COMPUTATIONS OF THE MULTIPLICITY FUNCTION

S. R. Foguel

1. Introduction. Let H be a separable Hilbert space. The following two problems will be studied:
2. Given a bounded normal operator A, of multiplicity m, what are the conditions, on the bounded measurable function f, so that the multiplicity of $S=f(A)$ is $n, n<\infty$?
3. How to compute the multiplicity of a normal operator that commutes with a given normal operator, of finite multiplicity?

Notation. Let S be a normal operator of multiplicity $n, n<\infty$. There exist a Borel measure μ and n Borel sets in the complex plane $e_{1} \supset e_{2} \supset \cdots \supset e_{n}$, such that, up to unitary equivalence,

$$
\begin{gather*}
H=\sum_{i=1}^{n} L_{2}\left(\mu, e_{i}\right) \tag{1.1}\\
S\left(\begin{array}{c}
f_{1}(\lambda) \\
\vdots \\
f_{n}(\lambda)
\end{array}\right)=\left(\begin{array}{c}
\lambda f_{1}(\lambda) \\
\vdots \\
\lambda f_{n}(\lambda)
\end{array}\right)
\end{gather*}
$$

This is the Multiplicity Theorem. (See Theorem X. 5.10) of [1]. The operator S has uniform multiplicity if $e_{1}=e_{2}=\cdots=e_{n}$.

The resolution of the identity, of a normal operator A, will be denoted by $E(A ; \alpha)$. The Boolean algebra of projections, generated by $E(A ; \alpha)$ will be denoted by \mathscr{E}_{4}. Let $E(\alpha)$ stand for $E(S ; \alpha)$ and \mathfrak{C} for \mathfrak{S}_{s}. Throughout this note all operators are assumed to be bounded.

We shall use the following results from [2]:
Let S be a normal operator of multiplicity n, and B a normal operator that commutes with S. Let H and S be represented by 1.1.

Theorem A. There exist k Borel measurable bounded complex functions $y_{1}(\lambda), \cdots, y_{k}(\lambda)$ and k matrices of Borel measurable bounded complex functions $\varepsilon_{1}(\lambda), \cdots, \varepsilon_{k}(\lambda)$ such that:

For a fixed λ the matrices $\varepsilon_{i}(\lambda)$ are disjoint self adjoint projections whose sum is the identity and

$$
B\left(\begin{array}{c}
f_{1}(\lambda) \tag{1.2}\\
\vdots \\
f_{n}(\lambda)
\end{array}\right)=\left(\sum_{i=1}^{k} y_{i} \varepsilon^{i}(\lambda)\right)\left(\begin{array}{c}
f_{1}(\lambda) \\
\vdots \\
f_{n}(\lambda)
\end{array}\right) .
$$

Received October 21, 1958, and in revised form April 24, 1959. This work has been partially supported by the National Science Foundation.

Equivalently, if the self adjoint projections E_{i}, are defined by

$$
E_{i}\left(\begin{array}{c}
f_{1}(\lambda) \\
\vdots \\
f_{n}(\lambda)
\end{array}\right)=\varepsilon_{i}(\lambda)\left(\begin{array}{c}
f_{1}(\lambda) \\
\vdots \\
f_{n}(\lambda)
\end{array}\right)
$$

then

$$
\left\{\begin{array}{l}
B=\sum_{i=1}^{k} y_{i}(S) E_{i} \tag{1.3}\\
E(B ; \alpha)=\sum_{i=1}^{k} E\left(y_{i}^{-1}(\alpha)\right) E_{i}
\end{array}\right.
$$

Remark. In the above decomposition the numbers $y_{i}(\lambda)$ for a fixed λ are different eigenvalues of a certain matrix. Thus for each λ there is an integer $k^{\prime} \leq k$ such that

$$
y_{i}(\lambda) \neq y_{j}(\lambda) \quad i \neq j \quad i, j \leq k^{\prime}, \quad \varepsilon_{i}(\lambda) \neq 0 \quad i \leq k^{\prime}
$$

and

$$
\begin{aligned}
& y_{k^{\prime}+1} \\
&(\lambda)=\cdots=y_{k}(\lambda)=0 \\
& \varepsilon_{k+1}(\lambda)=\cdots=\varepsilon_{k+1}(\lambda)=0
\end{aligned}
$$

This is essential for the proof of Lemma 2.1. Also the matrices $\varepsilon_{i}(\lambda)$ are $n \times n$ matrices.

Theorem B. The number n is the largest integer such that there exists a nilpotent operator, commuting with S, of order n. See [2] Theorem 3.1 and its corollary.
2. The multiplicity of a function of an operator. The main result in this section is:

THEOREM 2.1. Let A be a normal operator of multiplicity m, $m<\infty$, and f a bounded measurable function. The operator $S=f(A)$ has finite multiplicity, if and only if, there exist k disjoint Borel sets $\beta_{1}, \cdots, \beta_{k}$ and k bounded measurable functions $z_{1}(\lambda), \cdots, z_{k}(\lambda)$ such that:
a. $\quad \sigma(A)=\bigcup_{i=1}^{k} \beta_{i}$.
b. if $\lambda \in \beta_{i}$ then $z_{i}(f(\lambda))=\lambda$ almost everywhere, with respect to $E(A ; \alpha)$.

Proof of sufficiency of conditions a and b. Let S_{i} and A_{i} be the restrictions of S and A to $E\left(A ; \beta_{i}\right) H$. Then

$$
S_{i}=\int_{\beta i} f(\lambda) E(A ; d \lambda)
$$

hence

$$
z_{i}\left(S_{i}\right)=A_{i}
$$

Now, it follows from Theorem B that

$$
m u A_{i} \geq m u S_{i} \quad(m u T=\text { multiplicity of } T)
$$

But the multiplicity function is subadditive:

$$
m u S \leq \sum_{i=1}^{k} m u S_{i}
$$

To see this we have to observe that muS is the smallest number n such that there exists a set of n elements, $\left\{x_{1}, \cdots x_{n}\right\}, x_{i} \in H$ and span $\left\{E(\alpha) x_{i}, \alpha\right.$ a Borel set $\}=H$. (n generating elements.)

Thus

$$
m u A \leq \sum_{i=1}^{k} m u S_{i} \leq \sum_{i=1}^{k} m u A_{i} \leq m k<\infty
$$

In order to prove necessity we need the following :

Lemma 2.1. Let $S=f(A)$ have finite multiplicity n and let

$$
A=\sum_{i=1}^{k} z_{i}(S) E_{i}
$$

be the representation 1.3 then $E_{i} \in \mathfrak{F}_{4}$.
Proof. For every Borel set $\alpha E(\alpha) \in \mathfrak{F}_{A}$ because $S=f(A)$. Let $E(\alpha)$ be maximal with respect to the property that $E(\alpha) E_{1} \in \mathcal{F}_{A}$. Such a maximal projection exists by Zorn's Lemma. Now if $E(\sigma(S)-\alpha) \neq 0$ there exists, by the proof of 3.2 in [2] a set β such that:

$$
\beta \subseteq \sigma(S)-\alpha \quad E(\beta) \neq 0
$$

and for some Borel set γ

$$
E(\beta) E_{1}=E(\beta) E(A ; \gamma) \in \mathfrak{F}_{A}
$$

This contradicts the maximality of α, hence $E(\alpha)=I$.
Proof of necessity of conditions a and b. Let S hsve finite multiplicity n. By Lemma 2.1 there exist n sets β_{i} such that $E\left(A ; \beta_{i}\right)=E_{i}$. Thus

$$
E\left(A ; \beta_{i}\right) E\left(A ; \beta_{j}\right)=0 \text { if } i \neq j
$$

and

$$
\sum_{i=1}^{k} E\left(A ; \beta_{i}\right)=I .
$$

Therefore the sets β_{i} can be chosen to be disjoint and satisfy condition a. Also

$$
A=\sum_{i=1}^{k} z_{i}(S) E_{i}=\sum_{i=1}^{k} z_{i}(f(A)) E\left(A ; \beta_{i}\right)=\sum_{i=1}^{k} \int_{\beta} z_{i}(f(\lambda) E(A ; d \lambda) .
$$

Hence, if $\beta \subset \beta_{i}$ then

$$
E(A ; \beta) A=\int_{\beta} \lambda E(A ; d \lambda)=\int_{\beta} z_{i}(f(\lambda)) E(A ; d \lambda)
$$

or: on the set $\beta_{i} \lambda=z_{i}(f(\lambda))$ almost everywhere with respect to the measure $E(A ; \alpha)$.

Definition. The function f will be said to have k repetitions, with respect to the measure $E(A ; \alpha)$, if conditions a and b of Theorem 2.1 are satisfied.

In the rest of this section we compute muS. It is enough to consider the case where the operator A has uniform multiplicity m : otherwise A can be written as direct sum of operators of uniform multiplicity and one has to study each component of A separately.

The following Theorem is needed:
Theorem 2.2 Let H be the direct sum of the orthogonal subspaces H_{1}, \cdots, H_{k}. Let S_{i} be a normal operator, on H_{i}, of uniform multiplicity m_{i} and S be the direct sum of S_{i}.

If

$$
E(S ; \alpha)=0 \text { whenever } E\left(S_{i} ; \alpha\right)=0 \text { for some } i
$$

then

$$
m u S=\sum_{i=1}^{k} m_{i}
$$

Proof. It is enough to prove that $m u S \geq \sum_{i=1}^{k} m_{i}$. Let $\sigma=\sigma\left(S_{1}\right)=$ $\cdots=\sigma\left(S_{k}\right)=\sigma(S)$. By the Spectral Multiplicity Theorem each operator S_{i} can be described as follows: There exists a measure μ_{i} on σ and H_{i} is the direct sum of m_{i} spaces $L_{2}\left(\mu_{i}\right)$. The operator S_{i} is given by

$$
S_{i}\left(\begin{array}{c}
f_{1}(\lambda) \\
\vdots \\
f_{m_{i}}(\lambda)
\end{array}\right)=\left(\begin{array}{c}
\lambda f_{1}(\lambda) \\
\vdots \\
\lambda f_{m_{i}}(\lambda)
\end{array}\right)
$$

Now, the measures μ_{i} are equivalent, by the condition of the Theorem. Thus there exist functions $\varphi_{i}, \varphi_{i} \in L\left(\mu_{i+1}\right) 1 \leq i \leq k-1$ such that

$$
\mu_{i}(e)=\int_{e} \varphi_{i}(\lambda) d \mu_{i+1}
$$

for every Borel set e. (Radon Nikodym Theorem, see [3], p. 128). Let us define an operator on H :

If $x \in H_{i}$,

$$
x=\left(\begin{array}{c}
f_{1}(\lambda) \\
\vdots \\
f_{m_{i}-1}(\lambda) \\
0
\end{array}\right)
$$

then

$$
M x \in H_{i}, \quad M x=\left(\begin{array}{c}
0 \\
f_{1}(\lambda) \\
\vdots \\
f_{m_{i}-1}(\lambda)
\end{array}\right)
$$

If

$$
x \in H_{i}, \quad x=\left(\begin{array}{c}
0 \\
\vdots \\
0 \\
f_{m_{i}}(\lambda)
\end{array}\right)
$$

then

$$
M x \in H_{i+1}, \quad M x=\left(\begin{array}{c}
\sqrt{\varphi_{i}(\lambda)} f_{m_{i}}(\lambda) \\
0 \\
\vdots \\
0
\end{array}\right)
$$

Where H_{k+1} is the zero space.
It is easy to see that M is a bounded operator and

$$
M^{\sum_{i=1}^{k} m_{i}}=0
$$

but

$$
M^{\sum_{i=1}^{k} m_{i}-1} \neq 0 .
$$

Also $M S=S M$, hence $m u S \geq \sum_{i=1}^{k} m_{i}$.
Remark. It was proved in Theorem 2.1 that if a function f has k repetitions then

$$
m u f(A) \leq k m u A
$$

However the number of repetitions of a function is not uniquely defined. In order to compute $m u f(A)$ we have to find the minimal number of repetitions. This is what the next Theorem does.

Theorem 2.3. Let A be a normal operator of uniform multiplicity m. Let f be a bounded measurable function which has k repetitions with respect to the measure $E(A ; \alpha)$. A necessary and sufficient condition that $m u S=m k$, where $S=f(A)$, is:

There exists a Borel set α_{0}

$$
\begin{equation*}
E\left(A ; f^{-1}\left(\alpha_{0}\right)\right) \neq 0 \tag{2.1}
\end{equation*}
$$

and
$E\left(A ; f^{-1}(\alpha)\right)=0$ whenever $E\left(A ; f^{-1}(\alpha) \cap \beta_{i}\right)=0$ for some i and $\alpha \subset \alpha_{0}$.

Proof. Assume condition 2.1. We may restrict A and S to $E\left(A ; f^{-1}\left(\alpha_{0}\right)\right) H$. Let

$$
H_{i}=E\left(A ; f^{-1}\left(\alpha_{0}\right) \cap \beta_{i}\right) H,
$$

and A_{i}, S_{i} the restriction of A, S to H_{i}. Now

$$
f\left(A_{i}\right)=S_{i} \quad z_{i}\left(S_{i}\right)=A_{i}
$$

(See Theorem 2.1.). Thus the operators S_{i} have uniform multiplicity m because the operators A_{i} do. It follows from Theorem 2.2 that the multiplicity of S restricted to $E\left(A ; f^{-1}\left(\alpha_{0}\right)\right) H$ is $m k$. But $m u S \leq m k$, hence $m u S=m k$.
(Note that on α_{0} the operator S has uniform multiplicity $m k$). Conversely, let us assume that for each Borel set α_{0} with $E\left(A ; f^{-1}\left(\alpha_{0}\right)\right) \neq 0$, there exists a subset α such that $E\left(A ; f^{-1}(\alpha)\right) \neq 0$ but $E\left(A ; f^{-1}(\alpha) \cap \beta_{i}\right)=0$ for some i. Let $E\left(A ; f^{-1}\left(\alpha_{1}\right)\right)$ be maximal with respect to the property

$$
E\left(A ; f^{-1}\left(\alpha_{1}\right)\right) E\left(A ; \beta_{1}\right)=0
$$

Let $E\left(A ; f^{-1}\left(\alpha_{2}\right)\right)$ be maximal, with respect to the property

$$
\alpha_{2} \cap \alpha_{1}=\varphi \text { and } E\left(A ; f^{-1}\left(\alpha_{2}\right)\right) E\left(A ; \beta_{2}\right)=0
$$

and choose inductively $\alpha_{3} \cdots \alpha_{n}, \alpha_{i} \cap \alpha_{j}=\varphi$

$$
E\left(A ; f^{-1}\left(\alpha_{j}\right)\right) E\left(A: \beta_{j}\right)=0
$$

There exist such maximal projections by Zorn's Lemma. Now if $E\left(A ; \bigcup_{i=1}^{k} f^{-1}\left(\alpha_{i}\right)\right) \neq I$ there will be a set α and an integer j such that

$$
\alpha \cap\left(\bigcup_{i=1}^{k} \alpha_{i}\right)=0 ; \quad E\left(A ; f^{-1}(\alpha) \cap \beta_{j}\right)=0
$$

Thus $\alpha_{\text {, }}$ will not be maximal. Let

$$
\bar{\beta}_{j}=\beta_{j} \cup\left(f^{-1}\left(\alpha_{j}\right) \cap \beta_{1}\right), \quad j \geq 2
$$

Then $\mathbf{U}_{j=2}^{u} \bar{\beta}_{j}=\sigma(A)$ and on $\bar{\beta}_{j}$ the function f possesses a bounded measurable inverse. Thus f has $k-1$ repetitions and $m u S \leq m(k-1)$.
3. The multiplicity of a matrix of functions. Let S be a normal operator of uniform multiplicity n. Let B be a normal operator and $B S=S B$. The operator B is represented as the matrix of functions $\sum_{i=1}^{k} y_{i}(\lambda) \varepsilon_{i}(\lambda)$ and also $B=\sum_{i=1}^{k} y_{i}(S) E_{i}$ (Equation 1.2 and 1.3). Let us denote by B_{i} and S_{i} the restrictions of B and S, respectively, to $E_{i} H=H_{i}$.

Theorem 3.1. The operator B has finite multiplicity, if and only if, the functions y_{i} have $j_{i}\left(j_{i}<\infty\right)$ repetitions with respect to the spectral measure of S_{i}.

Also

$$
\max _{i} m u B_{i} \leq \sum_{i=1}^{k} m u B_{i} \leq \sum_{i=1}^{k} j_{i} m u S_{i} .
$$

Proof. From the definition of multiplicity, as the smallest number of generating elements, it follows that

$$
\max _{i} m u B_{i} \leq m u B \leq \sum_{i=1}^{k} m u B_{i}
$$

Now, $B_{i}=y_{i}\left(S_{i}\right)$, hence the rest of the Theorem follows from Theorem 2.1. The problem of this section is reduced to the following

$$
H=\sum_{i=1}^{k} E_{i} H \text { where } E_{i} E_{j}=0 \text { if } i \neq j
$$

and $B_{i}=$ restriction B to $E_{i} H$, where the multiplicity of B_{i} is known. Now by decomposing each operator B_{i} into sum of operators of uniform multiplicity we will have $H=\sum_{i=1}^{m} H_{i}$, where the spaces H_{i} are mutually orthogonal, and $C_{i}=$ restriction of B to H_{i} is an operator of uniform multiplicity. We shall show how to compute $m u B$ from $m u C_{i}$ by reducing this case to the one studied in Theorem 2.2,

Denote the projection on H_{i} by F_{i}. Let $E\left(B ; \alpha_{i}\right)$ be the maximal projection such that

$$
E\left(C_{i} ; \alpha_{i}\right)=E\left(B ; \alpha_{i}\right) F_{i}=0
$$

Such a projection exists by Zorn's Lemma. Finally let $\beta_{i}=$ $\sigma(B)-\alpha_{i}$. On β_{i} the spectral measure of C_{i} can vanish only when the spectral measure of B vanishes. Now $E\left(B ; \bigcup_{i=1}^{m} \beta_{i}\right)=I$ because $\sum_{i=1}^{m} F_{i}=I$.

The set $\sigma(B)$ can be decomposed into disjoint sets γ_{j} such that
a. Each γ_{j} is a subset of one of the sets $\beta_{j_{0}}$.
b. If $\gamma_{j} \cap \beta_{i} \neq \varphi$ then $\gamma_{j} \subset \beta_{i}$.

Assuming, for a moment, that this decomposition is given then

$$
m u B=\max _{j} m u\left(B \text { restricted to } E\left(B ; \gamma_{j}\right) H\right)
$$

But the multiplicity of B restricted to $E\left(B ; \gamma_{j}\right) H$ is

$$
\sum_{i \mid \gamma_{j} \subset \beta_{i}} m u\left(C_{i} \text { restricted to } E\left(B ; \gamma_{j}\right) H_{i}\right)
$$

by Theorem 2.2.
We shall show how to choose the sets γ_{i} by an induction argument on the number m. Let $\gamma_{1}=\beta_{1}-\bigcup_{i \geq 2} \beta_{1} \beta_{i}$. This set (which might be * void) satisfies conditions a and b . The rest of $\sigma(B)$ is

$$
\left(\bigcup_{i \geq 2} \beta_{1} \beta_{i}\right) \cup\left(\bigcup_{i \geq 2}\left(\beta_{i}-\beta_{1}\right)\right)
$$

In both sets there are only $m-1$ subsets and by induction there exists a decomposition.

Bibliography

1. N. Dunford, and J. Schwartz, Linear Operators, Vol. II. to appear.
2. S. R. Foguel, Normal Operators of Finite Multiplicity. Communications on Pure and Applied Mathematics, Vol. XI, (1958), p. 297.
3. P. R. Halmos, Measure Theory. D. Van Nostrand, New York, 1950.

Berkeley, California

