ON PARACOMPACTNESS

HisaHIRO TAMANO

It is well known that the product of a paracompact space with any
compact space is paracompact and hence normal’. In this paper, we
will establish the converse of this proposition by showing that ¢f X x 8X
is normal, then X is paracompact (Theorem 2)%.

The existence of a compactification is a characteristic property of
a Tychonoff space, and the Stone-Cech compactification (the largest one)
may reasonably be expected to play an important role in the theory of
Tychonoff space. Indeed, some properties of a Tychonoff space X can
be characterized by the properties of the Stone-Cech compactification
BX (more precisely, by the properties of X as a dense subspace of SX),
and we shall give a new characterization of paracompactness in §2
(Corollary of Theorem 1). In Theorem 1, we shall characterize paracom-
pactness by the property of SX x BX in connection with the uniformity
for X. This will yield an easy proof of the main theorem (Theorem 2).

1. Regularly open sets’. In the first place, we shall establish a
lemma concerning regularly open sets, which will be used in the sequel.
Let A be a subset of a topological space X. We shall denote by Cl:(A)
the closure of A and by Int;(A) the interior of A.

A subset A of a topological space X is said to be regularly open
if and only if Int;(Cl x(4)) = A. It is easy to verify that the intersec-
tion of two regularly open sets is again regularly open, but the union
of them is, in general, not regularly open. The following lemma states
that if X is a dense subspace of a topological space Y, then the family
of all regularly open sets in X is in one to one correspondence with
the family of all regularly open sets in Y.

LEMMA. Let X be a dense subspace of a topological space Y.

(a) If A is regularly open in Y then the restriction AN X of A
on X 18 regularly open in X. Conversely, any regularly open set B
in X is identical with the restriction of some regularly open set in Y.

(b) Let A be a regularly open set in Y and let A’ be any open
set in Y such that AN XD A N X, then A D A’. Therefore two re-
gularly open sets A, A’ in Y are identical if and only if AN X =
A' N X.

* Received July 23, 1959.

1 See, [4], Th. 5 and Th. 1.

2 For [the] related results, the reader should refer to [1], [3], [5] and [8].

3 C.A. [6], p. 96 and p. 97, [7], Th. 28, [11], p. 84 and [9].
4+ CA. [12].
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Proof of (a). An easy calculation shows that if X is a dense
subspace of Y, then Int,(Cl;(4)) = Int,(Cl,(4)) N X. Therefore we have
AN XcInt,(Cly(4 N X)) =1Int,(Cl,(A N X)) N X Int,(Cl,(A) N X=
A N X, and it follows that Intx(Cl;(A N X)) =A N X. Hence AN X
is regularly open. If B is regularly open in X, then B = Int,(Cl.(B))
= Int,(Cly(B)) N X and Int,(Cl,(B)) is obviously regularly open in Y.

Proof of (b). If A’ ¢ A, then we have A’ ¢ Cl,(A) because A =
Int,(Cly(A)). Therefore A’ N [Cl;(A4)]° is a non-void open set in Y, where
[Cl,(4)]° denotes the complement of Cl,(4). Since X is dense in Y, there
exists a point of X contained in A’ N [Cl,(4)]°, and it follows that
A NXg AN X. The first part of (b) is therefore true. The last
part of (b) follows immediately from the first.

2. Paracompactness. Throughout the sequel, we shall restrict our-
selves to consideration of Tychonoff spaces (completely regular T)-
spaces). A compactification of X is a compact Hausdorff space containing
X as a dense subspace. The Stom-Cech compactification 8X is charac-
terized among the compactifications of X by the fact that every bound-
ed continuous function on X has a continuous extension over SX°.

THEOREM 1. X s paracompact if and only tf for each compact
set F om BX — X there is a surrounding® V for X such that

f/ ﬂ AF = ¢’ ’
where V denotes the interior of the closure of V taken in BX x BX;

V= Intgxupx (Clgxwpx(V)), and 4, = {(p, ») € BX x BX; p € F}.
Proof. (Necessity) Assume that X is a paracompact space, and
let F' be a compacts set contained in 83X — X. Then, there is for each
point # € X an open neighborhood (in 8X) UZ* of x such that Cl,(U%)
NF=¢. Put U,= U} N X and consider an open covering {U,},cx of
X. Take a locally finite open refinement {U,} of {U.,}.cx, and let
S'@, =1 be a locally finite partition of unity subordinate to {U,}. Put
d(z, y) = 3. |Pa(x) — Pa(y)| and put V, = {(x, y) € X x X; d(z,y) <1/2"}.
We shall show that V, N 4, = ¢, which will completes the proof.
Suppose, on the contrary, that there is a point p € F such that
(p, p) € V., then U*(p) x U*(p) c V, for some open neighborhood (in
BX) U*(p) of p, because V, is open in BX x BX. Let z be a point of
U(p) = U*(p) N X (there is surely such a point, since X is dense in B8X),
then there exists only a finite number of @,’s, say @,, ---, ®,, which
do not vanish at x. Put H, = {y € X; 9,(y) >0}, for1 <k =<mn. Clearly

5 C.1. [2] p. 833.
6 We call V' a surrounding for X if V is a member of a uniformity for X compatible
with the topology of X. (= ‘‘entourage’’)
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y ¢ Ui H, implies d(x, y) > 1, and it follows that U*(p)n X c Uz, H,
Hence p is contained in ClﬁX(UZ:IH,G). On the other hand, H, is
contained in some U, because {U,} is a refinement of {U,},cx, and
Clgx(U,) N F = ¢. Therefore, no point of F is contained in ClBX(UZ:lHk)
= Ur.(Clgx(Hy). We have thus a contradiction. It follows that
Vind, =¢.

(Sufficiency). Let {0,} be any open covering of X. For each 0,
we take (and fix) one open set 0j(in SX) such that 0f N X = 0,. Put
F, = [07]°, where [0}]° denotes the complement of 0} in BX, and put
F=[N,F, then F is a compact set contained in SX — X. By the
hypothesis of our theorem, we can construct a sequence of surrounding
{V,} such that 171 N 4, = ¢. Now, let us consider the uniform space
(X, 2v), where zr={V,}, and let ¢ be the uniform topology of /. It is
clear that topological the space (X, 7) is pseudo-metrizable hence is para-
compact.® Let d(x, y) be a pseudo-metric for X such that {(x, ¥) € X x X;
d(x, y) < 1} < V,, and put W, = {(=, y) e X x X;d(x,y) <1/2"}. Since
V, > W, implies V, > W, and since V N 4, = ¢, we have W, N 4, = ¢.
Consider an open covering {Wyx)},ex of (X, 7) and let {U,} be a locally
finite open refinement of {W,(x)},cx. Since the original topology of
X is stronger than 7, {U,} is necessarily a locally finite open covering
of X with respect to the original topology of X.

We shall show presently that Clsx(U,) N F' = ¢ for each U,. Notice
first that the restriction d.(y) of d(x,y) on « x X is a bounded
continuous function on X with respect to the original topology and
hence it has a continous extension d} over SX. Suppose that Clgx(U,)
N F # ¢ for some U,, and let p be a point of Cls(U,) N F. Since
U, c W(X,) for some 2z, € X, p is an accumulation point of {ye X;
d(x,, y) < 1/2°} for some x, € X. Therefore d; (p)= 1/2° < 1/2*, and
there is a neighborhood (in B8X) 0*(p) of p such that d,(y) <1/2* for
each y € 0(p) = 0%(p) N X. It follows that O(p) x O(p) € W,, and con-
sequently we have (p, p) € 0%(p) x 0%(p) C Intayvpx (Clsxxﬁx (0(p) x O(p))
C W, But this contradicts the above fact that W, N 4, = ¢, Hence
Clgx(Uy) N F = ¢.

Thus, we have a locally finite open covering {U,} of X such that
Clex(Uy) N F = ¢ for each ). Returning to the original covering {0,}
of X, we find that {0}} covers Cls (U,) for each U,, and, since Clgx(U,)
is compact, there is a finite number of 0}’s, say 0F, ---, 0} such that
Clex(U,) c Ui, 0. It follows that U, < Uj-, 0., and we have U, =

» H,, where H,, = U, N 0,. Thus, each U, can be represented as
a ﬁmte union of open sets of the form H,,. Constructing H,, for
each U, in this way, we have a locally finite open refinement {H, ,) of

7 By virtue of our lemma, it follows that U(p)x U(p)CIntx xx(Cl x xx(V1)), and there-
fore d(x, y)<1/2<1 for each ye Up).
8 See (10}, p. 160.
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{0,}. It follows that X is paracompact.
From the proof of the preceding theorem, we obtain the follow-
ing characterization of paracompactness.

COROLLARY. X s paracompact if and onl if for each compact set
F in BX — X there is a locally finite open covering {U,} of X such
that Clgx(U) N F=¢. (Each U, is a subset of X.)

The following theorem gives also a characterizotion of paracompact-
ness.

THEOREM 2. X is paracompact if and only if X x BX is normal.

Proof. The necessity of the condition is clear®. To prove the
sufficiency, we have only to show that for each compact set F in
BX — X there is a surrounding V for X such that VN 4, = ¢, by
virtue of Theorem 1.

Let F be a compact set contained in X — X, then X x F and 4,
are disjoint closed sets in X x BX, and since X x BX is normal there
are two open sets U, W, in X x B8X such that U, D4, W, D X x F
and U, N W, =¢. Put U= Inty.sx (Clyspx (Uy)), then U, is a regularly
open set in X x BX such that U, D 45y and U, N (X x F) = ¢.

We now put U = U, N (X x X), and we will show that U N 4, =,
where U is the interior of the closure of U taken in BX x 8X and
4, = {(p, p) € BX x BX; p € F}. Suppose, on the contrary, that Un
4y % ¢, and let (p, p) be a point of U N 4,. Then, there is a neigh-
borhood (in BX)0*(p) of p such that 0%(p) x 0%(p) = U. Let z be a
point of 0%(p) N X (such a point exists, because X is dense in BX),
then # x 0% (p) € U and we have (x, p) € (0%(p) x 0%(p)) N (X x BX)
c U N (X x BX). Ontheother hand, it is true that U, = Un (X x BX).
In fact, U=UN(X x X) by (a) of our lemma, and we have U, N (X x X)
—U=UnNXxX)=[UN(Xx BX)] N(X x X). That is, the re-
striction of U, on (X x X) is identical with that of U N (X x 8X).
Therefore we have U, = U N (X x BX) by (b) of the lemma, since both
of U, and U N (X x BX) are regularly open in X x 8X. It follows that
(x,p) € UN (X x BX) = U, but this contradicts the fact that U, N
(X x F)=¢. Therefore U N 4, = ¢.

We now consider the function F(x, y) € C(X x B8X) such that FF'= 0
on 4y and F' =1 outside of U, (such a function exists because X x BSX
is normal). Let F, be the restriction of F on z x X, and define a
function G(z, 2’) by letting

G(x, #) = ||F, — Fu|| = sup |F(#, 2) — F(z', 2)] .

9 See, [4], Th. 5 and Th. 1.
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It is easy to verify that G is a continuous function on X x X and
that

G(x,x') =0 for each (z,2') ¢ X x X, G(x,2)=0,
G(z, 2") = G(z', x),
and G(x,, x,) + G(2,, ;) = G(x,, x,) .
Moreover, we have

Fx,2') = F(x,2') — F(', ') < Sélﬁp |F(z, 2) — F(x', 2)| = G(z, x'),

and therefore G(z, ') < 1 implies that F(zx, 2') < 1. Put
V={=2)e X x X; Gx,2') <1},

then V is evidently a surrounding for X and we have Vc U. It

follows that Vc U, and, since U N 4, = ¢, we have VN d,=¢.
The proof is completed.
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The continuity of G follows from this fact by an easy calculation.








