SOME SPECTRAL PROPERTIES OF POSITIVE LINEAR OPERATORS

HELMUT SCHAEFER

It is well known (Perron [12], Frobenius [6, 7]) that if A is an $n \times n$ matrix over the real field with elements ≥ 0 , the spectral radius¹ of A, r(A), is a characteristic number, with at least one characteristic vector whose coordinates are ≥ 0 . If A has positive elements throughout, then r is > 0, of algebraic and geometric multiplicity one, and exceeds all other elements of the spectrum in absolute value.² Generalizations of this theorem to integral equations were obtained by Jentzsch [9] and E. Hopf [8]. In an operator-theoretic setting, the result did not appear until 1948 when Krein and Rutman published their most comprehensive work [11]. Further results were obtained by Bonsall [2]-[4] and, in the framework of a general locally convex space, by the author [15, 17] For compact positive operators in an order-complete Banach lattice, see Ando [1].

While the key to many results generalizing the Perron-Frobenius theorem is compactness in one form or another, a good many spectral properties of positive linear operators are independent of it. Such properties were established by Bonsall (e.c., cf. Prop. 1 below), the author [17], and recently Putnam [13] who considers, however, only the rather special case of a bounded matrix with non-negative elements in l_2 . The present paper establishes new and more general results on the (spectral) character of the spectral radius r of a positive operator T, valid in arbitrary ordered Banach spaces.³ Section 2 collects some theorems for which no hypothesis or r is made; leaning heavily on topological properties of the positive cone K, they apply to any positive operator. Throughout §3, r is assumed to be a pole of the resolvent of T. The stress is here on the notion of quasi-interior map; together with the assumption on r, this concept yields strong results earlier obtained by Krein and Rutman [11] for strongly positive operators¹⁷ which are compact and defined on a space whose positive cone K has interior points. This is interesting since in many concrete examples of partially ordered (B)-spaces, K has empty interior [16, p. 130]. The paper concludes with two problems.

Received October 20, 1959. Based on research sponsored by the Office of Ordnance Research, U.S. Army.

¹ For the terminology adopted, see §1.

² A short proof in [14]. Cf. also [5].

³ With only minor modifications, the results of the present paper carry over to bounded positive endomorphisms of a partially ordered, quasi-complete locally convex space.

1. Auxiliary material. A (real or complex) Banach space E is partially ordered if an order relation⁴, denoted $x \leq y$ and invariant under addition and multiplication by positive scalars, is defined on E. It is well known that such an order structure is completely determined by the set $\{x: x \ge 0\}$ of positive elements which will be called the *positive* cone K. Unless otherwise stated, we shall always suppose that K is closed in E and proper, i.e., such that $K \cap -K = \{0\}^5$. K is generating if E = K - K, normal if $||x + y|| \ge ||y||$ for all $x, y \in K$ and some real norm $x \to ||x||$ generating the topology of E. K is a B-cone (BZ-Kegel in [16]) if for some fundamental system of bounded sets B, the closed convex symmetric hulls of the sets $B \cap K, B \in B$, form again a fundamental system of bounded subsets of E^{6} . We say K is spanned by a set C if $K = \bigcup_{\lambda \ge 0} \lambda C$. If E' is the topological dual of E, $K' \subset E'$ is the set of those linear forms which are ≥ 0 on K (resp. if E is complex, whose real parts are ≥ 0 on K). K' is called the cone conjugate to K. An $f \in E'$ is positive (resp. strictly positive) with respect to a given partial ordering of E if Re $f(x) \ge 0$ for $x \in K$ (resp. if Re f(x) > 0for $0 \neq x \in K$). If E is a real Banach space, F its complexification in the usual sense, and K is a normal cone (resp. a B-cone) in E, then K + iK is a normal cone (resp. a B-cone) in F [17, p. 264].

Let E denote a real or complex Banach space, partially ordered by a proper closed cone K.

LEMMA 1. If K is normal, then E' = K' - K'. If K is a normal B-cone, then so is K' for the strong topology on E'.

The first part is proved (for real spaces) in [10]. For the second part, see [3, p. 146], and [17, p. 262/3] in the complex case. (It follows from a simple category argument that in a Banach space, every generating cone is a B-cone.)

An order interval in E is a set $[x, y] = \{z : x \leq z \leq y\}$. We note that if K is normal, every order interval is bounded.

DEFINITION. A point x is quasi-interior to K if the order interval [0, x] is a total subset of E.

It is clear that every interior point of K is quasi-interior, and that every quasi-interior point of K is a non-support point of K in the sense of V. L. Klee. If K has non-empty interior, the three notions coincide; this is the case, in particular, if E is finite dimensional and K is total (hence K, resp. K + iK if E is complex, is generating) in E.

⁴ i.e., a binary relation which is reflexive and transitive. We assume always that $E \neq \{0\}$.

⁵ K is proper if and only if the order relation is anti-symmetric.

⁶ $S \subset E$ is symmetric if $x \in S$ implies $-x \in S$. In the (present) case of a normed space, K is a B-cone if and only if there exists an m > 0 such that every x in the unit ball U of E is of the form $x = \lim_{n \to \infty} (u_n - v_n)$ with $u_n, v_n \in K \cap mU$.

LEMMA 2. Let P be a continuous projection in E such that $PK \subset K$. If $x \in PK$ is quasi-interior to K, it is quasi-interior to PK in PE.

It is readily observed that $[0, x] \cap PE = P[0, x]$ under the conditions stated; since the linear hull of [0, x] is dense in E, it follows that the linear hull of P[0, x] is dense in PE.

A bounded endomorphism T of E is a positive operator if the positive cone K is invariant under T, i.e., if $TK \subset K$. The spectral radius r of T is the maximum modulus of the points in its spectrum $\sigma(T)$. The complement of $\sigma(T)$ in the complex plane is denoted by $\rho(T)$, and the resolvent $(\lambda - T)^{-1}$, locally holomorphic in $\rho(T)$, by R_{λ} . The point spectrum of T is the set of all its characteristic numbers, i.e., the set of those λ for which $\lambda - T$ fails to be (1,1). For a characteristic number λ , $d(\lambda)$ denotes the (linear) dimension of the kernel of $\lambda - T$ (the characteristic space); an $x \neq 0$ in this kernel is called a characteristic vector (of T for λ). It is well known that every pole of the resolvent is a characteristic number of T.

If T is a positive operator, then so is its adjoint T' with respect to the conjugate cone K', which is a proper cone in E' if and only if K is total in E.

DEFINITION. A positive operator T is quasi-interior if there exists $\lambda > r$ (r the spectral radius of T) such that $TR_{\lambda}x$ is quasi-interior to K for every x, $0 \neq x \in K$.⁸

This condition on T is not stronger than requiring that for each $x, 0 \neq x \in K$, the union of order intervals $\bigcup_{n=1}^{\infty} [0, T^n x]$ be total in E. (It is clear that K is a total cone in E if the set of quasi-interior positive operators on E is not empty.)

LEMMA 3. If K is a normal B-cone or, more generally, if K and K' (K' in the strong dual E') are normal cones, then the set \Re of all positive operators is a normal cone in the Banach space $\mathfrak{L}(E)$ of bounded endomorphisms of E.

It is known [17, p. 269] that the assertion holds if K is a normal B-cone in E. If K and K' are both normal, then K' is a normal B-cone for the strong topology on E' (this follows from Lemma 1 and the subsequent remark); therefore by Lemma 1, the cone K'' conjugate to K' in the Banach space E'', bidual of E, is a normal B-cone. Thus the cone \Re'' of positive operators on E'' (with respect to K'') is normal

⁷ If E is a real space, the terms spectrum, resolvent etc. will be understood with respect to the extension of T to the complexification of E, which may be considered as ordered with positive cone K or K + iK.

⁸ E.g., if $E = l_2$, K the cone of all vectors with non-negative coordinates, a bounded matrix $A = (a_{i,k})$ with non-negative elements is quasi-interior if and only if for each pair (i, k) of indices, there exists n = n(i, k) such that $(A^n)_{i,k} > 0$. Cf. [13].

in $\mathfrak{L}(E'')$ and this implies that \mathfrak{R} is normal in $\mathfrak{L}(E)$ because the normpreserving natural imbedding of $\mathfrak{L}(E)$ into $\mathfrak{L}(E'')$ maps \mathfrak{R} into \mathfrak{R}'' .

2. Some properties of the spectral radius. Throughout this section, E denotes a (real or complex) partially ordered Banach space with positive cone K; E' is the (topological) dual of E, equipped with the strong topology unless otherwise stated. T is a positive operator on E with spectral radius r.

The first part of the following proposition is due to Bonsall [3, p. 148] but the proof given here, which also yields the second assertion, is entirely different from that in [3].

PROPOSITION 1. Let K and K' be normal cones in E resp. E'. For each positive operator T, r is in the spectrum of T. If r is a pole of the resolvent R_{λ} of order k, every other pole of R_{λ} on $|\lambda| = r$ is of an order $\leq k$.

Proof. It follows from Lemma 3 that the cone \Re of positive operators is normal in $\Re(E)$ with respect to the uniform topology. It is shown in [18] that if $z \to f(z)$ is an analytic function with values in a Banach space, holomorphic at 0, such that its expansion at $0, \sum_{n=0}^{\infty} a_n z^n$, has radius of convergence 1 and the set of coefficients $\{a_n\}$ is contained in a normal cone, then z = 1 is singular for f and if it is a pole of order k, there is no pole of f on |z| = 1 of order > k. The proposition follows immediately by letting f(z) = R(r/z) if r > 0 ($R_{\lambda} = R(\lambda)$ the resolvent of T). If r = 0, the result is trivial.

PROPOSITION 2. R_{λ} is a positive operator for each (real) $\lambda > r$; if R_{λ} is positive for some $\lambda \in \rho(T)$, then λ is real and $> 0.^{\circ}$ If K, K' are normal (hence, if K is a normal B-cone), then $\lambda > r$ is a necessary and sufficient condition in order that R_{λ} be positive.

Proof. From the expansion of R_{λ} at ∞ , it is easily seen that the condition $\lambda > r$ is sufficient. Now assume that for some $\lambda \in \rho(T)$, R_{λ} is a positive operator. Select an $x_0 \in K$, $x_0 \neq 0$, and define recursively $x_n = R_{\lambda}x_{n-1}(n \in N)$.¹⁰ Each x_n satisfies the equation

$$\lambda x_n = T x_n + x_{n-1} .$$

We have $x_n \in K(n \in N)$ and since $x_n = 0$ for some *n* would imply $x_0 = 0, x_n \neq 0$ for all *n*. From (*) it follows that $\lambda x_1 \in K$, and by induction it is established that $\lambda^n x_n \in K$, $\lambda^{n-1}x_n \in K$ for all $n \in N$. Also,

⁹ For this statement, we have to assume that $K \neq \{0\}$.

 $^{^{\}rm 10}$ N stands for the set of positive integers.

$$\lambda^n x_n \geqq \lambda^{n-1} x_{n-1} \geqq x_0$$
 $(n \in N)$.

Thus $\lambda \neq 0$ and without loss of generality, we may assume that $|\lambda| = 1$. (For if R_{λ} is positive at $\lambda \neq 0$, then the resolvent of $|\lambda^{-1}| T$ is positive at $\lambda |\lambda^{-1}|$.) Let $\lambda = e^{i\varphi}$, $0 \leq \varphi < 2\pi$, and suppose that $\varphi > 0$. It is clear that $n\varphi \neq \pi(n \in N)$ or K would not be a proper cone. Hence there is an $n_0 \in N$ such that the triangle in the complex plane with vertices 1, $e^{i(n_0-1)\varphi}$, $e^{in_0\varphi}$ contains 0 in its interior. Consider the 2-dimensional real subspace L of E (resp. of E + iE)⁷ containing x_{n_0} and ix_{n_0} . $K \cap L$ (resp. $(K + iK) \cap L$) is a proper convex cone of vertex 0 in L containing the points x_{n_0} , $\lambda^{n_0-1}x_{n_0}$, $\lambda^{n_0}x_{n_0}$. Hence this cone contains 0 as an interior point in L which is contradictory. Thus $\varphi = 0$, and $\lambda > 0$.

Let K and K' be normal in E resp. E'; then the cone \Re of positive operators is normal in $\Re(E)$ by Lemma 3. If we had $R_{\lambda} \in \Re$ for some $\lambda, 0 < \lambda < r$, from the resolvent equation

$$R_{\lambda} - R_{\mu} = (\mu - \lambda) R_{\lambda} R_{\mu}$$

it would follow that $R_{\mu} \leq R_{\lambda}$ (with respect to the order relation on $\mathfrak{L}(E)$ whose positive cone is \mathfrak{R}) for all $\mu > \lambda$, for which $R_{\mu} \geq 0$ therefore, in particular, for all $\mu > r$. This would imply $||R_{\mu}|| \leq ||R_{\lambda}||$ for all $\mu > r$ and some real norm $A \to ||A||$ generating the topology of bounded convergence on $\mathfrak{L}(E)$. This is impossible since $r \in \sigma(T)$ by Prop. 1 and consequently, $||R_{\mu}|| \to \infty$ as $\mu \downarrow r$. The proof is finished.

PROPOSITION 3. If there exists $y, 0 \neq y \in K$, such that $T^{p}y \geq \delta y$ for some $p \in N$ and $\delta > 0$, then $r \geq \delta^{1/p}$.

Proof. Since K is closed and $\neq E$, a routine argument shows that there exists a continuous linear form $h \in E'$ such that the real part $f(x) = \operatorname{Re} h(x)$ is ≥ 0 on K and f(y) > 0. For $\lambda > r$, we have

$$f(R_{\lambda}y) = \sum_{n=0}^{\infty} rac{1}{\lambda^{n+1}} f(T^n y) \ge \sum_{k=1}^{\infty} rac{1}{\lambda^{k\,p+1}} f(T^{k\,p} y) \ge f(y) \sum_{k=1}^{\infty} rac{\delta^k}{\lambda^{k\,p+1}} = f(y) \cdot rac{\delta}{\lambda(\lambda^p - \delta)}$$

because $T^p y \ge \delta y$ implies $T^{kp} y \ge \delta^k y (k \in N)$. It follows that $f(R_{\lambda} y)$ is unbounded as $\lambda^p \downarrow \delta$. Consequently $r \ge \delta^{1/p}$.

THEOREM 1. Let K be spanned by a convex set not containing 0 and compact for some locally convex topology (on E) for which T is continuous on K^{11} . There exists a non-negative characteristic number

¹¹ i.e., for which the restriction of T to K is continuous.

of T with (at least one) characteristic vector in K. If in addition K is a normal cone generating E, then r is such a number.¹²

Proof. Let C be the convex set and \mathfrak{T} the locally convex topology in question. There exists a \mathfrak{T} -closed real hyperplane $H = \{x: f(x) = 1\}$ separating C strictly from 0. It is clear that f(x) > 0 for $0 \neq x \in K$. K is closed for \mathfrak{T} : Let F be a filter on K converging to $x_0 \in E$ for \mathfrak{T} ; since f is continuous, there exists $F \in F$ such that $\sup \{f(x): x \in F\} \leq 1 + f(x_0)$, therefore $F \subset (1 + f(x_0))C_1$, where C_1 is the convex hull of $\{0\}$ and C. Since C_1 is compact¹³, x_0 which is in the closure of F, is in K. Because $H \cap K$ is a closed subset of $C_1, H \cap K$ is compact; so $f(x_n) \to 0$ implies $x_n \to 0$ and thus $Tx_n \to 0$ for any sequence $\{x_n\} \subset K$, (all statements in this sentence referring to \mathfrak{T}).

Consider the real subspace $\hat{E} = K - K$ of E, equipped with the norm

$$|z \to ||z|| = \inf \{f(x) + f(y) : z = x - y; x, y \in K\}$$

 \hat{E} is a Banach space. Given an arbitrary Cauchy sequence in \hat{E} , there exists a subsequence $\{z_k\}$ such that $||z_{k+1} - z_k|| < 1/2^k$. By definition of the norm in \hat{E} , there exist two sequences $\{x_k\}$, $\{y_k\}$ in K with $z_{k+1} - z_k = x_k - y_k (k \in N)$ and $||x_k|| + ||y_k|| \leq 1/2^k$. Since C_1 is compact for \mathfrak{T} , the sequence

$$\left\{\sum_{\nu=1}^n x_
u$$
: $n \in N
ight\} \left(ext{resp.} \left\{\sum_{\nu=1}^n y_
u$: $n \in N
ight\}
ight)$

has a limit point x (resp. y) in K, and it is now easy to see that $\{z_k\}$ (and hence the given sequence) converges to x - y, in \hat{E} . It is readily verified that the restriction \hat{T} of T to \hat{E} is a continuous endomorphism. Moreover, K is a normal closed cone in \hat{E} , and it is a B-cone since it is generating (cf. the remark following Lemma 1). If \hat{r} is the spectral radius of \hat{T} , we have $\hat{r} \in \sigma(\hat{T})$ by Prop. 1. Thus, since $\hat{R}_{\lambda}x$ is nondecreasing for each $x \in K$ if $\lambda \downarrow \hat{r}$, we have $||\hat{R}_{\lambda}y|| \to \infty$ for some $y \in K$ as $\lambda \downarrow \hat{r}$. Let $\lambda_n \downarrow \hat{r}$ and set $x_n = \hat{R}(\lambda_n)y/||\hat{R}(\lambda_n)y||$. Then $\lambda_n x_n - \hat{T}x_n \to 0$ in \hat{E} and also $(\hat{r} - \hat{T})x_n \to 0$ because of $||x_n|| = 1$. By Proposition 2, $x_n \in K$; and, since $1 = ||x_n|| = f(x_n)$, it follows that $x_n \in H \cap K(n \in N)$. Now $H \cap K$ is compact for \mathfrak{T} and as $\hat{r} - \hat{T}$ is continuous for \mathfrak{T} on K, it follows that $(\hat{r} - \hat{T})x = 0$ for some $x \in H \cap K$. The proof of the first part is finished.

¹² The assumption that K be closed in E is not needed in Th. 1 and the corollary; the first assertion of Th. 1 is also independent of E being a Banach space and of T being bounded.

¹³ In any linear topological space, the convex hull of a finite number of convex compact sets is compact. A locally convex topology is assumed to be Hausdorff by definition.

If K is a normal generating cone in E, then $r \in \sigma(T)$ by Prop. 1. It is clear that $\hat{r} \leq r$. On the other hand, $\hat{r} < r$ would imply that r - T is an algebraical automorphism of E, which is impossible.

REMARK. Using the notation of the preceding proof, the number \hat{r} (which was shown to be in the point spectrum of T) may be characterized as follows:

- (a) \hat{r} is the greatest real number α such that α -T is not an algebraical automorphism of the real subspace K K of E.
- (b) \hat{r} is the smallest real number α such that R_{λ} is positive for $\lambda > \alpha$, $\lambda \in \rho(T)$.
- (c) If g is a real \mathfrak{T} -continuous linear form on E with $0 \notin g(C)$, then

$$\hat{r} = \lim_{n o \infty} \left\{ \sup \mid g(T^n x) \mid : x \in C
ight\}^{{\scriptscriptstyle 1/n}}$$
 .

As an application of Th. 1, we list a proposition which is equivalent to the combination of [2, Th. 1] and [4, Th. C].

COROLLARY. If K has non-empty interior, there exists a non-negative number in $\sigma(T)$ which is a characteristic number of T' with (at least one) characteristic vector in K'. If in addition K is normal, then r is such a number.

Proof. If x_0 is interior to K, the real hyperplane $H = \{x' \in E': \text{Re} \langle x', x_0 \rangle = 1\}$ intersects K' is a set compact for the weak* topology on E'. For the linear forms in this intersection are uniformly bounded on the order interval $[0, x_0]$ (which has interior points), hence equicontinuous. Obviously $H \cap K'$ spans K', and T' is continuous for the weak* topology. The assertion concerning T follows from $\sigma(T) = \sigma(T')$. Finally, if in addition K is normal, K' is a normal (B)-cone in E' spanning E' by Lemma 1 which completes the proof.

REMARK. If K is normal with non-empty interior \mathring{K} , then for each $x_0 \in \mathring{K}$, the norm $A \to ||A||_{x_0} = \sup \{||Ax||: x \in [0, x_0]\}$ generates the topology of bounded convergence on $\mathfrak{L}(E)$. For a positive operator and a norm on E which is monotone on K, $||T||_{x_0} = ||Tx_0||$. Thus:

If K is normal with $\mathring{K} \neq \phi$ (and T positive), then

$$r=\lim_{n o\infty}||\ T^nx_{\scriptscriptstyle 0}\,||^{\scriptscriptstyle 1/n}$$

for every $x_0 \in \mathring{K}$.

3. Operators for which r is a pole of R_{λ} . As in §2, E denotes a (real or complex) partially ordered Banach space; but we shall assume that T is a positive operator for which the spectral radius r is a pole of the resolvent R_{λ} . The positive cone K is assumed proper and closed.

PROPOSITION 4. The leading coefficient in the principal part of R_{λ} at $\lambda = r$ is a positive operator. Hence, if K is total in E, there exists (at least) one characteristic vector of T for r in K, and of T' for r in K'.

Proof. Since the leading coefficient in the principal part of R_{λ} is the limit¹⁴ (r being a pole of order k) of $(\lambda - r)^k R_{\lambda}$ as $\lambda \downarrow r$, the first assertion follows from the facts that R_{λ} is positive for $\lambda > r$ and that K is closed in E. Further, if K is a closed proper cone total in E, then K' is a closed proper cone weak^{*} total in E'. The remainder is clear.

THEOREM 2. Let T be quasi-interior. Then:

- 1°. r > 0 and r is a simple pole of R_{λ} .
- 2°. Every characteristic vector pertaining to r, of T in K (resp. of T' in K') is quasi-interior to K (resp. a strictly positive linear form).
- 3°. Each of these conditions implies that d(r) = 1:
 - (a) K has non-empty interior
 - (b) d(r) is finite
 - (c) E is a Banach lattice.¹⁵

Proof. The assumption r = 0 implies, by Prop. 4, that Tx = 0 for some $x, 0 \neq x \in K$. (Since T is a quasi-interior map, K has quasi-interior points and is therefore total in E.) But then $TR_{\lambda}x = 0$ for every $\lambda \in \rho(T)$ which contradicts the definition of a quasi-interior map. Hence r > 0.

Let $x_0, 0 \neq x_0 \in K$, be a characteristic vector of T for r. By definition, there exists $\lambda > r$ such that $TR_{\lambda}x_0$ is quasi-interior to K. From

$$TR_{\lambda}x_{\scriptscriptstyle 0} = \sum\limits_{1}^{\infty}rac{1}{\lambda^n} T^n x_{\scriptscriptstyle 0} = x_{\scriptscriptstyle 0} \sum\limits_{1}^{\infty} \left(rac{r}{\lambda}
ight)^n$$

it follows that x_0 is quasi-interior to K. Similarly, if f is a characteristic vector of T' in K' for r, we have $r^n f(x) = f(T^n x)(n \in N)$ for $x \in E$, hence with $f_1(x) = \operatorname{Re} f(x)$

$$f_1(x)\sum_{1}^{\infty}\left(\frac{r}{\lambda}\right)^n=\sum_{1}^{\infty}\frac{1}{\lambda^n}f_1(T^nx)=f_1(TR_{\lambda}x)>0$$

¹⁴ For the topology of bounded convergence.

¹⁶ In the sense of G. Birkhoff (Lattice Theory, New York 1948). A Banach lattice is by definition a real space; for our purposes, it is sufficient to assume that the underlying real space of E is a Banach lattice.

for every $0 \neq x \in K$, for f_1 must be > 0 at every quasi-interior point of K.

We show that r is a simple pole of R_{λ} . Let k be the order of r; if A is the leading coefficient in the principal part of R_{λ} at $\lambda = r$, we have $A = P(T - r)^{k-1}$ where

$$P=rac{1}{2\pi i}{\int_{\sigma}}R_{\lambda}d\lambda$$

(C a positively oriented circle enclosing r, and having no other elements of $\sigma(T)$ in its interior or on its boundary), is the continuous projection of E onto the subspace pertaining to the spectral set $\{r\}$. K being total in E, we have $Av \neq 0$ for some $v \in K$ and Av is quasi-interior to K by 2°. Let $f \in K'$ be a characteristic vector of T' for r (Prop. 4), then P'f = f (P' the adjoint of P) and

$$f_1(Av) = f_1[(T-r)^{k-1}v] = [(T'-r)^{k-1}f]_1(v) > 0$$

which implies k = 1. Therefore, r is a simple pole.

We show now that 3°. holds. Since r is a simple pole of R_{λ} , P is a positive operator by Prop. 4. If $x_0 \in K$ is a characteristic vector of T for r, x_0 is quasi-interior to K by 2°. Therefore, the cone PK can have no boundary points $\neq 0$ which are not quasi-interior to PK in PEby Lemma 2. If a) K has interior points, then so has PK in PE; thus we must have d(r) = 1. If b) d(r) is finite, i.e., if P is of finite rank, then every quasi-interior point of PK is actually interior to PK in PEand the conclusion is the same.

There remains to show that 3° . c) is sufficient for d(r) = 1. Let x_0 be any characteristic vector of T for r. We have $rx_0 = Tx_0$ and consequently $r |x_0| \leq T |x_0|, |x_0|$ denoting the absolute of x_0 in the lattice-theoretic sense. If in the latter relation equality does not hold, we obtain

$$rf_1(|x_0|) < f_1(T |x_0|) = rf_1(|x_0|)$$

for every characteristic vector $f \in K'$ of T' for r (f is then strictly positive by 2°). This is contradictory; hence, $r |x_0| = T |x_0|$ for every characteristic vector x_0 , whether or not in K, of T for r. Now $x_0 = x_0^+ - x_0^-$ where the summands are disjoint. Since $|x_0| = x_0^+ + x_0^-$, x_0^+ and x_0^- are both in the characteristic space of T pertaining to r. Assume that for some x_0 , both $x_0^+ \neq 0$ and $x_0^- \neq 0$. Since the order interval $[0, x_0^+]$ is disjoint from x_0^- and the lattice operations are continuous, x_0^+ cannot be quasi-interior to K which contradicts 2° .¹⁶ Consequently, either

¹⁶ It becomes clear from this that if E is a Banach lattice, the points quasi-interior to K are weak units of E in the sense of Birkhoff (1.c.).

 $x_0^+=0 ext{ or } x_0^-=0.$ This implies that for each characteristic vector of T in K (for r), either $x_0 \in K$ or $x_0 \in -K$; therefore d(r)=1.

The theorem is proved.

If the assumptions that T be quasi-interior and r be a pole of R_{λ} are satisfied, r need not be the only element of $\sigma(T)$ on $|\lambda| = r$ even if E is finite dimensional. For let E be Euclidean 2-space in its natural order (i.e., K being the set of all vectors with non-negative coordinates). The positive operator on E represented by the matrix $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ is quasi-interior: for $\lambda = 2$, R_{λ} is the matrix $1/3 \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$. The characteristic numbers of T are 1 and -1.

PROPOSITION 5. Let T be such that for each $x, 0 \neq x \in K$, there exists a positive integer n = n(x) for which $T^n x$ is an interior point of K.¹⁷ Then r is the only element in the point spectrum of T on $|\lambda| = r$.

Proof. We note first that if T has the stated property and E is a real space, the extension of T to the complexification E + iE has the same property provided E + iE is considered as partially ordered with positive cone K + iK. Hence we assume E as complex.

By Theorem 2 (since T is obviously quasi-interior) there exists x_0 interior to K with $rx_0 = Tx_0$. Because of r > 0, we may assume that r = 1. Suppose that for some φ , $0 < \varphi < 2\pi$, $e^{i\varphi}$ is in the point spectrum of T and $e^{i\varphi}x = Tx(x \neq 0)$. Consider the 3-dimensional real subspace E_3 of E that contains x_0, x, ix ; obviously E_3 is invariant under T. x_0 , which is an interior point of K, is interior to $K_3 = K \cap E_3$ in E_3 . Identifying E_3 (which we may for our purpose) as Euclidean 3-space with coordinate axes x_0, x, ix , the restriction of T to E_3 is a rotation through φ about x_0 . Let $w \neq 0$ be a point of K_3 which has maximum angular distance from x_0 ; then $T^n w$ must have the same property for every $n \in N$. This implies that no $T^n w(n \in N)$ is interior to K_3 and a contradiction is established.

4. Problems. Let E be a partially ordered Banach space with positive cone K, T a positive operator on E with spectral radius r. Under what general conditions, if any, are these implications true:

- a. If r is an isolated singularity of R_{λ} , every singularity of R_{λ} on $|\lambda| = r$ is isolated.
- b. If r is a pole of R_{λ} , R_{λ} has no singularities on $|\lambda| = r$ other than poles.¹⁸

1018

¹⁷ Operators T with this property are called strongly positive in [11].

¹⁸ E.g., are a. and b. true if K is a normal B-cone in E?

References

1. T. Ando, Positive linear operators in semi-ordered linear spaces, J. Fac. Science, Hokkaido University, Ser. I, XIII, (1957), 214-228.

2. F. F. Bonsall, Endomorphisms of partially ordered vector spaces, J. London Math. Society **30**, (1955), 133-144.

3. _____, Endomorphisms of a partially ordered vector space without order unit, ibidem, 144–153.

4. _____, Linear operators in complete positive cones, Proc. London Math. Soc. 3, VIII (29), (1958), 53-75.

5. A. Brauer, A new proof of theorems of Perron and Frobenius on non-negative matrices, I. Positive matrices. Duke Math. J., 24, (1957), 367-378.

6. G. Frobenius, Uber Matrizen aus positiven Elementen, Sitz. Ber. Preuss. Akademie der Wiss. Berlin. (1908), 471-476. (1909), 514-518.

7. ____, Uber Matrizen aus nicht negativen Elementen, ibidem (1912), 456-477.

8. E. Hopf, Uber lineare Integralgleichungen mit positivem Kern, Sitz. Ber. Preuss. Akademie der Wiss. Berlin. XVIII, (1928), 233-245.

 R. Jentzsch, Uber Integralgleichungen mit positivem Kern, Crelles J. 141, (1912), 235-244.
 M.G. Krein, et J. Grosberg, Sur la décomposition des fonctionnelles en composantes positives, Dokl. Acad. Sci. U.R.S.S. (N.S.) 25 (1939), 723-726.

11. M. G. Krein, Linear operators leaving invariant a cone in a Banach space, Uspehi Mat. Nauk. (n.s.) **3**, no. 1 (23), (1948), 3–95. Amer. Math. Soc. Transl. No. 26.

12. O. Perron, Zur Theorie der Matrizes, Math. Ann. 64, (1907), 248-263.

13. C. R. Putnam, On bounded matrices with non-negative elements, Canad. J. Math. X(4), (1958), 587-591.

14. H. Samelson, On the Perron-Frobenius theorem, Michigan Math. J., (1957), 57-59.

15. H. Schaefer, Positive Transformationen in lokalkonvexen halbgeordneten Vektorräumen, Math. Ann. **129**, (1955), 323-329.

16. ____, Halbgeordnete lokalkonvexe Vektorräume, Math. Ann. 135, (1958), 115-141.

17. ____, Halbgeordnete lokalkonvexe Vektorräume, II Math. Ann. 138, (1959), 259-286.

18. _____, On the singularities of an analytic function with values in a Banach space, Arch. Math. XI, (1960), 40-43.

UNIVERSITY OF MICHIGAN