
UNITARY OPERATORS IN C*-ALGEBRAS

JAMES G. GLIMM AND RICHARD V. KADISON

1. Introduction. We present several results concerning unitary
operators in uniformly closed self-ad joint algebras of operators on a Hu-
bert space (C*-algebras). Section 2 contains these results the key one
of which (Theorem 1) asserts a form of transitivity for unitary operators
in an irreducible C*-algebra (an application of [2, Theorem 1]). Section
3 consists of some applications. The first (Corollary 8) is a clarification
of the relation between unitary equivalence of pure states of a C-*algebra
and of the representations they induce. The most desirable situation
prevails: two pure states of a C*-algebra are unitarily equivalent (i.e.
conjugate via a unitary operator in the algebra) if and only if the re-
presentations they induce are unitarily equivalent. The second application
(Corollary 9) provides a sufficient condition for two pure states p and τ
to be unitarily equivalent: viz. || p — τ || < 2. The final application
(Theorem 11) is to the affirmative solution of the conjecture that the
* operation is isometric in J5*-algebras [1],

We use the notation o(A) for the spectrum oί A; C for the set of
complex numbers of modulus 1; .5/ ~ for the strong closure of the set of
operators £f\ and ωx for the state, A —> (Ax, x)9 due to the unit vector
x. Our C*-algebras all contain the identity operator I.

2 Unitary operators* The theorem which follows establishes an
n-folά transitivity property for the unitary operators in an irreducible
C*-algebra. Its relation to [2, Theorem 1] is clear—it is, in fact, the
multiplicative version of the self-ad joint portion of that theorem.

THEOREM 1. If 21 is a C*-algebra acting irreducibly on 3ίf and V
is a unitary operator on Sff such that Vxk = yk, k = 1, , n, then there
is a unitary operator U m 21 such that Uxk = yk and σ( U) Φ C.

Proof. Passing to an orthonormal basis for the finite-dimensional
space generated by {x19 , xn}, we see that there is no loss in generality
if we assume that {xlf •••,#„}, and hence {y19 , yn}, are orthonormal
sets. Moreover, employing a unitary extension of the mapping carrying
Xj onto yj9 j = 1, , n to the space generated by {x19y19 , xn9 yn} and
a diagonalizing basis for this unitary operator; we see that it suffices to
consider the case in which Vx5 = βjXjf | βj \ = 1, j = 1, , n.

Choose real a5 in the half-open interval ( — π, π] such that expia3 =
βj9 and let A be a self-ad joint operator in 2ί such that Ax5 = a5x3 (such
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an operator exists by [2, Theorem 1]). Define g(a) as a for a in [min {aό},
max {aj}], as min {a5} and max {a3}, for a < min {a3} and α > m a x ^ } ,
respectively. Then g(A) is a self-ad joint operator in 2ί with spectrum
in [min {oc3}, max {#?}], and #04.)#j = otjXj. It follows that exp ig(A) is
a unitary operator U in 21, tf(ί7) Φ C, and ί/â  = βjXj.

Another unitary analogue of a known result which seems of some
value is the following variant of Kaplansky's Density Theorem [3, Theorem
1], It is a consequence of Kaplansky's theorem and some commutative
spectral theory.

THEOREM 2. If ^(21, k) is the set of unitary operators in the C*-
algebra 21 whose distance from I does not exceed k, then ^(21, k)~ con-
tains ^(?X~, k).

Proof. Note that || U — I\\ < k, for a unitary operator U, if and
only if σ{U) is contained in {z: \ z — 11 < k, \ z \ = 1}, a closed subset Sk

of the unit circle C. From spectral theory, each unitary operator is a
uniform limit of unitary operators which are finite linear combinations
of orthogonal spectral projections for it, and which do not have —1 in
their spectra (i. e. whose distance from / is less than 2). Thus, it suf-
fices to consider the case where k < 2.

Assuming k < 2, let arg z be that number in the open interval
( — 7Γ, π) such that z — exp [i arg z], for z in Sk; and let/ be a continuous
extension of arg to C. If a — 2 sin"1(fc/2) and ,^(2I, a) denotes the set
of self-ad joint operators in 21 with norm not exceeding α, then / maps
^(21, k) into ,^(2I, a) continuously in the strong topology, C/=exp [if (17)],
and exp maps i^(2ϊ, a) into ^/(2ί, fc) continuously in the strong topology,
from spectral theory, [3, Lemma 3], and [3, Lemma 2], Thus, if U lies
in ^(2Γ, k),f(U) lies in ̂ (2X~, α) and is a strong limit point of ^(21, α),
from [3, Theorem 1]; so that U(= exp [if (U)]) is a strong limit point of
^(St, fc).

In the next lemma, we make use of Mackey's concept of disjoint
representations [5]. These are ̂ representations of self-ad joint operator
algebras which have no unitarily equivalent non-zero subrepresentations
(the restriction of the representation to an invariant subspace). The
application in [5] is to unitary representations of groups and ours is to
^-representations of algebras—the difference is slight, however; and our
lemma and proof are valid for groups.

LEMMA 3. // {φa} are *-representations of the self-adjoint operator
algebra 21, then {φa} consists of mutually disjoint representations if and
only if φ(21)" = Σ Θ (Φ*(2l)-), where φ=

Proof. Suppose φΛ{%) acts on ^ , T = Σ θ ^ a n d P« *s t h e
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orthogonal projection of ^ upon 3%. If Φ(2l)- = Σ Θ (Φ (3I)~), and t/is
a partial isometry [6] of Ea{Sίζ) onto E„,(£%,), where α ^ α ' and #„, £7Λ,
are projections commuting with φΛ(5I) and </v(3I), respectively, such that
Uφa(A)U* = φa,(A)Ea, for each A in 2ί, then Z7commutes with φ(2ί). In
fact, ϊ/φ(il)=ϊ7φΛ(A)=φΛ,(A)J7=φ(A)ί7. Thus Ucommutes with Σ&ΦM)
and, in particular, with each Pa. But UP# = Z7 = PJJ = 0; so that
0 = ϋ7Λ = 2?Λ/ and {φ*} consists of mutually disjoint representations.

If the φa are mutually disjoint and V is a partial isometry in the
commutant of φ(SX) with the initial space EΛ in Pa and final space 2?Λ, in
P«, (cf. [6]); then VEΛφa{A)EaV* = FF*Fφ(A)F*FF*=# Λ ,φ(A)FF*# Λ , -
φΛ,(A)EΛ,, for each A in 2ί. Thus, by disjointness, 2£Λ and 2£Λ/ are 0.
It follows that the central carrier of Pa is orthogonal to that of each
PΛ,, and hence to each PΛ,, with a' Φ a (see [4], for example). Since
Σ Λ = ^ and the central carrier of P* contains Pa, PΛ is its own central
carrier. In particular, Pa lies in the center of the commutant and there-
fore in φ(9ϊ)-. It is immediate from this that φ(2I)~ = Σ Θ (Φ«(2t)~).

Since the commutant of an irreducible representation consists of
scalars, two such are either unitarily equivalent or disjoint. From this
and Lemma 3, we have as an immediate consequence:

COROLLARY 4. If {φa} is a family of irreducible *-representations
of a self-adjoint operator algebra SI, no two of which are unitarily
equivalent, then φ(SI)~ = Σ θ ^L> where φ = Σ 0 Φ* and &» is the al-
gebra of all bounded operators on the representation space of φa.

We shall need a result asserting the possibility of "lifting" unitary
operators from a representing algebra to the original algebra under cer-
tain circumstances.

LEMMA 5. If φ is a *-representation of the C*-algebra 21 and ϋ
is a unitary operator in Φ(Ά) with o{U) Φ C, there is a unitary ope-
rator Uo in 31 such that φ(U0) = U.

Proof. As in Theorem 2, we can find a continuous function f on C
such that f(U) is self-ad joint and exp [if (U)] = U. Let A be a self-
ad joint operator in 21 such that φ(A) = f{U). (Recall that φ(2I) is a C*-
algebra, so that/(E/) lies in φ(2ί). If φ(B) =f(U) then A may be chosen
as (£* + B)I2.) If Uo = exp iA then φ(UQ) = exp [if (17)] = Z7, by uni-
form continuity of φ.

REMARK 6. It may not be possible to lift a given unitary operator
(as indicated by the condition σ(U)ΦC in Lemma 5). In fact, illustrat-
ing this with commutative C*-algebras, we may deal with the algebras
of continuous complex-valued functions on compact Hausdorff spaces and
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unitary functions on them (functions with modulus 1). View C as the
equator of a two-sphere S9 and let a be the inclusion mapping of C into
S. Then a induces a homomorphism of the function algebra of S onto
that of C ("onto" by the Tietze Extension Theorem) which is, of course,
the mapping that restricts a function on S to C. The identity map-
ping of C onto C is a unitary function on C which does not have a
continuous unitary extension to S; for such an extension restricted to
one hemisphere would amount to a retraction of the disk onto its
boundary.

As a corollary to the foregoing considerations, we have the follow-
ing extension of Theorem 1:

COROLLARY 7. // {</>„} is a family of unitarily inequivalent ir-
reducible *-representations of the C*-algebra 2ί on Hilbert spaces { ^ } ,
φ is the direct sum of {φΛ},^f of {££«}, {x19 •••,&„} and {y19 * ,yn}
are two finite sets of vectors with {x19 , xn} linearly independent and
each Xj and corresponding y3 in some 3ί%\ then there is an A in % such
that φ(A)Xj = y3. If Bx3 = y3 for some self-adjoint or unitary operator
B on Stf then A may be chosen self-adjoint or unitary, respectively.

Proof. The argument of [2, Theorem 1] applies directly to the first
assertion once we note that the general constructions and norm estimates
of that theorem can be performed on each <%%, since each xj9 y3 lie in
some 2%\ and the strong approximations are valid by virtue of Corollary
4. With B self-ad joint, each PaBPa is self-ad joint and PΰiBPoύx3 = y5 (for
xj9 y3 in 3Cζ)9 where Pa is the projection of έ%f onto ^\ so that the
argument of [2, Theorem 1], in the self-adjoint case, applies to give a
self-adjoint operator Φ(A) such that φ(A)x3 = yj9 j = 1, , n. Of course,
A may be chosen self-ad joint in this case. If B is unitary it can be
replaced by one which maps each S^ onto itself and acts in the same
way on {x19 , xn} (extend the mappings of x3 onto y3 on each Stζ).
Having the self-ad joint result, in this case, the argument of Theorem 1
now applies to give a unitary operator φ(U) such that Φ(U)x3 = yj9

/ = 1 , # ,w, and o[φ{U)] Φ C. From Lemma 5, U may be chosen as a
unitary operator in 21.

3. Some applications* The next result indicates that the most
favorable situation obtains with regard to the relation between pure
states which give rise to unitarily equivalent representations.

COROLLARY 8. If p and τ are pure states of the C*-algebra 21, then
p and τ induce unitarily equivalent representations of 21 if and only
if there is a unitary operator U in 2t such that p{A) — τ(UMAU) for
each A in 21.
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Proof. If such a U exists, and φp and φτ are the representations
due to p and τ with left kernels ^ and 3ίΓ > respectively; then the
mapping V of %\j? onto %\3ίT defined by, V(A + κy) = AU + 3% is an
isometric mapping of a dense subset of the representation space for p
onto a dense subset of the representation space for r, since p(A*A) =
r(J7*A*AΪ7). Thus F has a unitary extension mapping one representa-
tion space onto the other. Moreover, V-1φ^(B)V(A + ̂ jr) = V-\BAU+3T) =
BA + j? = φp(B)(A + ^), whence the unitary extension of F imple-
ments a unitary equivalence between φτ and φp.

Suppose, now, that V implements a unitary equivalence between φp

and φτ, that x and 1/ are unit vectors in the representation spaces for
φp and φτ, respectively, such that o)xφp = p and ω ^ = r, and that
UQVy = x, with Uo a unitary operator in φp(21) such that ff(ϊ70) =£ C (cf.
Theorem 1). Let U be a unitary operator in 21 such that φP(U) — Uo

(cf. Lemma 5). Then

, Vy)

= τ(ϊ7*Aί7) ,

for each A in 21.

COROLLARY 9. 1/ p and τ are pure states of a C:v-algebra 21 such
that II |0 — r II < 2, then p and τ give rise to unitarily equivalent repre-
sentations of 21.

Proof. If φp and φτ are unitarily inequivalent and φ, their direct
sum, represents 21 on the direct sum Sίf of 3ίζ and 3%, then there are
unit vectors x and y in 3ί% and J^ , respectively, such that p = ω̂ φ and
r = ίo^φ. According to Corollary 7, we can find U in 21 such that
φ(U)x = a? and Φ(U)y = —y (approximation using Theorem 2 would do).
T h e n I (p - τ)U\ - | (φ(U)x, x) - (φ(U)y, y)\=2; so t h a t || p - τ \\ = 2
(recall that | | ^ | | = | | r | | = l, since ô and τ are states).

REMARK 10. The condition || p — τ || < 2 noted above is not neces-
sary for unitary equivalence. Indeed, if x and y are orthogonal unit
vectors in a Hubert space £ίf, E is a projection with a? in its range and
y orthogonal to its range, then (ωx — ωy)(2E—J) = 2, so that ||α>x — ω y | |=2;
while o)x and α>y give rise to unitarily equivalent representations of the
algebra of all bounded operators on £ίf (both, in fact, equivalent to the
given representation on 3ί?}. On the other hand, | (ωx — ωy) (A) \ <
I ( A x , x - y) I + I (A(x - y ) , y ) \ <2\\x-y ||, w h e n |) A \\ < 1; s o t h a t
there are pure states giving rise to unitarily equivalent representations
the norms of whose differences are as small as we please.

Our next application is to the solution of a minor problem raised by
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Gelfand and Neumark in connection with their conditions for a Banach
algebra to be isomorphic (and isometric) to a C*-algebra [1]. In [1],
six conditions are listed for this to be the case—the first three being
the standard algebraic conditions for a * operation defined on a Banach
algebra, viz. {aa + ί>)* = aa* + b*, (α&)* = δ*α*, and (a*)*=a; the fourth,
|| α*α || = || α* || || a ||, is the critical condition relating the metric struc-
ture to the * operation; the fifth, | | α * | | = | | α | | , asserts the isometric
character of the * operation; and the sixth, the so-called '"symmetry"
condition, assumes that α*α + e has an inverse. Gelfand and Neumark
conjectured that both the fifth and sixth conditions are consequences of
the first four. After much preliminary work (notably by I. Kaplansky),
the symmetry question was reduced to showing that the sum of two
self-adjoint elements with non-negative spectrum is again such an ele-
ment. This was done independently by Kelley-Vought and Fukamya
(though not recognized as the missing information—Kaplansky pointed this
out). We noted that this had been effected without assuming the * oper-
ation is isometric, and went on to prove that it was, accordingly, iso-
metric on regular elements. From this, its continuity followed; and one
could derive all but the isometric character of the isomorphism in the
Gelfand-Neumark theorem, with a little care. During some seminar
lectures, we noted, some years ago that the symmetry condition could
be derived in a quite natural way in the course of the imbedding proof.
The last loose end, establishing the fully isometric character of the
* operation, can be tied by the results of this paper. The closing of this
last gap would seem to be an appropriate occasion for presenting the
finished result in its entirety. From another viewpoint, the supression
of the fifth condition introduces subtle traps into these considerations
—statements which are made in complete safety with operators require
delicate proof in the present circumstances (e. g. despite the Gelfand-
Neumark commutative result, we cannot take the commutative case as
settled; for the uniform closure of the real algebra generated by a single
self-adjoint element is not known a priori to consist entirely of self-
adjoint elements, since continuity of the * operation is missing—again, the
Schwarz inequality for states will not yield the fact that they have norm
1, under these circumstances).

By a i?*-algebra, we shall mean a Banach algebra with unit element
e and normalized norm (|| e || = 1, || ab || ^ || a || || b ||) which has a * oper-
ation satisfying the first four conditions noted above. An element a is
self-adjoint, unitary, positive, or regular, when a = α*, α*α = aa* = e,
a — α* and the spectrum σ(a) of a consists of non-negative real numbers,
or a has an inverse, respectively. A state of a i?*-algebra is a linear
functional which is 1 at e and real, non-negative on positive elements.
We make use of the Hahn-Banach theorem from normed space theory
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and the following standard facts about complex Banach algebras with a
unit and a normalized norm: the spectral radius r(a) of an element a
(i.e. sup {| a |: aeσ(a)}) is l im^^ || an | |1/w(and does not exceed || a | |); e+a
is regular if || a \\ < 1; σ(p(a)) = p(σ(a))( = {p(a): ae ε(α)}) for each poly-
nomial p; and the quotient modulo a maximal ideal is the complex num-
bers, for a commutative algebra.

THEOREM 11 (Gelfand-Neumark). A B*-algebra 3ί is isometric and
*-isomorphic with a C*-algebra.

Proof. If α* = α then || α21| = || α ||2 so that || of || = || α | Γ and
|| α || =r(α). Since p(a) is self-adjoint for each real polynomial p, \\ p(a) \\~
r(p(a)) = sup {| p(a) |: α: in σ(a)}. If p is complex then p ~ pλ + ip2, with
p19 p2 real, and

r((pl + PΪ)(a)) < r((Pl - ip2){a))*r{{Vl + p2)(a)) < \\ [(Pl +

•II (p, + ip2){a) || = || (pi + pt)(a) || - r((p2 + pΐ)(a)) .

Thus, equality holds throughout; and since

- ip,)(a)) < || [(^ +

equality must hold in each. Hence || p(a) \\ = r(p(a)) = sup {| p(α) | : α e
o (α)}, for complex polynomials p and self-ad joint elements a. The map-
ping carrying an element p(a) onto the polynomial p on σ(α) is an iso-
morphism of the algebra of (complex) polynomials in a into C(σ(a)) and
has an isometric isomorphism extension mapping the closure Sί(α) onto the
closure P of the polynomials in C(σ(a)).

If a 6 σ(a), then the mapping # —* #(a) (g in P) is a linear functional
of norm 1 on P which assigns 1 to the image in P of e and a to that
of a. Via the isometry, this gives rise to a linear functional f0 of norm
1 on SI(α), such that /0(β) = l,fo(a) = «. Let / be a norm 1 extension
of /o to 21. If 6 is self-adjoint and/(&) is not real, by adding a suitable
real multiple of e to b we arrive at a self-adjoint element on which j
takes a non-zero imaginary value. Suppose f(b) = ΐ/3, with /3 > 0 (if
/3 < 0, use - 6 ) . Then

ine) |2 = β2 + 2/3^ + ^ 2 < || 6 + ΐne ||2 = [r(b

= (r(b + ine))(r([6 + ine]*)) = || 6 + ine || || δ - ine \\ = || δ2 +

which is absurd for n > (|| δ21| — β2)j2β (note that r(c) = r(c*), for each
c, since σ(c*) = ^τ(c)). Thus / is real on each self-adjoint element. In
particular, f(a) = α is real, and σ(a) consists of real numbers. Hence,
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the algebra of complex polynomials on σ(a) is invariant under complex
conjugation, the Stone-Weierstrass theorem applies, and P is C(σ(a)). If
6 > 0 and f(b) < 0, then σ(b - || 6 || e) = σ(b) - || 6 ||. Since σ(b) > 0,
r(δ - || 6 || β) = || & - || 6 | |e || < || 6 ||. But | / ( δ - | | 6 || e) | = | / (δ)- | | 6 | | | >
II 6 || > || 6 - || 6 || e ||, contradicting | | / | | = 1. Thus / is a state of 3,
f(a) = α, and / has norm 1.

If a19 , αw are positive and a e σ(aλ + + an) there is a state /
of §ί such that a = /(αx + + αn) = / ( α j + + /(αn) > 0, so that
a>i+ + ttn is positive. If 6 is self-ad joint and has an inverse, then
0 is not in σ(b); so that the image of 6 in C(σ(b)) has an inverse; and the
inverse of 6 lies in §1(6). If 6 is in §I(α), with a self-adjoint, then §1(6)
is contained in §I(α) and the inverse of 6 lies in §I(α). Thus the spectrum
of a self-ad joint element in §ί(α) is the same relative to §ί(α) and to §1.
In view of the isomorphism between §ί(α) and C(σ(a)), this spectrum is
the range of its representing function in C(σ(a)). Thus a2 > 0 for a
self-ad joint. With a and 6 positive, choose a state / of norm 1 such
that /(α) = r(α) = || α | | , then | | α + 6| | >f(a + 6) >f(a) - || a | |.

Suppose next that §ί0 is a subalgebra of §ί which is maximal with
respect to the properties of being abelian and self-ad joint (i.e. §ί*=§ί0).
If 6 commutes with §ί0 then δα* — α*6, for each a in §l0; so that 6*α=
αδ*. Thus, the self-ad joint elements 6 + 6* and (6 — δ*)/ί commute with
§I0, and, by maximality, lie in §ί0. Hence b( = (b + 6*)/2 + i(b - 6*)/2i)
lies in §ί0; and §I0 is maximal with respect to the property of being abe-
lian. It follows that §ί0 is closed. If 6 is the limit of self-ad joint ele-
ments in §I0 and 6 = bλ + ib2 with bλ and 62 self-adjoint (in §ί0 — the
decomposition just noted), then

II 621| < IK&! — α)2 + δ2 II = || bx + ib2 — a \\ || bλ — ib2 — a \\

with a self-ad joint in §ϊ0. Choosing a near 6, we see that || 621|( = || 62 H
2)

is dominated by an arbitrarily small quantity, so that 62 = 0. Thus 6 is
self-ad joint, and the self-ad joint elements in §I0 are closed. If a is
self-adjoint, the polynomials in a from a commutative self-adjoint algebra
which can be imbeded in a maximal one §ί0 (Zorn's Lemma). Since §ί(

is closed, §I(α) is contained in it. Thus, the closure of the real
polynomials in a (which maps onto the algebra of real functions in
C(σ(a))) consists of self adjoint elements.

The isomorphism of §I(α*α) with C(σ(α*α)) establishes the existence
of positive elements 6 and c in §I(α*α) such that α*α = 6—c, and δc = 0.
Thus (ac)*(ac) — — c3, which is negative, so that (αc)(αc)* is negative.
(In an arbitrary ring with a unit, if c is the inverse to e — ab then
e + bca is the inverse to e — δα; so that, in a Banach algebra, the spectra
of ab and ba with 0 adjoined is the same set.) But with ac = a1

ax and α2 self-ad joint,

0
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0 > {ac){acY + (αc)*(αc) = 2(α2 + aζ) > 0.

Thus,

so that aλ = α2 = αc = c3 — c = 0, and α*α > 0. The function represent-
ing a*a in C(σ(a*a)) is real and non-negative and therefore has a con-
tinuous non-negative square root. This square root corresponds to an
element (α*α)1/2 which is a positive square root of α*α in 2ί(α*α). If a
is regular so is α* and (<x*α)1/2. The element α(αV)-1 / 2(=u) is unitary,
since uu* — a{a%aYλa% = αα^α*" 1*!* = β and u*u = (α*α)~1/2α*α(α*α)~1/2 =
(α*α)(α*α)~1 = e. Extend the self-ad joint abelian algebra of polynomials
in u and u* to a maximal one 2ί0; and let M be a proper maximal ideal in
2ί0. Then 6 + M = δ(Λf)e + Λf, for some complex number δ(Λf)(i.e. 2ίo/M
is the complex numbers), (cb)(M) = c(M)6(M), δ(Λf) is in the spectrum of
b relative to 2ί0, and if b — b1 + ib2 with bλ and b2 self-ad joint then 6*(Λί) =

— ib2(M) — b(M), since the spectra of 6X and b2 are real. Thus 1 =
e(M) = (%*%)(Λf) = I u(M) |2. Now || u | | > r ( ^ ) > l , and similarly, | | % * | | > 1 .
But 1 = || e || = || u*u \\ = || u* \\ \\u ||, so that || u || = 1. Hence

|| a ||2 -

and || α || < || α* ||, symmetrically, || α* || < \\a\\, so that \\a\\ = || α* || (i.e.
the ;|ί operation is isometric on regular elements). If || 6 || < 1, then e + b
is regular, so that || 6* || - 1 < || e + 6* || = || e + b \\ < 1 + || b \\ < 2.
Thus the * operation is continuous (bounded), and the self-ad joint elements
in 5Ϊ form a closed set.

If / is a state of 21, the mapping α, b—+f(b*a) is a positive semi-
definite inner product on Sί (write (α, b) for the inner product of a and
6). If a is a null vector then (6α, δα) = (α, δ*6α) = 0 (from the Schwarz
inequality); so that ba is a null vector. Thus, the set ^β; of null vectors
is a left ideal in 21 (the "left kernel" of/) . The quotient vector space
2 1 / ^ has a positive definite inner product induced on it from that on
21. Let csίf be the (Hubert space) completion of 2 1 / ^ in this inner pro-
duct. Define the operator φ(a) on 2 ί / ^ by Φ(a)(b + j?) = ab + J?7,
for each a in 21. If c > 0, then (6V/2)(c1/26) > 0. With 11 α*α ||e - a*a
in place of c, we have || a*a \\ 6*6 > 6*α*αδ; so that 3 || a ||2 (b+^9 b+j?-)>
|| α*α ||/(δ*6) ^/(6*α*αδ) = (0(α)(6+ ^ ) , φ ( α ) ( 6 + ^ ) ) , and | | φ ( α ) | | <
3 1 / 2 | | α | | ( | |φ(α)| | < | | α | | if a is self-ad joint). Thus φ(a) has a unique
extension to Sί?, with the same bound, which we denote again by φ(α).
Since (φ(α) (6 + ^ ) , c + ^ ) = /(c*α6) - (6 + ^ , φ(α*)(c + ^ ) ) , φ(α)* =
Φ(a*). It follows that φ is a ^-representation of 21 in the algebra of
bounded operators on Sί?. If φ(α)=0 then/(α) = (φ(α)(e + t ^

Γ ) , e + ^ j ^ ) ^ 0 .

If we perform this construction for each state of 2ί, the direct sum
ψ of the resulting ^-representations is a *-isomorphism of 2ί. In fact,
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if ψ(a) = 0, then φ(a*a) = 0, so that f(a*a) = 0 for each state / of St.
But there is a state / such that /(α*α) = || α*α || = || α* || || a | |. Thus
α = 0. If b is self-ad joint || ψ(b) \\ < \\b\\, since each of the represen-
tations is norm decreasing on b. With / a state of 31 such that || 6 || =
|/(6) I = I (φ(b)(e + ^ ) , e + <jr)\, however, we see that || φ(b) \\>\\b ||;
so that || ψ(b) || = || b ||. Since the self-ad joint elements in 21 are closed
(hence complete) they are complete (hence closed) in ψ(Sί); whence ^(21)
is closed (i.e. a C*-algebra). If a is regular, || a ||2 = || a*a || = || <ψ{α*α) || =

Defining | | | ^ ( 6 ) | | | to be | |6 | | ,^(2t) has two norms (||| | | |, and its
operator norm || ||) relative to which it is a i?*-algebra. These norms
agree on self-ad joint and regular elements. If we show that they agree
everywhere (i.e. that ψ is isometric) then the * operation is isometric on
SI since it is preserved by ψ and is isometric on Ί|Γ(SI). We write 21
in place of ^(Sί)(3ί is a C*-algebra with the two i?*-norms as described).
As the first step, we establish the formula || A || = sup {\f(UAV) |: U
and V unitary operators in 3ί and / a pure state of 31}. Since each
state of 31 has norm 1 (from the Schwarz inequality) relative to the
operator norm, \f(UAV) \ < || UAV\\ < \\ A ||. On the other hand, if ψ
is the (irreducible) representation induced by/, \f(U*AV) \ = \(Φ(A)φ(V)x,
Φ(U)x) I, where x is a unit vector (in fact, the special one corresponding
to I+.JΓ). In view of Theorem 1 (or Theorem 2), sup {\f(U*AV) |:
U and V unitary operators in 31} = sup {| (φ(A)x, y)\: | |a?| | = | |2/| | = l} =
11 Φ(A) 11. Now the direct sum of the ^-representations due to each pure
state of Sί is a ^-isomorphism and hence an isometry of 31; so that
sup {|| φ(A) ||: / a pure state of Sί} = || A ||, and our formula follows.

Each state of Sί has norm 1 relative to the norm ||| |||; for if
HI B HI < 1 and f(B) = | f(B) \ a (where | a \ = 1), then aB + I is regular.
Hence, \f(άβ + /) | = \f(B) \ + 1 < || aB + / | | = ||| άβ + I\\\ < 2. Thus
\f(UAV)\ < HI UAV\\\ < HI A HI; and || A \\ < ||| A || |, for each A. But
|| A* II . II A || = || A*A \\ = ||| A*A | | | - || | A* ||| . ||| A | | |; so that || A \\ =
HI A HI for each A. The proof is complete.
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