
ON THE SUMMABILITY OF DERIVED FOURIER SERIES

B. J. BOYER

l . Introduction, Bosanquet ([1] and [2]) has shown that the
(C, a + r), a > 0, summability of the rth derived Fourier series of a
Lebesgue integrable function f(x) is equivalent to the (C, a) summability
at t = 0 of the Fourier series of another function ω(t) (see (4), §2) in-
tegrable in the Cesaro-Lebesgue (CL) sense. This result suggests the
following question: Is there a class of functions, integrable in a sense
more general than that of Lebesgue, which permits such a characteriza-
tion for the summability of rth derived Fourier series and which is
large enough to contain ω(t) also?

In this paper it will be shown that such a characterization is pos-
sible within the class of Cesaro-Perron (CP) integrable functions for a
summability scale more general than the Cesaro scale (Theorems 1 and
2, §4). Theorem 3 provides sufficient conditions for the summability of
the Fourier series of ω{t) in terms of the Cesaro behavior of ω{t) at
ί = 0.

Integrals are to be taken in the CP sense and of integral order,
the order depending on the integrand.1 It will be convenient to define
the C J P integral as the Lebesgue integral.

2. Definitions* A series Σuv is said to be summable (a, β) to S if

lim S Σ (1 - Φ)Λ 1<

for C sufficiently large, where B = \ogβ C and C > 1. (It is sufficient
to say for every C > I.2)

The function λΛ>β(^) is defined by the equation:

(1) λα β(x) + ίλa β(x) - —Γ(l - uY~ι log-'3

7Γ Jo
Γ(l uY log (

7Γ Jo VI —

2) φ(t) = φ(t, r, x) = i[f(x + t) + (-iYf(x - ί)] -

3 ) P(t) EE P(ί, r) - Σ ]

(4) ω(t) = t-[9>(ί) - P(ί)] ,
1 Many properties of CP integration have been given by Burkill ([4], L5] and [6]) and

by Sargent [7]. Other properties used in this paper can easily be verified by induction.
Received July 6, 1959.

2 Bosanquet and Linfoot [3]. They have also shown the consistency of this scale for
a1 > a or a' = a, βf > β.
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for — π < t < π and is of period 2π.
The r t h derived Fourier series of f(t) at t = x will be denoted by

DrFSf(x), and the nth mean of order (α, /3) of DrFSf(x) by SΛ>β(/, a;, w).
The &th iterated integral of f(x) will be written Fk(t) or [/(ί)]*

3 Lemmas* The following result is due to Bosanquet and Linfoot

[3]:

LEMMA 1. For r > 0 and a = 0, β > 1 or α > 0, /3 > 0,

^ίr

+

)«A%) = 0(\x\-1-«\og-ii\x\) + \x\~r-2) a s I a? I — o o .

LEMMA 2. .For α > 0, β > 0 α^d r > 0,

r

ί J 0
ίJ-0

where the Br

iό{af β) are independent from x and have the properties:

(i) BUa, 0) - 0 /or j > 1;
(ii) # 0 ( α , /3) ^ 0.

Proo/. Let us put γ1+cύιβ(x) = λ1+β>β(a?) + ΐλ1+α.β(a;). For r = 0 we
take B°Q()(a, β) = 1. For r > 1 an integration by parts and the identity
ur = — ̂ " ^ l — w) + t̂ 7*"1 yield the following recursion:

( 5 ) l o g

logo

The lemma follows easily from successive applications of equation (5).

LEMMA 3. For n > 0 and a = 0, β > 1 or α > 0, β > 0,

(

= nr+1 Σ \[rJa,β[n(t + 2kπ)] ,
fc=-oo

for r = 0,1,2, . . . .

Proof. Smith ([8], Lemma, 3.1) has shown that for every even
periodic, Lebesgue integrable function Z(t),

( 6 ) 2n\~Z{t)X1+a β(nt)dt = Saιβ(Z, 0, n) .
Jo
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Using Lemma 1 and the properties of Z{t), one can show in a
straightforward manner that

( 7) [°Z(t)X1+ΰύιβ(nt)dt = \*Z(t) Σ \+*.βMt + 2kπ)]dt .
JO Jo fc=-oo

Let us define Z(t) = ] π - . , [. Equations (6) and (7) imply

that for every x, 0 < x < π,

(8) \'n± X1+a,β[n(t + 2kπ)]dt = \'\-±- + *- Σ (l - - Y

• log~βί \ cos i

Since the integrands in (8) are continuous, even and periodic, the lemma
is proven for k = 0.

To prove the lemma for k > 1, we need only to observe that the
derived series are uniformly convergent in every closed interval by
Lemma 1.

LEMMA 4. Let f(x) e CP[ — π, π] and be of period 2π. Then for
n > 0 and a = 0, β > 1 or a > 0, β > 0,

Proof. This result can be verified by direct calculation using Lemma
3 and the properties of CP integration.

When f(x) is Lebesgue integrable, Lemma 4 is equivalent to a
slightly different representation given by Smith [8].

LEMMA 5. Let f(x)eCfίP[-πf π] and be of period 2π. Let ξ, 0 <
ξ < μ + 1, be an integer for which φξ(t) e L[0, π]. Then, for r > 0 and
a = ξ,β>lora>ξ,β>0,

Sr

Λ+r,β(f> v, n)-ar= 2(- l)V + 1 [φ(t) - P(t)]X[rL+r β(nt)dt -
Jo

Proof. From Lemmas 1 and 4 we see that

Sr

a+r>β(P, 0, n) = 2(-l)rnr+1\πp(t) Σ M?e+r β[w(ί + 2A;τr)]dί
Jθ fc=-oo

= 2(-l)rnr+1[πp(t)X[r^+rιβ(nt)dt + o(l) as w
Jo
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Since (dldt)rP(t) = ar, then S£+r>β(P, 0, n)-*ar for a = 0, /9 > 1 or
α > 0, /3 > 0.3

It remains to be shown that

( 9 ) Sr

a+r, (/, x, n) = 2(-l)rnr+1\*φ(t)X{rίoύ+r,β(nt)dt + o(l) .
Jo

Successive integrations by parts give

(10) nr+ί\πφ(t) Σ ' X[r:a+r,β[n(t + 2kπ)]dt = £(- l )V + 1 + ' 0 , + 1 ( ; r )
Jo k j0

Σ' ^r+Vl.β[^{2k + l)] + ( - D V ^fφKt) Σ'

2kπ)]dt

fc--oo

By Lemma 1 each of the integrated terms on the right side of (10)
is o(l) as n—*oo, and

uniformly in t,0 < t < π. Since 0ξ(£) is Lebesgue integrable, it follows
that the left side of (10) is o(l). This result and Lemma 4 prove (9)
and complete the proof of the lemma,

is replaced by 1 , δ > 0.
o Jo

Thus, for the values of a and β under consideration, the summability
of DrFSf(x) is a local property of f(x).

Having found an expression for S«,β(/, x, n)f let us estimate the in-
teger ξ in the preceding lemma.

LEMMA 6. // h(t) e CμP[0, a] and trh(t) e CλP[0, α], then

H1+ξ(t) e L[0, α], where ξ = min [μ, max (λ, r)] .

Proof. The case μ = — 1 is trivial by definition of C^P. Therefore,
let us assume μ>0. We may also assume, by the consistency of CP
integration, that λ > r.

It will be convenient to use the "integration by parts" formula:

(11) [ W ) ] * = Σ Cs(k9 r)V->Hk+j(t), fc = 1, 2, ,

where the Cj(kf r) do not depend on t or the function h.
By the Cesaro continuity and consistency of CP integration, there

exists an integer k > λ + 1 such that for j > 0,

(12) Hk+1+j(t) = o(ίfc+'-0 as t - > 0 .
3 Smith [8], Theorem 3.1.
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Since k > λ + 1, equations (11) and (12) imply

[trh(t)]te = o{t«~ι) = trHk(t) + Σ tr-jo(t«+^1"0

hence, Hk(t) = o(ί*-1"r). This result and (12) yield

(13) Hk+j(t) = 0 (ί*-1+^-r) as ί -> 0 for j > 0 .

Since (13) is merely (12) with k replaced by k — 1, this inductive
process terminates with Hλ+1(t) = o(£λ~r). Therefore, Hλ+1{t) = o(l) as
ί — 0 if λ > r.

But for 9 > 0, h(t) e CλP[η, a]. Therefore, H1+ξ(t) e W> <*].
Lemmas 5 and 6 may be combined to give the following:

LEMMA 7. Let f(x)eCλP[ — π,π] and be of period 2π. If
ω(t) e CμP[0, π], then for a = 1 + ξ, β > 1 or a > 1 + ξ, β > 0,

Sa β(ω9 0, n) = 2n\ ω(t)X1+ΰύ β(nt)dt + o(l), where ξ
Jo

= min [μ, max (λ, r)] .

This section is concluded with two results of Tauberian nature.

LEMMA 8. // a > 0, β > 0, {δj*.o ^ n ( i {& }Γ=o α^β sequences of real
numbers with b0 Φ 0,

ft / , . \OJ / C \

F..β(n) = Σ &i Σ ( l - — ) log"(β+i) / - — W = o(l) as n — oo ,
n I i _ Ji y

then ΣΓ=o^v = o(α, /3).
The proof of this result is too long to be given here. In general,

however, this method is similar to one employed by Bosanquet and
Linfoot.4

LEMMA 9. Let SΛtβ(u, n) denote the nt\ι mean of order (a, β) of
the series Σu.. For a, β and r > 0 and i,j = 0,l, , r, let us assume
that

(i) The constants Ci3{a, β, r) have properties (i) and (ii) of the
Blj(a, β) in Lemma 2

(ϋ) Σ CtJ(k + a, β, r)Sk+Λ+r-1>β+j(u, n) = o(l), k = 0, 1, 2, . .
iJ-0

(iii) Σ^v =

Bosanquet and Linfoot [3], Theorem 3.1.
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Then ΣΓ=o^v = 0(α, β).

Proof. Let us consider the case β > 0. By (iii) of the lemma and
the consistency of (α, β) summability, there exists an integer K > 1
such that Sa+κ+ί.β+j(u, n) = o(l) as w -> oo for i, i = 0,1, 2, . . . Putting
k = K — 1 in (ii) above, we see that

Σ Crj(K - l + a,β, r)Sκ-1+a>β+J(u, n) + o(l)
j = 0

Therefore, from (i) above and Lemma 8, Sκ-1+Oύtβ(u, n) = o(l). That is,
for K>1, ΣΓ=o ̂ v = o(α + K, β) implies ΣΓ-o uv = o(a + K - 1, /5). It
follows immediately that ΣΓ-o^v = o(α, β).

The case /5 = 0, in which we deal with linear combinations of Riesz
means, is proved similarly.

4. Theorems.

THEOREM 1. Let f(x)eCλP[-π, π] and be of period 2π. If there
exist constants αr_2i, i = 0,1, , [r/2], such that

(i) ω(£)eCμP]0, π] for some integer μ;
(ii) FSω(0) = 0(α, β) for a = l + ξ, β>l or a > 1 + ξ, β > 0,

where ξ = min [μ, max (λ, r)],
then DrFSf(x) = α r(α + r, £).

THEOREM 2. Leέ /(ίc) eCλP[ — π, π] and be of period 2π. If
DrFSf(x) = ar(a + r, β) for a = 1 + λ, β > 1 or a > 1 + λ, β > 0, then
there exist constants α r_ 2 i, i = 0, 1, •••, [r/2], s^cfc ίfeαέ

(i) ω ( ί ) e C μ P [ 0 , π] / o r some integer μ;

(ii) i^SojίO) = o(a', β'), where

' > l i f l + X<a<l + ξora = l + ξ,β<l\
fand

βifa = l + ξ,β>lora>l + ξ,βϊ>0 J

I = min [μf max (λ, r)].
Before proving these theorems, let us observe that the existence

of the αr_2i in the theorems implies their uniqueness from the definition
of ω(t). In fact, somewhat more is true. Observe that ω(t) =
ω(t, r) e CP[0, π] implies ω(t, r - 2i) = o(l)(C) as ί ~> 0. Therefore, if
ω(t, r)eCP[0, π] and FSω(0) = 0(C), then assuming the truth of Theo-
rems 1 and 2, it is clear that the ar-2i are given by the formula:

Dr-2iFSf(x) = αr_2i(C), i = 0,1, [r/2] .5

Proof of Theorem 1. Lemma 7 and the consistency of (α, /9) sum-

Compare Bosanquet [2], eqn. 5.2, for f(x)GL[π, π].
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inability give the relations:

S 7Γ

ω(t)\1+cύ+r.iιβ+j(nt)dt = SΛ+r.iιβ+j(ω, 0, n) + o(l) = o(l) ,
0

for i, j = 0,1, 2, , r. Therefore,

2w[*G)(t) ΣBϊjia, β)X1+a+r-ίtβ+j(nt)dt =
Jo ίj=o

which by Lemma 2 becomes

(14) 2 ^

Since trω(t) = #>(ί) — P(ί), relation (14) and Lemma 5 imply that

Sr

Λ+rΛf> x> n)-ar = o(l), i.e., DrFSf(x) = α r(α + r, £).

Proof of Theorem 2. Let us first prove part (i). Putting P(£) = 0

in Lemma 5, we obtain

(15) 2(-iγnr+1[πφ(t)X%«+r,β(nt)dt = Sβ+r.p(/, α?, n) + o(l) .
Jo

If the left side of (15) is integrated by parts λ + 1 times, the integrated
part is o(l) as n —> σo by Lemma 1, and (15) becomes

(16) 2(- l ) r + λ + V + λ + ϊ f Vλ+1(ί)λίrΛ+r!g(wί)rfί = S:+r>β(f, x, n) + o(l)
Jo

Let us define Φλ+1(t) for —π < t < 0 to be an odd (even) function
if r + λ + 1 is odd (even). Then (16) may be written

S?+

λ$(Φk+19 0, n) = S;+r./>CΛ », n) + o(l) .

It follows that Dr+λ+1FSΦλ+ι(0) = ar(C).
Since Φλ+1(t)eL[—π,π], a theorem of Bosanquet establishes the fol-

W i n g result.6 There exist constants α r + λ + 1 " 2 ί , i = 0, 1, , [(r+λ+l)/2],
with ar+λ+1 = α r, such that

(17) γ(ί) s {<Pλ+1(ί) - P+ifyt-^*" e CL[0, π] and FSΎ(0) = 0(C) ,

where P J ί ) = Σ& + λ + 1 ) / 2 ] [α r + λ + 1- 2 ί/(r + λ + 1 - 2i)!]t r + λ + 1-M.
For λ = - l , put α r- 2 ί = αr_2i in (17). Then (17) states that

ω(t)eCP[0, π] and FSω(0) = 0(C).
Let us consider the case λ > 0, and define h(u, m + 1) = {^w+1(%) —

P (* λ-m )M}^- ( r + m + 1 ), m = - 1 , 0,1, , λ. Then for 0 < η < t < π, an in-
tegration by parts yields

6 Bosanquet [2], Theorem 2. The superscript notation has been used here to distinguish
these constants from those whose existence is to be proven.
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(18) I h(u, m)du = uh(u, m + 1)1 + (r + m)\ h(u, m + l)du .

Let us assume for the moment that for some integer m, 0 < m < λ,
(19) h(u, m + 1) e CkP[0, ί], k > λ + 1.

From (19) and a result due to Sargent7, it follows that

[h(u, m + l)du e CfcP[0, t] and (C, A; + 1) lim f \{u, m + l)du

, m + ΐ)du .-ί
Since 5?fe(̂ , m + 1) e CfcP[0, t] and is o(l)(C, fc + 1) as ^ -> 0, the

right side of (18) has a limit (C, k + 1) as ^ —> 0. Sargent's result
(ibid.) and equation (18) imply

(20) h(u, m) 6 Cfc+1P[0, t] .

We infer from the recursive behavior of (19) and (20) that whenever
(19) is true, then h(u, 0) 6 CP[0, ί]. But (19) is true for m = λ by (17).
Therefore,

(21) h(t, 0) = {φ(t) - P£+1)(t)}t~r e CμP[0, π] for some μ .

In the course of the argument above, it has also been shown that
by taking C-limits of (18) we obtain

(22) I h(u, m)dn = th(t, m + 1) + (r + m)\ h(u, m + l)du
Jo Jo

for m = 0,1, •• , λ.
If we now define αr_2i = α r + λ + 1~ 2 i, i = 0, 1, , [r/2], it is easily

verified that Pc*λ+1)(ί) = P(t) and h(t, 0) = ω(t). Part (i) of the theorem
follows immediately from (21).

Next it will be shown that FSω(0) = 0(C) for λ > 0, the case
λ = — 1 having been settled already.

From equations (11) and (22), it is seen that

(23) [h(t, m)]fc+1 = t[h(t, m + l)]fc + (r + m - k)[h(t, m + l)] f c + 1 .

If for some integer m, 0 < m < λ, the statement

(24) h(u, m + 1) = o(l)(C, k) for some integer k

is true, then (24) is also true when m + 1 and k are replaced by m
and k + 1, respectively, by (23). In this manner we arrive at the con-
clusion that h(t, 0) — ω(t) = o(l)(C) as t—>0, which ensures that FSω(0) =

7 Sargent [7], Lemma 1.
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0(C). However, h(u, λ + 1) = 7(0 and FSy(0) = 0(C) from (17). There-
fore, 7(0 = o(l)(C)8, so that (24) is true for m = λ.

It remains only to prove the order relations in part (ii).
Having determined the polynomial P(t), we may state, with the aid

of Lemmas 2 and 5, that

(25) Sl+r,β(f, x, w ) - α r = ( - l ) r Σ B^α, β)
iJ-0

\ ω(t)X1+Λ+r-ίιβ+j(nt)dt\ + o(l) .

I f λ + l ^ α < l + f o r α = l + £ , / 9 ^ 1 , t h e n for β* > 1 and k =
0, 1, 2, , Sr

r+1+ξ+kιβ*(f, x, n) — ar = o(l). Equat ion (25) t h e n implies

(26) Σ *&(1 + I + k, βη\2n\πω(t)X2+ς+JC+r-ίtβ*+j{nt)dt\ = o(l)
ί j=o ( J o )

Similarly, for a — 1 + f, β > 1 or α > 1 + ξ, β > 0, it can be shown
that

(27) Σ 5ϊj(α + *f /

With the definition of (α;, β') and by means of Lemma 7, both (26)
and (27) may be combined into the single equation:

(28) Σ &i3{a' + k, β')Sa,+k+r-ίιβ,+j(ω, o, n) = o(l), k = 0,1, 2, . .
iJ-0

Since FSω(0) = 0(C), Lemma 9 and (28) yield part (ii) of the theorem
at once.

These two theorems may be combined in several ways to give gen-
eralizations to known results. In what follows it is assumed that
f(x) 6 CλP[ — π, π] and is of period 2ττ, ξ = min [μ, ζ] and ζ = max (r, λ).

COROLLARY 1. // ω(t)eCμ.P[0,π], then for a = l + ξ, β>l or
a > 1 + ξ, β > 0, DrFSf(x) = ar(a + r, β) if and only if FSω(0) =
0(α, β).9

COROLLARY 2. For a = I + ζ, β>l or a>l + ζ, β>0, DrFSf(x) =
ar(a + r, β) if and only if ω(t) e CP[0, π] and FSω(0) = 0(α, /5).10

From Corollary 2 it follows that DrFSf(x) = αr(C) if and only if
ω(ί) 6 CP[0, π] and FSω(0) = 0(C). Along with a result by Sargent11

8 That FSgφ) = 0(C) if and only if g(t) = o(l)(C) as ί -> 0 has been shown by Sargent
[7], Theorem 6.

9 For μ = — 1 compare Wang [9].
10 For « ^ r + l and λ = - 1 compare Bosanquet [2].
1 1 Sargent [7], Theorem 6.
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this gives a solution, in the sense of Hardy and Littlewood, to the
Cesaro summability problem for DrFSf(x) within the class of CP in-
tegrable functions.

The last theorem of this section sharpens a well known sufficient
condition for the summability of FSω(0) without, however, destroying
the CP integrablity of ω(t).

THEOREM 3. Let ω{t)eCμP[ — π,π] and be an even function of
period 2π. For k > μ, sufficient conditions that FSω(0) = 0(1 + k, β),
β > 1, are

(i) ω{t) = 0(l)(C, k + 1) and
(ii) ω(t) = o(l)(C, k + 2).

Proof. The proof of this theorem is similar to the proof of the
analogous theorem for Riesz summability when ω(t) is Lebesgue inte-
grable. Starting with Lemma 7 and k + 1 integrations by parts, one
obtains

S1+tetβ(ω, 0, n) = (-iy+12nk

= \ + \ + I , it can be shown by straightforward cal-

0 Jo JK/n Jδ

culations that for arbitrary ε > 0 and K > β,

IS1+k β(ω, 0,n)\<, Mt(K) ε + M^iX'1 log-*X + X~2)dX + o(l), where
J^r

M2 is independent from ε, K and n. The theorem follows from the last
inequality by letting n —> oo, ε —+ 0 and K —> oo in that order.

The theorems of this section can be illustrated by means of the
following CP integrable functions:
t~m sin t'1 and t~m cos t"1, m = 0,1, 2, . For example, from Theorems
1 and 3, FS[t'λ sin t"1]^ = 0(1, β) and A t t a i n ί^J^o = 0(2, ^) for ^ > 1 .
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