SOME SPECTRAL PROPERTIES OF POSITIVE
LINEAR OPERATORS

HELMUT SCHAEFER

It is well known (Perron [12], Frobenius [6, 7]) that if Aisann x n
matrix over the real field with elements = 0, the spectral radius' of
A, r(A), is a characteristic number, with at leastone characteristic vec-
tor whose coordinates are = 0. If A has positive elements throughout,
then » is > 0, of algebraic and geometric multiplicity one, and exceeds
all other elements of the spectrum in absolute value.®? Generalizations
of this theorem to integral equations were obtained by Jentzsch [9] and
E. Hopf [8]. In an operator-theoretic setting, the result did not appear
until 1948 when Krein and Rutman published their most comprehensive
work [11]. Further results were obtained by Bonsall {2]-[4] and, in the
framework of a general locally convex space, by the author [15, 17]
For compact positive operators in an order-complete Banach lattice, see
Ando [1].

While the key to many results generalizing the Perron-Frobenius
theorem is compactness in one form or another, a good many spectral
properties of positive linear operators are independent of it. Such prop-
erties were established by Bonsall (e.c., cf. Prop. 1 below), the author
117], and recently Putnam [13] who considers, however, only the rather
special case of a bounded matrix with non-negative elements in I,. The
present paper establishes new and more general results on the (spectral)
character of the spectral radius 7 of a positive operator T, valid in ar-
bitrary ordered Banach spaces.®? Section 2 collects some theorems for
which no hypothesis or r is made; leaning heavily on topological prop-
erties of the positive cone K, they apply to any positive operator.
Throughout §8, ~ is assumed to be a pole of the resolvent of 7. The
stress is here on the notion of quasi-interior map; together with the
assumption on 7, this concept yields strong results earlier obtained by
Krein and Rutman [11] for strongly positive operators’” which are com-
pact and defined on a space whose positive cone K has interior points.
This is interesting since in many concrete examples of partially ordered
(B)-spaces, K has empty interior {16, p. 130]. The paper concludes with
two problems.

Received October 20, 1959. Based on research sponsored by the Office of Ordnance Re-
search, U.S. Army.

1 For the terminology adopted, see §1.

2 A short proof in [14]. Cf. also [5].

3 With only minor modifications, the results of the present paper carry over to bounded
positive endomorphisms of a partially ordered, quasi-complete locally convex space.
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1. Auxiliary material. A (real or complex) Banach space E is par-
trally ordered if an order relation!, denoted # < ¥ and invariant under
addition and multiplication by positive scalars, is defined on E. It is
well known that such an order structure is completely determined by
the set {x: = 0} of positive elements which will be called the positive
cone K. TUnless otherwise stated, we shall always suppose that K is
closed in £ and proper, i.e., such that K N —K = {0}°. K is generat-
ing if E =K — K, normal if |2 + y|| = ||y || for all z, y € K and some
real norm x — ||« || generating the topology of E. K is a B-cone (BZ-
Kegel in [16]) if for some fundamental system of bounded sets B, the
closed convex symmetric hulls of the sets BN K, B € B, form again
a fundamental system of bounded subsets of E.® We say K is spanned
by aset C if K= ,sMC. If E’ is the topological dual of E, K' C E'
is the set of those linear forms which are =0 on K (resp. if E is com-
plex, whose real parts are =0 on K). K’ is called the cone conjugate
to K. An fe E' is positive (resp. strictly positive) with respect to
a given partial ordering of F if Re f(x) = 0 for « € K (resp. if Re f(x) > 0
for 0 + x € K). If E is a real Banach space, F' its complexification in
the usual sense, and K is a normal cone (resp. a B-cone) in K, then
K + 1K is a normal cone (resp. a B-cone) in F' [17, p. 264].

Let E denote a real or complex Banach space, partially ordered by
a proper closed cone K.

LEMMA 1. If K is normal, then ' = K' — K'. If K is a normal
B-cone, then so is K’ for the strong topology on E'.

The first part is proved (for real spaces) in [10]. For the second
part, see [3, p. 146], and [17, p. 262/3] in the complex case. (It follows
from a simple category argument that in a Banach space, every generat-
ing cone is a B-cone.)

An order interval in E is a set [z,y] = {z:x <2 =< y}. We note
that if K is normal, every order interval is bounded.

DEFINITION. A point x is quasi-interior to K if the order interval
[0, 2] is a total subset of K.

It is clear that every interior point of K is quasi-interior, and that
every quasi-interior point of K is a non-support point of K in the sense
of V. L. Klee. If K has non-empty interior, the three notions coincide;
this is the case, in particular, if E is finite dimensional and K is total
(hence K, resp. K + +K if E is complex, is generating) in K.
minary relation which is reflexive and transitive. We assume always that
E + {0}.

5 K is proper if and only if the order relation is anti-symmetric.
6 S C E is symmetric if €S implies —x€S. In the (present) case of a normed space,

K is a B-cone if and only if there exists an m > 0 such that every z in the unit ball U
of E is of the form x = liMy—w (Un — vy) With Uy, v, € K N mU.
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LEMMA 2. Let P be a continuous projection in E such that PK C K.
If x € PK 1is quasi-interior to K, it is quasi-interior to PK in PE.

It is readily observed that [0, ] N PE = P[0, 2] under the conditions
stated; since the linear hull of [0, ] is dense in E, it follows that the
linear hull of P[0, x] is dense in PE.

A bounded endomorphism T of E is a positive operator if the posi-
tive cone K is invariant under T, i.e., if TK < K. The spectral radius
r of T is the maximum modulus of the points in its spectrum’ o(T).
The complement of o(T) in the complex plane is denoted by o(T), and
the resolvent (A — T')7, locally holomorphic in o(T), by R,. The point
spectrum of T is the set of all its characteristic numbers, i.e., the set
of those )\ for which AN—T fails to be (1,1). For a characteristic num-
ber ), d(\) denotes the (linear) dimension of the kernel of A\— T (the cha-
racteristic space); an x #* 0 in this kernel is called a characteristic
vector (of T for \). It is well known that every pole of the resolvent
is a characteristic number of T.

If T is a positive operator, then so is its adjoint 7’ with respect
to the conjugate cone K’, which is a proper cone in E’ if and only if
K is total in FE.

DEFINITION. A positive operator T 1is quast-interior if there ex-
ists N > r (r the spectral radius of 7T') such that TR,x is quasi-interior
to K for every x, 0 =2 € K.®

This condition on T is not stronger than requiring that for each
2,0 #+#x € K, the union of order intervals U;-,[0, T"x] be total in E.
(It is clear that K is a total cone in E if the set of quasi-interior posi-
tive operators on E is not empty.)

LEmMMA 3. If K is a normal B-cone or, more generally, if K and
K’ (K’ in the strong dual E’) are mormal cones, then the set & of all
positive operators is a mormal cone im the Banach space L(E) of
bounded endomorphisms of K.

It is known [17, p. 269] that the assertion holds if K is a normal
B-cone in E. If K and K’ are both normal, then K’ is a normal B-cone
for the strong topology on E’ (this follows from Lemma 1 and the sub-
sequent remark); therefore by Lemma 1, the cone K" conjugate to K’
in the Banach space E', bidual of E, is a normal B-cone. Thus the
cone & of positive operators on E” (with respect to K') is normal

7 If F is a real space, the terms spectrum, resolvent etc. will be understood with re-
spect to the extension of T to the complexification of E, which may be considered as or-
dered with positive cone K or K + iK.

8 E.g., if E =1,, K the cone of all vectors with non-negative coordinates, a bounded

matrix A = (a;,x) with non-negative elements is quasi-interior if and only if for each pair
(1, k) of indices, there exists n = n(i, k) such that (4%);, > 0. Cf. [13].
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in (E") and this implies that & is normal in 2(F) because the norm-
preserving natural imbedding of ¥(F) into ¥(E') maps & into &".

2. Some properties of the spectral radius. Throughout this section,
E denotes a (real or complex) partially ordered Banach space with posi-
tive cone K; E’ is the (topological) dual of E, equipped with the strong
topology unless otherwise stated. 7T is a positive operator on E with
spectral radius ».

The first part of the following proposition is due to Bonsall [3, p.
148] but the proof given here, which also yields the second assertion,
is entirely different from that in [3].

ProPOSITION 1. Let K and K' be normal cones in K resp. E'. For
each positive operator T, r is in the spectrum of T. If v is a pole of
the resolvent R, of order k, every other pole of R, on |N| =17 is of
an order = k.

Proof. It follows from Lemma 3 that the cone & of positive
operators is normal in (&) with respect to the uniform topology. It
is shown in [18] that if z — f(z) is an analytic function with values in
a Banach space, holomorphic at 0, such that its expansion at 0, 37, @,2",
has radius of convergence 1 and the set of coefficients {a,} is contained
in a normal cone, then z =1 is singular for f and if it is a pole of or-
der %, there is no pole of f on |2| =1 of order > k. The proposition
follows immediately by letting f(z) = R(r/z) if » > 0 (R, = R(\) the re-
solvent of T). If r =0, the result is trivial.

PRrOPOSITION 2. R, is a positive operator for each (real) N > r; if
R, is positive for some N € p(T), then N is real and > 0. If K, K’
are mormal (hence, if K is a normal B-cone), then N > r is a necessary
and sufficient condition in order that R, be positive.

Proof. From the expansion of R, at oo, it is easily seen that the
condition A\ > r is sufficient. Now assume that for some \ e o(T), R,
is a positive operator. Select an x, € K, 2, = 0, and define recursively
2, = Rux,_.(n € N).»* Each z, satisfies the equation

*) A, = T, + %y

We have x, e K(n € N) and since x, =0 for some » would imply
2, = 0,2, # 0 for all n. From (*) it follows that \x, ¢ K, and by in-
duction it is established that A"z, € K, \" 'z, € K for all n e N. Also,

9 For this statement, we have to assume that K #+ {0}.
10 N stands for the set of positive integers.
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A’nxng)’n_lnlz (neN).

Thus ) # 0 and without loss of generality, we may assume that |\ | =
1. (For if R, is positive at )\ == 0, then the resolvent of | \'| T is pos-
itive at M| A71].) Let » =¢%, 0 < ¢ < 2x, and suppose that ¢ > 0. It
is clear that nep # w(n € N) or K would not be a proper cone. Hence
there is an %, € N such that the triangle in the complex plane with
vertices 1, e!™1¢ ¢m¥ contains O in its interior. Consider the 2-di-
mensional real subspace L of E (resp. of E + 1E)" containing x,, and
1%,,. K N L (resp. (K + 1K) N L) is a proper convex cone of vertex 0
in L containing the points w,, A", , \*x,. Hence this cone contains
0 as an interior point in L which is contradictory. Thus ¢ =0, and
A > 0.

Let K and K' be normal in E resp. E’; then the cone & of positive
operators is normal in &(¥) by Lemma 8. If we had R, € & for some
N, 0 < A<, from the resolvent equation

R,—R,= (- MNR,\R,

it would follow that R, < R, (with respect to the order relation on
¥(E) whose positive cone is &) for all g >\, for which R,=0 there-
fore, in particular, for all ¢ > r. This would imply ||R.|| < || R,]|| for
all £ > r and some real norm A — || A|| generating the topology of
bounded convergence on %(E). This is impossible since r e o(T) by
Prop. 1 and consequently, || R.|| — <« as ¢ | r. The proof is finished.

PROPOSITION 8. If there exists 4,0 #+y € K, such that T*y = oy
for some p € N and 8 > 0, then r = &Y%,

Proof. Since K is closed and # E, a routine argument shows that
there exists a continuous linear form h € E’ such that the real part
fx) =Reh(x) is =0 on K and f(y) > 0. For ) > r, we have

fB) = 3 L f(T) 2 5 A1) 2 F05 2 = F0) = w 5

because T'?y = Sy implies T**y = &*y(k € N). It follows that f(R,y) is
unbounded as A* | 8. Consequently » = 87,

THEOREM 1. Let K be spanned by a convexr set not containing 0
and compact for some locally convex topology (on E) for which T is
continuous on K. There exists a non-negative characteristic number

11 i.e., for which the restriction of T to K is continuous.
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of T with (at least one) characteristic vector in K. If in addition K
s a normal cone gemerating E, then r is such a number.”

Proof. Let C be the convex set and T the locally convex topology
in question. There exists a Z-closed real hyperplane H = {x: f(x) = 1}
separating C strictly from 0. It is clear that f(x) > 0 for 0 + x € K.
K is closed for T: Let F be a filter on K converging to z, € F for I;
since f is continuous, there exists ' € F such that sup {f(x):x € F} <
1+ f(z,), therefore F < (1 + f(x,))C,, where C, is the convex hull of
{0} and C. Since C, is compact® x, which is in the closure of F, is
in K. Because H N K is a closed subset of C,, HN K is compact; so
f(z,) — 0 implies x, — 0 and thus Tz, — 0 for any sequence {z,} C K,
(all statements in this sentence referring to ).

Consider the real subspace E = K — K of E, equipped with the
norm

z— | z]| = inf {f(x) + f¥):2 =2 —y; a4,y € K} .

E is a Banach space. Given an arbitrary Cauchy sequence in E‘, there
exists a subsequence {z,} such that || z,,, — 2.|| < 1/2¢. By definition
of the norm in E’, there exist two sequences {x}, {¥x} in K with
Zosr — 2 = % — Yp(k € N) and ||z, || + || ¥ || < 1/2%. Since C, is com-
pact for <, the sequence

{ng: ne N}(resp.{é Y,:me N})

has a limit point x (resp. %) in K, and it is now easy to see that {z,}
(and hence the given sequence) converges to & — ¥, in E. Itis readily
verified that the restriction 7' of 7T to K is a continuous endomorphism.
Moreover, K is a normal closed cone in E', and it is a B-cone since it
is generating (cf. the remark following Lemma 1). If 4 is the spectral
radius of T, we have '?'eo(f’) by Prop. 1. Thus, since Rxw is non-
decreasing for each xe K if A | #, we have || Ry [| — oo for some ye K
as A | #. Letx, | # and set z, = RO0\w)y/|| By |l. Then Nz, — T, — 0
in £ and also (r — T)z, — 0 because of || %,]] = 1. By Proposition 2,
x, € K; and, since 1 = ||z, || = f(x,), it follows that z, € H N K(ne N).
Now H N K is compact for £ and as + — T is continuous for T on K,
it follows that (# — T)x =0 for some x € H N K. The proof of the first
part is finished.

12 The assumption that K be closed in E is not needed in Th. 1 and the corollary; the
first assertion of Th. 1 is also independent of E being a Banach space and of T being
bounded.

13 In any linear topological space, the convex hull of a finite number of convex compact
sets is compact. A locally convex topology is assumed to be Hausdorff by definition.
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If K is a normal generating cone in E, then rea(T) by Prop. 1.
It is clear that #+ <. On the other hand, + < » would imply that
r — T is an algebraical automorphism of E, which is impossible.

REMARK. Using the notation of the preceding proof, the number
7 (which was shown to be in the point spectrum of 7') may be charact-
erized as follows:
(a) 7 1is the greatest real mumber o such that a-T is not an algebraical
automorphism of the real subspace K — K of E.
(b) 1+ is the smallest real number a such that R, is positive for A > «,
repo(T).
() If g is a real ZT-continuous linear form on E with 0 ¢ g(C), then

i = lim {sup | g(T"x) |: x € C}™ .

As an application of Th. 1, we list a proposition which is equivalent
to the combination of [2, Th. 1] and [4, Th. C].

COROLLARY. If K has nmon-empty interior, there exists a non-nega-
tive number in o(T) which 1s a characteristic number of T' with (at
least one) characteristic vector in K'. If in addition K is normal, then
r 18 such a nmumber.

Proof. If x, is interior to K, the real hyperplane H = {x'e E":
Redx’, x,» = 1} intersects K’ is a set compact for the weak* topology
on E’. For the linear forms in this intersection are uniformly bounded
on the order interval [0, x,] (which has interior points), hence equicon-
tinuous. Obviously H N K' spans K’, and T' is continuous for the weak™
topology. The assertion concerning T follows from ¢(T) = ¢(T"). Final-
ly, if in addition K is normal, K’ is a normal (B)-cone in E’' spanning
E’ by Lemma 1 which completes the proof.

REMARK. If K is normal with non-empty interior I%, then for each

X € If, the norm A — || AJ|,, = sup {|| Az||: © € [0, ]} generates the topolo-
gy of bounded convergence on 2(E). For a positive operator and a
norm on E which is monotone on K, || T'||,, = || T%,[|. Thus:

If K is normal with K+ ¢ (and T positive), then
r = lim || T"x, [|'™
for every xoelz'.

3. Operators for which 7 is a pole of R,. As in §2, E denotes
a (real or complex) partially ordered Banach space; but we shall assume
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that T is a positive operator for which the spectral radius » is a pole
of the resolvent R,. The positive cone K is assumed proper and closed.

PROPOSITION 4. The leading coefficient in the principal part of R,
at N =7 1s a positive operator. Hence, if K is total in E, there ex-
ists (at least) ome characteristic vector of T for r in K, and of T’ for
r m K'.

Proof. Since the leading coefficient in the principal part of R, is
the limit* (r being a pole of order k) of (\ — »)*R, as A | 7, the first
assertion follows from the facts that R, is positive for » > » and that
K is closed in E. Further, if K is a closed proper cone total in E, then
K' is a closed proper cone weak* total in E’. The remainder is clear.

THEOREM 2. Let T be quasi-interior. Then:

1°. >0 and r is a simple pole of R,.

2°. Ewvery characteristic vector pertaining to r, of T in K (resp. of
T’ in K') is quasi-interior to K (resp. a strictly positive linear
form).

3°. FEach of these conditions tmplies that d(r) = 1:
(a) K has non-empty interior
(b) d(r) is finite
(¢) E is a Banach lattice.”

Proof. The assumption » = 0 implies, by Prop. 4, that Tx = 0 for
some x,0 #+ xe K. (Since T is a quasi-interior map, K has quasi-interior
points and is therefore total in E.) But then TR,x =0 for every
M e o(T) which contradicts the definition of a quasi-interior map. Hence
r > 0.

Let x,, 0 # x,€ K, be a characteristic vector of T for . By defini-
tion, there exists A > » such that TR,x, is quasi-interior to K. From
TR,x, = §1j, %& T e, = x, 21' ({-)
it follows that x, is quasi-interior to K. Similarly, if fis a characteristic
vector of 7" in K’ for r, we have r"f(x) = f(T"x)(ne N) for xweE,

hence with fi(z) = Re f(x)

£@ 3 (L) = 3 LA = ATR) > 0

1¢ For the topology of bounded convergence.

15 In the sense of G. Birkhoff (Lattice Theory, New York 1948). A Banach lattice is
by definition a real space; for our purposes, it is sufficient to assume that the underlying
real space of E is a Banach lattice.
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for every 0 # v € K, for f, must be >0 at every quasi-interior point
of K.

We show that » is a simple pole of R,. Let k be the order of 7;
if A is the leading coefficient in the principal part of R, at » = r, we
have A = P(T — r)** where

1

271 Jo

(C a positively oriented circle enclosing 7, and having no other elements
of a(T) in its interior or on its boundary), is the continuous projection
of E onto the subspace pertaining to the spectral set {r}. K being
total in £, we have Av # 0 for some ve K and Av is quasi-interior to
K by 2°. Let feK'be a characteristic vector of T’ for » (Prop. 4),
then P'f = f (P’ the adjoint of P) and

fiAv) = fIl(T — r)F o] = [(T" — r)*f L(v) > 0

which implies k¥ == 1. Therefore, » is a simple pole.

We show now that 3°. holds. Since # is a simple pole of R,, P is
a positive operator by Prop. 4. If x,e K is a characteristic vector of
T for r,x, is quasi-interior to K by 2°. Therefore, the cone PK can
have no boundary points = 0 which are not quasi-interior to PK in PE
by Lemma 2. If a) K has interior points, then so has PK in PE; thus
we must have d(r) = 1. If b) d(r) is finite, i.e., if P is of finite rank,
then every quasi-interior point of PK is actually interior to PK in PE
and the conclusion is the same.

There remains .to show that 3°. c¢) is sufficient for d(r) = 1. Let
2, be any characteristic vector of 7' for ». We have rx, = Tx, and con-
sequently r|x,| = T'|,|, | 2, | denoting the absolute of x,in the lattice-
theoretic sense. If in the latter relation equality does not hold, we
obtain

'rfl(l Lo D <f1(Tl Lo l) = Tfl(! Lo l)

for every characteristic vector fe K’ of T' for r (f is then strictly posi-

tive by 2°). This is contradictory; hence, »|x,| = T|x,| for every cha-
racteristic vector x,, whether or not in K, of T for . Now =z, =
xF — x, where the summands are disjoint. Since |x,| = 27 + 27, 7 and

x, are both in the characteristic space of T pertaining to ». Assume
that for some x,, both 2 + 0 and 2, = 0. Since the order interval
10, x;] is disjoint from x; and the lattice operations are continuous, x;
cannot be quasi-interior to K which contradicts 2°.** Consequently, either

16 Tt becomes clear from this that if E is a Banach lattice, the points quasi-interior to
K are weak units of F in the sense of Birkhoff (l.c.).
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27 =0 or z;y = 0. This implies that for each characteristic vector of T'
in K (for r), either z,€ K or z,€ —K; therefore d(r) = 1.

The theorem is proved.

If the assumptions that T be quasi-interior and 7 be a pole of R,
are satisfied, r need not be the only element of ¢(7T) on |\| = r even
if E is finite dimensional. For let E be Euclidean 2-space in its natural
order (i.e., K being the set of all vectors with non-negative coordinates).

The positive operator on E represented by the matrix @ (1)> is quasi-

interior: for » = 2, R, is the matrix 1/3 @ é) The characteristic num-

bers of T are 1 and —1.

ProrosITION 5. Let T be such that for each x,0 = x € K, there ex-
1sts a positive integer n = n(x) for which T"x ts an interior point of
K. Then r is the only element in the point spectrum of T on |\|= 7.

Proof. We note first that if T has the stated property and E is
a real space, the extension of 7T to the complexification E + ¢E has
the same property provided E + ¢E is considered as partially ordered
with positive cone K + 7K. Hence we assume E as complex.

By Theorem 2 (since T is obviously quasi-interior) there exists =z,
interior to K with rx, = Tx,. Because of » > 0, we may assume that
r =1. Suppose that for some ¢, 0 < ¢ < 27, ¥ is in the point spect-
rum of T and e*x = Tx(x + 0). Consider the 3-dimensional real sub-
space E, of K that contains x,, x, 1x; obviously E, is invariant under 7.
%,, which is an interior point of K, is interior to K, =K N E; in E..
Identifying E, (which we may for our purpose) as Euclidean 3-space
with coordinate axes =, x, 3¢, the restriction of T to E, is a rotation
through ¢ about x,. Let w # 0 be a point of K, which has maximum
angular distance from %, then T"w must have the same property for
every ne N. This implies that no T*w(ne N) is interior to K, and
a contradiction is established.

4. Problems. Let E be a partially ordered Banach space with
positive cone K, T a positive operator on E with spectral radius ». Under
what general conditions, if any, are these implications true:

a. If » is an isolated singularity of R,, every singularity of R, on

| A | = 7 is isolated.

b. If » is a pole of R,, R, has no singularities on | A | = r other than

poles.™

7 QOperators 7' with this property are called stromgly positive in [11].
18 E.g., are a. and b. true if K is a normal B-cone in E?
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