NOTE ON ALDER'S POLYNOMIALS

L. Carlitz

1. Alder's polynomial $G_{\mu, \iota}(x)$ may be defined by means of

$$
\begin{align*}
& 1+\sum_{s=1}^{\infty}(-1)^{s} k^{M s} x^{\left.\frac{1}{2} s(2 M+1) s-1\right)}\left(1-k x^{2 s}\right) \frac{(k x)_{s-1}}{(x)_{s}} \tag{1}\\
= & \prod_{n=1}^{\infty}\left(1-k x^{n}\right) \sum_{t=0}^{\infty} \frac{k^{t} G_{M, t}(x)}{(x)_{t}},
\end{align*}
$$

where M is a fixed integer ≥ 2 and

$$
(a)_{t}=(1-a)(1-a x) \cdots\left(1-a x^{t-1}\right),(a)_{0}=1
$$

Alder [1] obtained the identities
(2) $\prod_{n=1}^{\infty} \frac{\left(1-x^{(2 M+1) n-M}\right)\left(1-x^{(2 M+1) n-M-1}\right)\left(1-x^{(2 M+1) n}\right)}{1-x^{n}}=\sum_{t=1}^{\infty} \frac{G_{M, t}(x)}{(x)_{t}}$,
(3) $\prod_{n=1}^{\infty} \frac{\left(1-x^{(2 M+1) n-1}\right)\left(1-x^{(2 M+1) n-2 M}\right)\left(1-x^{(2 M+1) n}\right)}{1-x^{n}}=\sum_{t=0}^{\infty} \frac{x^{t} G_{M, t}(x)}{(x)_{t}}$
thus generalizing the well-known Rogers-Ramanujan identities. Singh [2,3] has further generalized (2), (3); he showed that

$$
\prod_{n=1}^{\infty} \frac{\left(1-x^{(2 M+1) n-s}\right)\left(1-x^{(2 M+1) n-2 M-1+s}\right)\left(1-x^{(2 M+1) n}\right)}{1-x^{n}}=\sum_{t=0}^{\infty} \frac{A_{s}(x, t) G_{m, t}(x)}{(x)_{t}}
$$

where the $A_{s}(x, t)$ are polynomials in x.
In a recent paper [4] Singh has proved that

$$
\begin{equation*}
G_{M, t}(x)=x^{t} \quad(t \leq M-1) \tag{4}
\end{equation*}
$$

In the present note we give another proof of (4) and indeed obtain the explicit formula

$$
\begin{equation*}
G_{M, t}(x)=\sum_{\substack{M s \leq t \\ s \geq 0}}(-1)^{s} \frac{(x)_{t}}{(x)_{s}(x)_{t-M s}} x^{\frac{1}{2 s} s(s-1)+s t}\left(1-x^{s}+x^{t-M s+s}\right) \tag{5}
\end{equation*}
$$

valid for all t.
2. Since

$$
\left(1-k x^{2 s}\right)(k x)_{s-1}=(k x)_{s}+k x^{s}\left(1-x^{s}\right)(k x)_{s-1}
$$

the left member of (1) is equal to

$$
\begin{aligned}
& 1+\sum_{s=1}^{\infty}(-1)^{s} k^{M s} x^{\frac{1}{2} s((2 M+1) s-1)}\left\{\frac{(k x)_{s}}{(x)_{s}}+k x^{s} \frac{(k x)_{s-1}}{(x)_{s-1}}\right\} \\
= & \sum_{s=0}^{\infty}(-1)^{s} k^{M s} x^{\left.\frac{1}{2} s(2 M+1) s=1\right\}} \frac{(k x)_{s}}{(x)_{s}} \\
& -\sum_{s=0}^{\infty}(-1)^{s} k^{M(s+1)+1} x^{\frac{1}{2}(s+1)((2 M+1)(s+1)-1\}+(s+1)} \frac{(k x)_{s}}{(x)_{s}} \\
= & \sum_{s=0}^{\infty}(-1)^{s} k^{M s} x^{\frac{1}{2} s((2 M+1) s-1\}} \frac{(k x)_{s}}{(x)_{s}}\left\{1-k^{M+1} x^{(M+1)(2 s+1)}\right\} .
\end{aligned}
$$

Thus (1) becomes

$$
\sum_{t=0}^{\infty} \frac{k^{t} G_{M, t}(x)}{(x)_{t}}=\sum_{s=0}^{\infty}(-1)^{s} k^{M s} x^{\left.\frac{1}{s} s(2 M+1) s-1\right\}} \cdot \frac{1-k^{M 1} x^{(M+1)(2 s+1)}}{(x)_{s}} \prod_{j=1}^{\infty}\left(1-k x^{s+j}\right)^{-1}
$$

$$
\begin{equation*}
=\sum_{s=0}^{\infty}(-1)^{s} k^{M s} x^{\left.\frac{1}{s} s(2 M+1) s-1\right]} \cdot \frac{1-k^{M+1} x^{(M+1)(2 s+1)}}{(x)_{s}} \sum_{j=0}^{\infty} \frac{k^{j} x^{s j+j}}{(x)_{j}} \tag{6}
\end{equation*}
$$

For $t<M$, it is clear that the coefficient of k^{t} on the right is simply $x^{t} /(x)_{t}$. This proves Singh's result (4).

For $t=M$ we get

$$
\frac{G_{M, M}(x)}{(x)_{M}}=-\frac{x^{M}}{1-x}+\frac{x^{M}}{(x)_{M}}
$$

so that

$$
G_{M, M}(x)=x^{M}-x^{M} \frac{(x)_{M}}{1-x}
$$

which also was found by Singh.
For $t=M+1$, similarly, we have

$$
\frac{G_{M, M+1}(x)}{(x)_{M+1}}=\frac{x^{M+1}}{(x)_{M+1}}-x^{M+1}-\frac{x^{M+2}}{(1-x)^{2}},
$$

so that

$$
\begin{align*}
G_{M, M+1}(x) & =x^{M+1}\left\{1-(x)_{M+1}-x \frac{(x)_{M+1}}{(1-x)^{2}}\right\} \tag{7}\\
& =x^{M+1}\left\{1-\left(1+x^{3}\right)\left(x^{3}\right)_{M-1}\right\} .
\end{align*}
$$

also due to Singh.
3. For arbitrary $t \geq M+1$, it follows from (6) that

$$
\begin{aligned}
& G_{M, t}(x)=\sum_{M s \leq t}(-1)^{s} \frac{(x)_{t}}{(x)_{s}(x)_{t-M s}} x^{\left.\frac{1}{s} s(2 M+1) s-1\right)(s+1)(t-M s)} \\
& \quad-\sum_{M(s+1) \leq t}(-1)^{s} \frac{(x)_{t}}{(x)_{s}(x)_{t-M(s+1)-1}} x^{e_{s}}
\end{aligned}
$$

where

$$
e_{s}=\frac{1}{2} s\{(2 M+1) s-1\}+(s+1)\{t-M(s+1)-1\}(M+1)(2 s+1) .
$$

This simplifies to

$$
\begin{equation*}
G_{M, t}(x)=x^{t} \sum_{M s \leq t}(-1)^{s} \frac{(x)_{t}}{(x)_{s}(x)_{t-M s}} x^{\frac{1}{2}(s-1)+s(t-M)} \tag{8}
\end{equation*}
$$

or if we prefer
(9) $\quad G_{M, t}(x)=\sum_{\substack{M, s \leq t \\ s \geq 0}}(-1)^{s} \frac{(x)_{t}}{(x)_{s}(x)_{t-M s}} x^{\frac{1}{2 s(s-1)+s t}}\left(1-x^{s}+x^{t-M s+s}\right)$.

For example (9) reduces to

$$
\begin{equation*}
G_{M, t}(x)=x^{t}\left\{1-\frac{(x)_{t}}{(x)_{1}(x)_{t-M}}\left(1-x+x^{t-M+1)}\right\}\right. \tag{10}
\end{equation*}
$$

for $M+1 \leq t \leq 2 M-1$. When $t=M+1$, it is easily verified that (9) reduces to (7). Singh [4] conjectured the truth of (10) for $t \leq 2(M-1)$.

Refefences

1. H. L. Alder, Generalizations of the Rogers-Ramanujan identities, Pacific J. Math. 4 (1954), 161-168.
2. V. N. Singh, Certain generalized hypergeometric identities of the Rogers-Ramanjan type, Pacific J. Math. 7 (1957), 1011-1014.
3. -, Certain generalized hypergeometric identities of the Rogers-Ramanujan type (II), Pacific J. Math. 7 (1957), 1691-1699.
4. -, A note on the computation of Alder's polynomials, Pacific J. Math. 9 (1959), 271-275.

DUKE UNIVERSITY

