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It is well known (Perron [12], Frobenius [6, 7]) that if A is an n x n
matrix over the real field with elements ^ 0, the spectral radius1 of
A, r(A), is a characteristic number, with at least one characteristic vec-
tor whose coordinates are ;> 0. If A has positive elements throughout,
then r is > 0, of algebraic and geometric multiplicity one, and exceeds
all other elements of the spectrum in absolute value.2 Generalizations
of this theorem to integral equations were obtained by Jentzsch [9] and
E. Hopf [8]. In an operator-theoretic setting, the result did not appear
until 1948 when Krein and Rutman published their most comprehensive
work [11]. Further results were obtained by Bonsall [2]-[4] and, in the
framework of a general locally convex space, by the author [15, 17]
For compact positive operators*in an order-complete Banach lattice, see
Ando [1].

While the key to many results generalizing the Perron-Frobenius
theorem is compactness in one form or another, a good many spectral
properties of positive linear operators are independent of it. Such prop-
erties were established by Bonsall (e.c, cf. Prop. 1 below), the author
117], and recently Putnam [13] who considers, however, only the rather
special case of a bounded matrix with non-negative elements in l2. The
present paper establishes new and more general results on the (spectral)
character of the spectral radius r of a positive operator T, valid in ar-
bitrary ordered Banach spaces.3 Section 2 collects some theorems for
which no hypothesis or r is made; leaning heavily on topological prop-
erties of the positive cone K, they apply to any positive operator.
Throughout § 3, r is assumed to be a pole of the resolvent of T. The
stress is here on the notion of quasi-interior map; together with the
assumption on r, this concept yields strong results earlier obtained by
Krein and Rutman [11] for strongly positive operators17 which are com-
pact and defined on a space whose positive cone K has interior points.
This is interesting since in many concrete examples of partially ordered
(B)-spaces, K has empty interior [16, p. 130]. The paper concludes with
two problems.

Received October 20, 1959. Based on research sponsored by the Office of Ordnance Re-
search, U.S. Army.

1 For the terminology adopted, see § 1.
2 A short proof in [14]. Cf. also [5].
3 With only minor modifications, the results of the present paper carry over to bounded

positive endomorphisms of a partially ordered, quasi-complete locally convex space.
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l Auxiliary material. A (real or complex) Banach space E is par-
tially ordered if an order relation4, denoted x S V and invariant under
addition and multiplication by positive scalars, is defined on E. It is
well known that such an order structure is completely determined by
the set {x: x ^ 0} of positive elements which will be called the positive
cone if. Unless otherwise stated, we shall always suppose that K is
closed in E and proper, i.e., such that if Π —K— {o}5. if is generat-
ing if E — K — if, normal if || x + y || ^ || y || for all x,y eKand some
real norm &—>||a;|| generating the topology of E. K is a B-cone (BZ-
Kegel in [16]) if for some fundamental system of bounded sets B, the
closed convex symmetric hulls of the sets B Π if, B e B, form again
a fundamental system of bounded subsets of E.6 We say K is spanned
by a set C if K = \J λ^0 λC. If E' is the topological dual of E, if' c Er

is the set of those linear forms which are ^ 0 on if (resp. if E is com-
plex, whose real parts are ^ 0 on if), if' is called the cone conjugate
to if. An / e Er is positive (resp. strictly positive) with respect to
a given partial ordering of E if Ref(x) ^ 0 f or x e K (resp. if Ref(x) > 0
for 0 Φ x e if). If E is a real Banach space, F its complexification in
the usual sense, and K is a normal cone (resp. a i?-cone) in E, then
if + iK is a normal cone (resp. a i?-cone) in F [17, p. 264].

Let E denote a real or complex Banach space, partially ordered by
a proper closed cone if.

LEMMA 1. If K is normal, then E' — if' — K\ If K is a normal
B-cone, then so is K' for the strong topology on E\

The first part is proved (for real spaces) in [10]. For the second
part, see [3, p. 146], and [17, p. 262/3] in the complex case. (It follows
from a simple category argument that in a Banach space, every generat-
ing cone is a B-cone.)

An order interval in E is a set [x, y] — {z:x ^z ^y}. We note

that if K is normal, every order interval is bounded.

DEFINITION. A point x is quasi-interior to K if the order interval
[0, x] is a total subset of E.

It is clear that every interior point of K is quasi-interior, and that
every quasi-interior point of if is a non-support point of K in the sense
of V. L. Klee. If K has non-empty interior, the three notions coincide;
this is the case, in particular, if E is finite dimensional and K is total
(hence if, resp. if + iK if E is complex, is generating) in E,

4 i.e., a binary relation which is reflexive and transitive. We assume always that
EΦ{0}.

6 K is proper if and only if the order relation is anti-symmetric.
6 S c E is symmetric if x£S implies — xGS. In the (present) case of a normed space,

K is a Z?-cone if and only if there exists an m > 0 such that every x in the unit ball U
of E is of the form x = limw_»oo (un - vn) with un,vn 6 K Π m U,
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LEMMA 2. Let P be a continuous projection in E such that PK c K.
If x e PK is quasi-interior to K, it is quasi-interior to PK in PE.

It is readily observed that [0, x] Π PE = P[0, x] under the conditions
stated; since the linear hull of [0, x] is dense in E, it follows that the
linear hull of P[0, x] is dense in PE.

A bounded endomorphism T of E is a positive operator if the posi-
tive cone K is invariant under T, i.e., if TK c K. The spectral radius
r of Γ is the maximum modulus of the points in its spectrum7 β{T).
The complement of σ(T) in the complex plane is denoted by p{T), and
the resolvent (λ — Γ)-1, locally holomorphic in p(T), by Rλ. The point
spectrum of T is the set of all its characteristic numbers, i.e., the set
of those λ for which λ— T fails to be (1,1). For a characteristic num-
ber λ, d(X) denotes the (linear) dimension of the kernel of λ— T (the cha-
racteristic space)) an x Φ 0 in this kernel is called a characteristic
vector (of T for λ). It is well known that every pole of the resolvent
is a characteristic number of T.

If T is a positive operator, then so is its adjoint Tr with respect
to the conjugate cone Kf, which is a proper cone in Er if and only if
K is total in E.

DEFINITION. A positive operator T is quasi-interior if there ex-
ists λ > r (r the spectral radius of T) such that TRλx is quasi-interior
to K for every x, 0 Φ x e K.8

This condition on T is not stronger than requiring that for each
xy 0 Φ x 6 K, the union of order intervals U£=i [0, Tnx] be total in E.
(It is clear that K is a total cone in E if the set of quasi-interior posi-
tive operators on E is not empty.)

LEMMA 3. If K is a normal B-cone or, more generally, if K and
Kr {Kr in the strong dual Ef) are normal cones, then the set & of all
positive operators is a normal cone in the Banach space 2(E) of
bounded endomorphisms of E.

It is known [17, p. 269] that the assertion holds if if is a normal
B-cone in E. If K and Kr are both normal, then Kf is a normal B-cone
for the strong topology on Ef (this follows from Lemma 1 and the sub-
sequent remark); therefore by Lemma 1, the cone K" conjugate to Kr

in the Banach space E", bidual of E, is a normal 5-cone. Thus the
cone $ϊ" of positive operators on E" (with respect to K") is normal

7 If E is a real space, the terms spectrum, resolvent etc. will be understood with re-
spect to the extension of T to the complexification of E, which may be considered as or-
dered with positive cone K or K 4- iK.

8 E.g., if E=h,K the cone of all vectors with non-negative coordinates, a bounded
matrix A = (di,k) with non-negative elements is quasi-interior if and only if for each pair
{i, k) of indices, there exists n = n{i, k) such that {An)i,ic > 0. Cf. [13].
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in 8(1?") and this implies that ® is normal in 2(1?) because the norm-
preserving natural imbedding of 2(1?) into 2(1?") maps £ into $".

2. Some properties of the spectral radius. Throughout this section,
E denotes a (real or complex) partially ordered Banach space with posi-
tive cone K; Ef is the (topological) dual of 1?, equipped with the strong
topology unless otherwise stated. T is a positive operator on E with
spectral radius r.

The first part of the following proposition is due to Bonsall [3, p.
148] but the proof given here, which also yields the second assertion,
is entirely different from that in [3],

PROPOSITION 1. Let K and K! be normal cones in E resp. Ef. For
each positive operator T, r is in the spectrum of T. If r is a pole of
the resolvent Rλ of order k, every other pole of Rλ on \X\ = r is of
an order ^ k.

Proof. It follows from Lemma 3 that the cone S of positive
operators is normal in 2(1?) with respect to the uniform topology. It
is shown in [18] that if z—*f(z) is an analytic function with values in
a Banach space, holomorphic at 0, such that its expansion at 0, Σ»= o anZn,
has radius of convergence 1 and the set of coefficients {an} is contained
in a normal cone, then z = 1 is singular for / and if it is a pole of or-
der k, there is no pole of / on | z \ — 1 of order > k. The proposition
follows immediately by letting f(z) = R(rlz) if r > 0 (Rλ = R(X) the re-
solvent of Γ). If r = 0, the result is trivial.

PROPOSITION 2. Rλ is a positive operator for each (real) X > r; if
Rλ is positive for some X e p(T), then X is real and > 0.9 If K,K'
are normal (hence, if If is a normal l?-cone), then X > r is a necessary
and sufficient condition in order that Rλ be positive.

Proof. From the expansion of Rλ at oo, it is easily seen that the
condition λ > r is sufficient. Now assume that for some λ e p(T), Rλ

is a positive operator. Select an x0 e K, xQ Φ 0, and define recursively
xn =zr Rxχn_λ(n e N).10 Each xn satisfies the equation

(*) Xxn = Txn + &„_! .

We have xn e K(n e N) and since xn = 0 for some n would imply
x0 = 0, xn Φ 0 for all n. From (*) it follows that Xxλ e K, and by in-
duction it is established that Xnxn e K, Xn'1xn e K for all n e N. Also,

9 For this statement, we have to assume that K Φ {0}.
1 0 N stands for the set of positive integers.
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Xnxn ^ X^Xn-i ^x0 (n 6 N) .

Thus λ ^ O and without loss of generality, we may assume that | λ | =
1. (For if Rλ is positive at λ Φ 0, then the resolvent of | λ"11 T is pos-
itive at λ I λ"11.) Let λ = eiφ, 0 ̂  φ < 2π, and suppose that φ > 0. It
is clear that nφ Φ π(n e N) or K would not be a proper cone. Hence
there is an n0 e N such that the triangle in the complex plane with
vertices 1, eiin°~1)φ, eίn°φ contains 0 in its interior. Consider the 2-di-
mensional real subspace L of E (resp. of E + iE)7 containing xnQ and
ixnQ. K Π L (resp. (K + iK) Π L) is a proper convex cone of vertex 0
in L containing the points xnQi λ7*0"1^, Xn°xno. Hence this cone contains
0 as an interior point in L which is contradictory. Thus ψ — 0, and
λ > 0.

Let K and Kf be normal in E resp. E'%, then the cone ^ of positive
operators is normal in 2(E) by Lemma 3. If we had Rλ e $£ for some
λ, 0 < λ < r, from the resolvent equation

it would follow that i?μ ̂  Rλ (with respect to the order relation on
2(E) whose positive cone is ®) for all μ > λ, for which i? μ ^0 there-
fore, in particular, for all μ > r. This would imply | |-Bμ | | ^ | |-Rλ | | for
all μ > r and some real norm A —> 11 A 11 generating the topology of
bounded convergence on %(E). This is impossible since r e σ(T) by
Prop. 1 and consequently, ||-ff/*||—>°° as μ [ r. The proof is finished.

PROPOSITION 3. If there exists y,0 Φ y e K, such that Tpy ^ Sy

for some p e N and δ > 0, then r ^ δ 1 / p .

Proof. Since K is closed and φ E, a routine argument shows that
there exists a continuous linear form h e E' such that the real part
fix) = Refe(a ) is ^ 0 on if and f(y) > 0. For λ > r, we have

because Tpy ̂  Sy implies Γfci>τ/ ^ 8ky(k e N). It follows that f(Rλy) is
unbounded as λp j δ. Consequently r ^ δ1/2).

THEOREM 1. Le^ if be spanned by a convex set not containing 0
and compact for some locally convex topology (on E) for which T is
continuous on K11. There exists a non-negative characteristic number

11 i.e., for which the restriction of T to K is continuous.
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of T with (at least one) characteristic vector in K. If in addition K
is a normal cone generating E, then r is such a number.12

Proof. Let C be the convex set and Z the locally convex topology
in question. There exists a X-closed real hyperplane H= {x: f(x) = 1}
separating C strictly from 0. It is clear that f(x) > 0 for 0 Φ x e K.
K is closed for Z: Let F be a filter on K converging to x0 e E for Z;
since / is continuous, there exists F e F such that sup {fix): x e F} S
1 + f(%o)f therefore F c (1 + f(xQ))Clf where Cx is the convex hull of
{0} and C. Since Cx is compact13, x0 which is in the closure of F, is
in K. Because H Π K is a closed subset of C19 H Π K is compact; so
f(xn) —> 0 implies xn —• 0 and thus Txn —» 0 for any sequence {xn} c K,
(all statements in this sentence referring to Z).

Consider the real subspace E = K — K of E, equipped with the
norm

z - > || z || = i n f {fix) + f(y): z = x - y ; x , y e K} .

E is a Banach space. Given an arbitrary Cauchy sequence in E, there
exists a subsequence {zk} such that || zk+1 — zk \\ < l/2fc. By definition
of the norm in E, there exist two sequences {xk}f {yk} in K with
^fc+i - * * = &*- y*(fc € iV) and || xfc || + || yk || ^ l/2fc. Since Cx is com-
pact for Z, the sequence

w w in

^xy:ne N\[resp.]Σ yy: n e N
V=l j \ ( v = l

has a limit point x (resp. y) in K, and it is now easy to see that {zk}

(and hence the given sequence) converges to x — y, in E. It is readily

verified that the restriction f of T to E is a continuous endomorphism.

Moreover, if is a normal closed cone in E, and it is a JS-cone since it

is generating (cf. the remark following Lemma 1). If f is the spectral

radius of Γ, we have reσ(T) by Prop. 1. Thus, since Rλx is non-

decreasing for each x e K if λ [ r, we have || Rλy || —> oo for some y e K

as λ 1 f. Let \n I r and set xn = R(Xn)yl\\ R(K)v ||. Then Xnxn - Txn -> 0

in E and also (f — T)#w —• 0 because of || xn || = 1. By Proposition 2,

#weif; and, since 1 — || xn \\ = f(xn), it follows that xn e H Π K(neN).

Now if Π if is compact for Z and as r — T is continuous for Z on iί,

it follows that (f — Γ)x = 0 for some x e H Π if. The proof of the first

part is finished.
12 The assumption that K be closed in E is not needed in Th. 1 and the corollary; the

first assertion of Th. 1 is also independent of E being a Banach space and of T being
bounded.

1 3 In any linear topological space, the convex hull of a finite number of convex compact
sets is compact. A locally convex topology is assumed to be Hausdorff by definition.
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If if is a normal generating cone in E, then reσ(T) by Prop. 1.
It is clear that r ^ r. On the other hand, r < r would imply that
r — T is an algebraical automorphism of E, which is impossible.

REMARK. Using the notation of the preceding proof, the number
f (which was shown to be in the point spectrum of T) may be charact-
erized as follows:
(a) r is the greatest real number a such that a-T is not an algebraical

automorphism of the real subspace K — K of E.
(b) r is the smallest real number a such that Rλ is positive for λ > α,

Xeρ(T).
(c) If g is a real %-continuous linear form on E with 0 $ g{C), then

r = lim {sup | g(Tnx) |: x e C}lln .

As an application of Th. 1, we list a proposition which is equivalent
to the combination of [2, Th. 1] and [4, Th. C].

COROLLARY. If K has non-empty interior, there exists a non-nega-
tive number in σ(T) which is a characteristic number of Tr with (at
least one) characteristic vector inK'. If in addition K is normal, then
r is such a number.

Proof. If x0 is interior to K, the real hyperplane H = {xr e EΊ
Re<V, xoy = 1} intersects Kf is a set compact for the weak* topology
on Er. For the linear forms in this intersection are uniformly bounded
on the order interval [0, x0] (which has interior points), hence equicon-
tinuous. Obviously H Π K' spans K\ and T' is continuous for the weak*
topology. The assertion concerning T follows from σ(T) = σ(T'). Final-
ly, if in addition K is normal, Kf is a normal (B)-cone in Er spanning
Ef by Lemma 1 which completes the proof.

REMARK. If K is normal with non-empty interior K, then for each
x0 e Ky the norm A —> || A \\H = sup {|| Ax | |: x e [0, x0]} generates the topolo-
gy of bounded convergence on &(E). For a positive operator and a
norm on E which is monotone on K, \\ T\\x = \\ Txo\\. Thus:

o

If K is normal with K ψ Φ (and T positive), then

r = lim || T*xa \\lln

o

for every x0 e K.

3. Operators for which r is a pole of Rλ. As in § 2, E denotes
a (real or complex) partially ordered Banach space; but we shall assume
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that T is a positive operator for which the spectral radius r is a pole
of the resolvent Rλ. The positive cone K is assumed proper and closed.

PROPOSITION 4. The leading coefficient in the principal part of Rλ

at X = r is a positive operator. Hence, if K is total in E, there ex-
ists (at least) one characteristic vector of T for r in K, and of T' for
r in Kr.

Proof. Since the leading coefficient in the principal part of Rλ is
the limit14 (r being a pole of order k) of (λ — r)kRλ as λ j r, the first
assertion follows from the facts that Rλ is positive for λ > r and that
K is closed in E. Further, if K is a closed proper cone total in E, then
K' is a closed proper cone weak* total in Ef. The remainder is clear.

THEOREM 2. Let T be quasi-interior. Then:
1°. r > 0 and r is a simple pole of Rλ.
2°. Every characteristic vector pertaining to r, of T in K (resp. of

T' in Kf) is quasi-interior to K (resp. a strictly positive linear
form).

3°. Each of these conditions implies that d(r) = 1:
(a) K has non-empty interior
(b) d(r) is finite
(c) E is a Banach lattice.15

Proof. The assumption r = 0 implies, by Prop. 4, that Tx = 0 for
some x, 0 Φ x e K. (Since T is a quasi-interior map, K has quasi-interior
points and is therefore total in E.) But then TRλx = 0 for every
Xep(T) which contradicts the definition of a quasi-interior map. Hence
r > 0.

Let xQ, 0 Φ xQ e K, be a characteristic vector of T for r. By defini-
tion, there exists λ > r such that Tjβλ#0 is quasi-interior to K. From

° ~ i Xn ° ~ ° Ί

it follows that cc0 is quasi-interior to K. Similarly, if / is a characteristic
vector of T in K' for r, we have rnf(x)^f(Tnx)(neN) for a e.E',
hence with fx(x) = Ref(x)

λ = ΣΣ = Λ(TRλx) > 0

14 For the topology of bounded convergence.
15 In the sense of G. Birkhoff (Lattice Theory, New York 1948). A Banach lattice is

by definition a real space; for our purposes, it is sufficient to assume that the underlying
real space of E is a Banach lattice.
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for every 0 Φ x e K, for fΎ must be > 0 at every quasi-interior point
of K.

We show that r is a simple pole of Rλ. Let k be the order of r;
if A is the leading coefficient in the principal part of Rλ at λ = r, we
have A — P(T — τf~λ where

1 f
2πi JO

RλdX

(C a positively oriented circle enclosing r, and having no other elements
of o(T) in its interior or on its boundary), is the continuous projection
of E onto the subspace pertaining to the spectral set {r}. K being
total in E, we have Av Φ 0 for some v e K and Av is quasi-interior to
K by 2°. Let feK'be a characteristic vector of Tr for r (Prop. 4),
then P'f = / (P' the adjoint of P) and

^(Av) =/ιL(Γ- r)*-y| - |(T' - r)*"1/]^) > 0

which implies k — 1. Therefore, r is a simple pole.
We show now that 3°. holds. Since r is a simple pole of Rλ, P is

a positive operator by Prop. 4. If x0 e K is a characteristic vector of
Γ for r, $0 is quasi-interior to K by 2°. Therefore, the cone PK can
have no boundary points Φ 0 which are not quasi-interior to PK in PE
by Lemma 2. If a) if has interior points, then so has PK in PE) thus
we must have d(r) = 1. If b) d(r) is finite, i.e., if P is of finite rank,
then every quasi-interior point of PK is actually interior to PK in PE
and the conclusion is the same.

There remains .to show that 3°. c) is sufficient for d(r) = 1. Let
xQ be any characteristic vector of T for r. We have rx0 — Tx0 and con-
sequently r I x01 <; TI xQ I, I x01 denoting the absolute of x0 in the lattice-
theoretic sense. If in the latter relation equality does not hold, we
obtain

for every characteristic vector / e K* of T' for r (/ is then strictly posi-
tive by 2°). This is contradictory; hence, r \ x0) = T\xo\ for every cha-
racteristic vector xQ, whether or not in K, of T for r. Now x0 =
xt ~ xύ~ where the summands are disjoint. Since | x0 \ = xi + x^, x£ and
xό are both in the characteristic space of T pertaining to r. Assume
that for some x0, both x0

+ Φ 0 and xo~ Φ 0. Since the order interval
[0, #o+] is disjoint from x^ and the lattice operations are continuous, XQ
cannot be quasi-interior to if which contradicts 2°.16 Consequently, either

16 It becomes clear from this that if E is a Banach lattice, the points quasi-interior to
K are weak units of E in the sense of Birkhoff (I.e.).



1018 HELMUT SCHAEFER

xt = 0 or #(Γ = 0. This implies that for each characteristic vector of T
in K (for r), either xoeK or $oe — i£; therefore d(r) = 1.

The theorem is proved.
If the assumptions that T be quasi-interior and r be a pole of Rλ

are satisfied, r need not be the only element of σ(T) on | λ | = r even
if E is finite dimensional. For let E be Euclidean 2-space in its natural
order (i.e., K being the set of all vectors with non-negative coordinates).
The positive operator on E represented by the matrix (i A) is quasi-

interior: for λ = 2, Rλ is the matrix 1/3 (1 o . The characteristic num-
\1 ΔJ

bers of T are 1 and — 1 .

PROPOSITION 5. Let T be such that for each x,0 Φ x e K, there ex-
ists a positive integer n = n(x) for which Tnx is an interior point of
K.17 Then r is the only element in the point spectrum of T on | λ [ = r.

Proof. We note first that if T has the stated property and E is
a real space, the extension of T to the complexification E + iE has
the same property provided E + iE is considered as partially ordered
with positive cone K + iK. Hence we assume E as complex.

By Theorem 2 (since T is obviously quasi-interior) there exists x0

interior to K with rx0 = TxQ. Because of r > 0, we may assume that
r = 1. Suppose that for some φ, 0 < φ < 2π, eiφ is in the point spect-
rum of T and eiφx = Tx(x Φ 0). Consider the 3-dimensional real sub-
space E5 of E that contains x0, x,ix; obviously Ez is invariant under T.
XQJ which is an interior point of K, is interior to Kd = K Π Ez in E3.
Identifying E3 (which we may for our purpose) as Euclidean 3-space
with coordinate axes x0, x, ix, the restriction of T to Es is a rotation
through φ about x0. Let w Φ 0 be a point of Kz which has maximum
angular distance from xo; then Tnw must have the same property for
every neN. This implies that no Tnw(neN) is interior to K3 and
a contradiction is established.

4. Problems, Let E be a partially ordered Banach space with
positive cone K, T a positive operator on E with spectral radius r. Under
what general conditions, if any, are these implications true:

a. If r is an isolated singularity of Rλ, every singularity of Rλ on
I λ I = r is isolated.

b. If r is a pole of RλJ Rκ has no singularities on | λ | = r other than
poles.18

17 Operators T with this property are called strongly positive in [11].
1 8 E.g., are a. and b. true if K is a normal i?-cone in E?
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