEOREM 1. If % is a polarity of a Boolean algebra A into a
Boolean algebra B, and if, for each peA, we set ap = (p*)', then a is
a hemimorphism of A into B. Conversely, if a is a hemimorphism
of A into B, and if, for each peA, we set p* = (ap)r, then § is a
polarity of A into B.

Proof. This is quite trivial: let a and # be two mappings of A
into B such that (ap)' — p# for each peA. Then αO = 0 if and only if
0* = 1, and a(pVq) = apyaq if and only if (pVqY = p*Λq*.

This means that every special property of a polarity can be translated
into a corresponding special property of a hemimorphism, and con-
sequently into a special property of a Boolean relation. It is, however,
sometimes more revealing to use the complementary relation. If p is a
relation from Y to X, the complementary relation pf from Y to X is
the complement of p in the cartesian product Y x X; that is, the set-
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theoretic complement of p considered as a subset of Y x X. Since it
will be convenient to use such complementary relations, we shall introduce
the following name for them.

DEFINITION. A relation p from one Boolean space Y to another
Boolean space X will be called a polarity relation if it is the comple-
mentary relation σr of a Boolean relation σ of Y into X. If # is a
polarity of one Boolean algebra A into another Boolean algebra B, and
if a is the hemimorphism of A into B defined by ap = (p% then a and
# will be said to be associated. If α* is the dual Boolean relation for
the hemimorphism a, the polarity relation α*' will be called the conjugate
relation of the polarity # associated with a.

Suppose, in the notation of this definition, that # is a polarity from
A to B. For any clopen set P in X, there is an element p sA such
that p — {x 6 X : p(x) = 1}. We may, temporarily, denote by p* the set
{y e Y: p\y) = 1}. The comprement (p#)' of p* in Y is given by the
formulas

={yeY: (p*)'(y) = l} = {yeY: ap{y) = 1}

= a^-^xeX: p(x) = 1} = a*-χp .

Thus y ° (P#)' if and only if there is an element xeP such that ya*x,
and hence y e P* if and only if ya*'x for all xe P. If p denotes the
polarity relation p = α* ;, then y e P* if and only if ^ x for all xeP.
In other words, every polarity has the form given by Birkhoff, if con-
sideration is given to the topological structure of the dual spaces. Then
Theorem 1 may be restated in the following (somewhat telegraphic) form.

THEOREM 2. There is a one-to-one correspondence between polarities
of Boolean algebras and polarity relations of Boolean spaces.

Special properties of hemimorphisms have been investigated in terms
of their dual Boolean relations [8]. It is thus quite easy to obtain the
corresponding facts about polarities.

DEFINITION. A polarity # of A into B is called a DeMorgan polarity
if (pΛqf = p*Vq*, for each p, q e A, and if 1# = 0.

THEOREM 3. Let % be a polarity of A into B. The following are
then equivalent:

( i ) % is a DeMorgan polarity
(ii) the associated hemimorphism a is a homomorphism :
(iii) the Boolean relation α* is a function
(iv) the polarity relation p = α*', has the property that for any

y eY, if xλ and x2 are distinct elements of X, then either ypx1 or ypx2

and
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(v) (p*)' = (p'Y, for any peA.

Proof. A hemimorphism a is a homomorphism if and only if
i(pAq) = <xpf\aq for all p, qeA, and al = 1. The theorem follows
from this and from the fact that α is a homomorphism if and only if
Ύ* is a function [2].

Let A, Z?, C be Boolean algebras, with dual spaces X, Y, Z re-
spectively. If a: A—>B and /5: j?—>C are hemimorphisms, then the
product βa: A—>C is also a hemimorphism. Correspondingly if a is a
Boolean from Z to Y and if /? is a Boolean relation from Y to X, then
the prodnct pσ is a Boolean relation from Z to X [3]. Recall then
z(pσ)x if and only if there is an element y e Y such that zσy and 2/̂ $.
If α* = p and β* = σ, then (/βα)* ~ pσ — α*/3* [2].

The iteration of two polarities is not, is general, a polarity. However,
it may have other important properties in particular, we are interested
in the properties of a Galois correspondence. Note that if # : A—>B is a
polarity, then p1 < p2 in A implies p* < p\ in 5. This means that it is
only the third condition in the definition of a Galois correspondence
which needs investigation.

Recall that if p is a relation from Y to X, the inverse relation p'1

is a relation from X to F, defined by declaring xp~λy if and only if ypx.

THEOREM 4. Let % be a polarity from a Boolean algebra A, with
dual space X, to a Boolean algebra B, with dual space Y. Let a be
the associated hemimorphism, let a* be the dual Boolean relation of a,
and let p be the conjugate polarity relation of #. Let + be a polarity
from B into A, let β be the associated hemimorphism, let β* be the
dual Boolean relation of β, and let σ be the conjugate polarity relation
of #. Then the following are equivalent:

( i ) P < P#+ for each peA;
(ii) β(ap)r < p' for each peA;
(iii) xβ*y implies ya*x for each xeX,yeY
(iv) β* c α*-1:
(v) ypx implies xσy for each x e X, y e Y and
(vi) paσ-\

Proof. The only problem is to show that (ii) and (iii) are equivalent.
This will follow from the slightly more general result: for any two
elements xx and x2 e X, we have β{ap)\x^) < p\x2) for all peA if and
only if, for any yeY, %Jϊ*y implies ya*x2. For we have β{ap)\x^) =
lub{(ap)f(y): xλβ

γy}, so that β{ap)\x1) < p\x2) if and only if xβ*y
implies p(x2) < ap(y). This last inequality holds for each peA if and
only if ya*x2.

This result has a number of immediate corollaries which clarify the
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nature of Galois correspondences between Boolean algebras.

THEOREM 5. In the notation of Theorem 3, the polarities % and +
define a Galois correspondence of A and B if and only if β* = α*"1.

This means that a given polarity # can have at most one other
polarity+which may be paired with it to yield a Galois correspondence.
Theorem 2 showed that the method given by Birkhoff is the only way
bo obtain a polarity this result shows that the same method is the
mly way to obtain a Galois correspondence. These facts also given an
mswer to an important question in connection with Boolean relations
themselves : when is the inverse of a Boolean relation again a Boolean
relation ?

THEOREM 6. Let Θ be a Boolean relation from a Boolean space Y
\o another Boolean space X. A necessary and sufficient condition that
\he inverse relation Θ'1 be a Boolean relation is that the dual hemi-
morphism θ* of φ(X) into Φ(Y) be the associated hemimorphism of a
polarity of φ(X) to φ(Y) which is part of a Galois correspondence.

In the special case of most importance, when X = Y, this condition
Decomes very simple.

THEOREM 7. Let % be a polarity of a Boolean algebra A into itself,
let a be its associated hemimorphismf let α* be the dual relation of a,
md let p be the conjugate polarity relation of #. Then the following
ire equivalent:

( i ) p < pu for each pe A;
(ii) a(ap)' < pf for each pe A
(iii) α* is symmetric and
(iv) p is symmetric .
A polarity has some to the properties of the complementation

mapping p—>p'. We may ask what other properties of complementation
it can have, and in particular, we may seek a characterization of
complementation. Since we are given a Boolean algebra at the outset,
there is already available one characterization of complementation: In
any distributive lattice with 0 and 1, if every element p has an element
pf such that p\/p' = 1 and p/\pf = 0, then the element p' is unique.
Furthermore, the mapping p—>pf is a DeMorgan polarity satisfying
p = p". When we ask for a characterization of complementation, we
ask for additional assumptions about a polarity # which imply that
p# — p' for each element p.

Let # be a polarity of a Boolean algebra A into itself. Theorem 3
gives precise conditions that # satisfy DeMorgan's laws, and Theorem 7
gives equally precise conditions that p < pu for each pe A. From the
above list of properties of complementation, this leaves three attributes
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to be investigated (1) pVP* = 1 for each pe A (2) pΛp* = 0 for each
p e A and (3) p*# < p for each p e A.

In the next two theorems, let a be the associated hemimorphism
of the polarity # of A into itself, let α* be the dual Boolean relation
of a, and let p be the conjugate polarity ralation of #.

THEOREM 8. T%e following are equivalent:
( i ) pVp# = 1 /or eαc/k p € A
(ii) p* = p'vδ /or eαcfe p e i , where be A is some fixed element
(iii) i/ α^α*^, £/^% ^ = x2 ami
(iv) if x1 Φ x2f then xλpx2.

In particular, the following are equivalent :
( I ) pVp# = 1 for each pe A, and 1* = 0
( I I ) p# = p' for each pe A;
(III) xxa*x2 if and only if xx = x2 and
(IV) EijOίCa i/ cmcZ only if xx Φ x2.

Proof. It is easily seen that pVp* — 1 if and only if ap < p. It
is known [8] that a hemimorphism a satisfies this condition for each
peA if and only if ap = pΛ<x, for some fixed α e i . The theorem
follows from this fact.

THEOREM 9. The following are equivalent:
( i ) p/\p% = 0 for each pe A)
(ii) p < ap for each pe A;
(iii) α* is reflexive αmϋ
(iv) /> is irreflexive.

Proof. The equivalence of (ii) with (iii) is proved in [8] the
equivalence of the others is then trivial. (Note that an irreflexive
relation p is one such that either xprx or else xpx implies xpy for all y.)

The problem of condition (3) can be treated in more generality.
Return for a moment to the definition of a Galois correspondence. If
we retain (i) and (ii) of this definition, but alter (iii) to read (iii')
p# + < p and <?+# < q, then the lemma stated at the beginning must also
be altered. In fact, the conclusion becomes 1# = 0,1 + = 0, {p±Ap2y —
V\VPL (QiΛq2)

+ —qΐVQt These properties might also be considered in
the manner in which we have treated of polarities. There is obviously
no need to do this.

However, if we have two polarities % and + having the property
given by (iii') above, then the altered lemma shows that we have two
DeMorgan polarities. If a and β are the associated hemimorphisms,
then both a and β are homomorphisms. Furthermore, βap = pp+r =
p t + < P, for each pe A. Then [8], βap = p/\a, and since βal = 1, we
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have βap = p for each pe A. This gives the following result.

THEOREM 10. Let % be a polarity of A into B and let + be a
polarity of B into A. In the notation of Theorem 4, the following are
equivalent :

( i ) P*+ < P and g+# < q for each pe A and qe B
(ii) p#+ = p and q+* = q for each pe A and qe B
(iii) a and β are reciprocal isomorphisms of A onto B and of B

onto A respectively and
(iv) α* and β* are reciprocal homeomorphisms of Y onto X and

of X onto Y respectively.
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