ON JACOBI FUNCTIONS

Emma Lehmer

The Jacobi functions ${ }^{1} R_{m}$ are usually defined by

$$
\begin{equation*}
R_{m}=R_{m}^{(k)}(\alpha)=\sum_{s=1}^{p-2} \alpha^{\operatorname{inn}(s-(m+1) \text { ind }(s+1)} \tag{1}
\end{equation*}
$$

where $\alpha=e^{2 \pi i / k}$ and ind $s=\operatorname{ind}_{g} s$ is taken with respect to some primitive root g of a prime $p=k n+1$. Therefore R_{n} depends in general on the choice of primitive root and all the explicit results which have been given for special cases, as in [1], [2], |7] and others contain ambiguities of sign due to this indeterminancy. In a recent work on power character matrices [4] it became necessary to make the known results more explicit and to obtain some new ones. It is the purpose of this note to give explicit results in case 2 is not a kth power residue of p for $k=3,4,5$ and 6 and for all m. The case in which 2 is a k th power residue of p still remains ambiguous.

We find it more convenient to use the character notation

$$
\chi(h)=\chi_{k}(h)= \begin{cases}\alpha^{\text {ind } h} & \text { if }(h, p)=1 \tag{2}\\ 0 & \text { otherwise }\end{cases}
$$

in order to make use of all the multiplicative properties of the characters. In this notation R_{n} becomes

$$
\begin{equation*}
R_{m}=\sum_{s=1}^{p-2} \chi(s)[\chi(s+1)]^{-m-1} . \tag{3}
\end{equation*}
$$

The following relations are well-known and can be easily derived from the definition as in [4].

$$
\begin{equation*}
R_{m}=\chi(-1) R_{k-1-m}=\chi(-1) \sum_{s=1}^{p-2} \chi(s) \chi^{m}(s+1) \tag{4}
\end{equation*}
$$

We shall need three other relations which we proceed to prove.
Lemma 1. If k is odd, then

$$
\begin{equation*}
R_{\lambda}(\alpha)=R_{1}\left(\alpha^{\lambda}\right) \text { for } k=2 \lambda+1 \tag{6}
\end{equation*}
$$

Proof. Let $s \bar{s} \equiv 1(\bmod p)$ Then

[^0]\[

$$
\begin{aligned}
R_{\lambda}(\alpha) & =\sum_{s=1}^{p-2} \chi(s) \chi^{\lambda}(s+1)=\sum_{s=1}^{p-2} \chi^{k-1}(\bar{s}) \chi^{\lambda}(s+1) \\
& =\sum_{s=1}^{p-2} \chi^{\lambda}(\bar{s}) \chi^{\lambda}(\bar{s}+1)=R_{1}\left(\alpha^{\lambda}\right) .
\end{aligned}
$$
\]

Lemma 2. If k is even, then

$$
\begin{equation*}
R_{\mu}=\chi(4) R_{1}, \text { where } k=2 \mu \tag{7}
\end{equation*}
$$

Proof. Using (4)

$$
\begin{aligned}
R_{\mu} & =\chi(-1) \sum_{s=1}^{p-2} \chi(s) \chi^{\mu}(s+1)=\chi(-1) \sum_{s=1}^{p-2} \chi(s) \chi_{2}(s+1) \\
& =\chi(-1)\left[\sum_{s=1}^{p-2} \chi(s)\left[1+\chi_{2}(s+1)\right]-\sum_{s=1}^{p-2} \chi(s)\right] .
\end{aligned}
$$

If $s+1$ is not a square, then the expression in the square brackets vanishes. Letting $s+1=t^{2}$ we obtain

$$
R_{\mu}=\chi(-1)\left[\sum_{t=1}^{p-1} \chi\left(t^{2}-1\right)+\chi(-1)\right]=\chi(-1) \sum_{t=0}^{p-1} \chi\left(t^{2}-1\right) .
$$

Now let $t=2 s+1$, then

$$
R_{\mu}=\chi(-4) \sum_{s=1}^{p-2} \chi(s) \chi(s+1)=\chi(4) R_{1} .
$$

Lemma 3. If k is oddly even, then
(8) $\quad R_{2 \nu}^{(k)}(\alpha)=\chi_{2 \nu+1}(4) R_{\nu}^{(2 \nu+1)}(\beta)$ where $k=4 \nu+2$, and $\beta=\alpha^{2}$.

Proof.

$$
\begin{aligned}
R_{2 \nu}^{(k)}(\alpha) & =\sum_{s=1}^{p-2} \chi(s) \chi^{2 \nu+1}(s+1)=\sum_{s=1}^{p-2} \chi(\bar{s}) \chi^{2 \nu+1}(\bar{s}+1) \\
& =\sum_{s=1}^{p-2} \chi^{4 \nu+1}(s) \chi^{2 \nu+2}(\bar{s}+1)=\sum_{s=1}^{p-2} \chi^{2 \nu}(s) \chi^{2 \nu+1}(s+1) \\
& =\sum_{s=1}^{p-2} \chi_{2 \nu+1}^{\nu}(s) \chi_{2}(s+1) \\
& =\sum_{s=1}^{p-2} \chi_{2 \nu+1}^{\nu}(s)\left[1+\chi_{2}(s+1)\right]-\sum_{s=1}^{p-2} \chi_{2 \nu+1}^{\nu}(s) .
\end{aligned}
$$

Letting $s+1=t^{2}$ as before:

$$
\begin{aligned}
R_{2 \nu}^{(k)}(\alpha) & =\sum_{t=0}^{p-2} \chi_{3 \nu+1}^{\nu}\left(t^{2}-1\right)=\chi_{2 \nu+1}(4) \sum_{s=1}^{p-2} \chi_{2 \nu+1}^{\nu}(s) \chi_{2 \nu+1}^{\nu}(s+1) \\
& =\chi_{2 \nu+1}(4) R_{1}^{(2 \nu+1)}\left(\beta^{\nu}\right) \\
& =\chi_{2 \nu+1}(4) R_{\nu}^{(2 \nu+1)}(\beta)
\end{aligned}
$$

by Lemma 1.

But by (4) and Lemma 2:

$$
R_{2 \nu+1}=\chi(-1) R_{2 \nu}=\chi_{k}(4) R_{1}, \quad k=4 \nu+2
$$

Hence by Lemma 3:

$$
\begin{equation*}
R_{1}^{(k)}(\alpha)=\chi_{k}(-4) R_{\nu}^{2 \nu+1}(\beta)=\chi_{k}(-4) R_{1}^{2 \nu+1}\left(\beta^{\nu}\right) \tag{9}
\end{equation*}
$$

Armed with these relations we can express all the Jacobi functions for $k=3,4,5$ and 6 in terms of the corresponding R_{1} as follows.
$k=3, R_{2}=-1$
$k=4, R_{3}=-\chi(-1), R_{2}=\chi(-1) R_{1}$ by (3)
$k=5, R_{4}=-1, R_{3}=R_{1}$ by (3) and $R_{2}=R_{1}\left(\alpha^{2}\right)$ by Lemma 1 .
$k=6, R_{5}=-\chi(-1) . \quad R_{4}=\chi(-1) R_{1}$ and $R_{3}=\chi(-1) R_{2}$ by (3).
By Lemma 2, however, $R_{3}=\chi(4) R_{1}$ and hence $R_{2}=\chi(-4) R_{1}$. Moreover by (9) $R_{1}^{(6)}=\chi(-4) R_{1}^{(3)}$ so that it is sufficient to determine R_{1} for $k=3$ in order to determine all the R 's for $k=3$ and $k=6$.

We now proceed to expand R_{1} in powers of α. If we write

$$
R_{1}=\chi(-1) \sum_{s=1}^{p-2} \chi(s) \chi(s+1)=\chi(-1) \sum_{\nu=0}^{k-1} a_{\nu} \alpha^{\nu}
$$

then a_{ν} is the number of solutions of

$$
s^{2}+s=g^{k t+\nu} \quad(t=0,1, \cdots, n-1)
$$

and is given by

$$
a_{\nu}=\sum_{\nu=0}^{k-1} \sum_{t=0}^{n-1}\left[1+\chi_{2}\left(1+4 g^{k t+\nu}\right)\right] .
$$

Hence

$$
\begin{aligned}
R_{1} & =\chi(-1) \sum_{\nu=0}^{k-1} \sum_{t=0}^{n-1} \chi_{2}\left(1+4 g^{k t+\nu}\right) \alpha^{\nu} \\
& =\frac{\chi(-1)}{k} \sum_{\nu=0}^{k-1} \sum_{x=1}^{p-1} \chi_{2}\left(1+4 x^{k} g^{\nu}\right) \alpha^{\nu} \\
& =\frac{\chi(-1)}{k} \sum_{\nu=0}^{k-1} \alpha^{\nu} \sum_{x=0}^{p-1} \chi_{2}\left(4 g^{\nu}\right) \chi_{2}\left(x^{k}+\left(\overline{4 g^{\nu}}\right)\right) \\
& =\frac{\chi(-1)}{k} \sum_{\nu=0}^{k-1} \chi_{2}\left(4 g^{\nu}\right) \psi_{k}\left(\overline{4 g^{\nu}}\right)
\end{aligned}
$$

where [5]

$$
\psi_{k}(D)=\sum_{x=1}^{p-1} \chi_{2}\left(x^{k}+D\right)=\left\{\begin{array}{l}
\left(\frac{D}{P}\right) \psi_{k}(\bar{D}) \text { if } k \text { is even } \\
\left(\frac{D}{P}\right) \mathscr{\varphi}_{k}(\bar{D}) \text { if } k \text { is odd }
\end{array}\right.
$$

and

$$
\varphi_{k}(D)=\sum_{x=1}^{p-1} \chi_{2}(x) \chi_{2}\left(x^{k}+D\right)=-\left(\frac{D}{P}\right) \varphi_{k}(\bar{D}), k \text { even }
$$

is the well-known Jacobsthal [3] function. Hence

$$
R_{1}= \begin{cases}\frac{\chi(-1)}{k} \sum_{\nu=0}^{k-1} \psi_{k}\left(4 g^{\nu}\right) \alpha^{\nu} & \text { if } k \text { is even } \tag{10}\\ \frac{1}{k} \sum_{\nu=0}^{k-1} \varphi_{k}\left(4 g^{\nu}\right) \alpha^{\nu} & \text { if } k \text { is odd }\end{cases}
$$

Making use of the relations [5]

$$
\begin{align*}
& \varphi_{k}\left(m^{k} D\right)=\chi_{2}^{k+1}(m) \varphi_{k}(D) \tag{11}\\
& \psi_{k}\left(m^{k} D\right)=\chi_{2}^{k}(m) \psi_{k}(D) \tag{12}
\end{align*}
$$

and

$$
\begin{equation*}
\psi_{2 k}(D)=\psi_{k}(D)+\varphi_{k}(D) \tag{13}
\end{equation*}
$$

we have for k even, substituting (13) into (10)

$$
R_{1}=\frac{\chi(-1)}{k}\left[\sum_{\nu=0}^{k-1} \psi_{k / 2}\left(4 g^{\nu}\right) \alpha^{\nu}+\sum_{\nu=0}^{k-1} \varphi_{k / 2}\left(4 g^{\nu}\right) \alpha^{\nu}\right]
$$

By (11) and (12)

$$
R_{1}=\left\{\begin{array}{l}
\frac{2 \chi(-1)}{k} \sum_{\nu=0}^{k-1} \psi_{k / 2}\left(4 g^{\nu}\right) \alpha^{\nu} \text { if } k / 2 \text { is odd } \tag{14}\\
\frac{2 \chi(-1)}{k} \sum^{k-1} \varphi_{k / 2}\left(4 g^{\nu}\right) \alpha^{\nu} \text { if } k / 2 \text { is even }
\end{array}\right.
$$

Since the functions φ and ψ have been unequivocally determined by us in [5] and [6] for $k=3,4,5$ and 6 in case 2 is not a k th power residue we can apply these results directly to the determination of the corresponding R_{1}. For $k=3$ let $p=A^{2}+3 B^{2}=3 n+1, A \equiv B \equiv$ $1(\bmod 3)$.
By (10)

$$
R_{1}=\frac{1}{3}\left[\varphi_{3}(4)+\omega \varphi_{3}(4 g)+\omega^{2} \varphi_{3}\left(4 g^{2}\right)\right]
$$

By [6]

$$
\varphi_{3}(D)= \begin{cases}-(2 A+1) & \text { if } D \equiv u^{3}(\bmod p) \\ A-3 B-1 & \text { if } D \equiv 2 u^{3}(\bmod p) \\ A+3 B-1 & \text { if } D \equiv 4 u^{3}(\bmod p)\end{cases}
$$

Hence
$R_{1}=\left\{\begin{array}{l}\frac{1}{3}\left[(A+3 B-1)-(2 A+1) \omega+(A-3 B-1) \omega^{2}\right] \text { if ind } 2 \equiv 1(\bmod 3) \\ \frac{1}{3}\left[(A+3 B-1)-(A-3 B-1) \omega-(2 A+1) \omega^{2}\right] \text { if ind } 2 \equiv 2(\bmod 3)\end{array}\right.$
or

$$
R_{1}=\left\{\begin{array}{l}
2 B+(B-A) \omega \text { if ind } 2 \equiv 1(3) \text { or if } \chi_{3}(2)=\omega \\
2 B+(B-A) \omega^{2} \text { if ind } 2 \equiv 2(3) \text { or if } \chi_{3}(2)=\omega^{2}
\end{array}\right.
$$

Hence if $\chi(2) \neq 1$, then

$$
\begin{equation*}
R_{1}=2 B+(B-A) \chi_{3}(2), \quad A \equiv B \equiv 1(\bmod 3) \tag{15}
\end{equation*}
$$

If 2 is a cubic residue, $B \equiv 0(\bmod 3)$ and the sign of B is not determined. However

$$
\begin{aligned}
R_{1} & =\frac{1}{3}\left[\varphi_{3}(1)+\varphi_{3}(g) \omega+\varphi_{3}\left(g^{2}\right) \omega^{2}\right] \\
& =\frac{1}{3}\left[-(2 A+1)+(A \pm 3 B-1) \omega+(A \mp 3 B-1) \omega^{2}\right] \\
& =-A \pm B\left(\omega-\omega^{2}\right)=(-A \pm B) \pm 2 B \omega .
\end{aligned}
$$

For $k=4, p=a^{2}+b^{2}=4 n+1, a \equiv 1(\bmod 4)$ we obtain from (14)

$$
R_{1}=\frac{\chi_{4}(-1)}{2}\left[\varphi_{2}(4)+i \varphi_{2}(4 g)\right]
$$

We know that ${ }^{2}$ [5]

$$
\begin{aligned}
\varphi_{2}\left(u^{2}\right) & =-\chi_{2}(u) 2 a \\
\varphi_{2}\left(2 u^{2}\right) & \left.=-\chi_{2}(u) 2 b \text { if } \chi_{2}(2)=-1,[b / 2 \equiv 1 \bmod 4)\right] \\
\varphi_{2}\left(\sqrt{2} u^{2}\right) & =-\chi_{2}(u) 2 b \text { if } \chi_{2}(2)=+1,\left[b / 4 \equiv(-1)^{n / 2}(\bmod 4)\right] .
\end{aligned}
$$

If $\chi_{2}(2)=-1$, then $\chi_{4}(-1)=-1$, and ind $2 \equiv 1$ or $3(\bmod 4)$ so that

$$
R_{1}=\left\{\begin{array}{l}
-(a+i b) \text { if ind } 2 \equiv 1(\bmod 4) \\
-(a-i b) \text { if ind } 2 \equiv 3(\bmod 4)
\end{array}\right.
$$

or

$$
\begin{equation*}
R_{1}=-\left[a+b \chi_{4}(2)\right] \text { if } \chi_{2}(2)=-1,[b / 2 \equiv 1(\bmod 4)] . \tag{16}
\end{equation*}
$$

[^1]If $\chi_{2}(2)=+1$, then $\chi_{4}(-1)=+1$. But $\chi_{4}(2)=-1$ and ind $\sqrt{2} \equiv 1$ or $3(\bmod 4)$. Hence

$$
R_{1}=\left\{\begin{array}{l}
-a-b i \text { if ind } \sqrt{2} \equiv 1(\bmod 4) \\
-a+b i \text { if ind } \sqrt{2} \equiv 1(\bmod 4)
\end{array}\right.
$$

or

$$
\begin{equation*}
R_{1}=-\left[a+b \chi_{4}(\sqrt{2})\right] \text { if } \chi_{2}(2)=1,\left[b / 4 \equiv(-1)^{b / 2}(\bmod 4)\right] \tag{17}
\end{equation*}
$$

If $\chi_{4}(2)=+1$, then $\chi_{4}(-1)=+1$, and

$$
R_{1}=-a \pm b i
$$

but the sign of b remains undetermined.
For $k=5$, we have by (10)

$$
R_{1}=\frac{1}{5}\left[\varphi_{5}(4)+\alpha \rho_{5}(4 g)+\alpha^{2} \varphi_{5}\left(4 g^{2}\right)+\alpha^{3} \varphi_{5}\left(4 g^{3}\right)+\alpha^{4} \varphi_{5}\left(4 g^{4}\right)\right]
$$

The φ 's have been determined previously [6] in terms of the partition

$$
\left\{\begin{array}{l}
16 p=x^{2}+50 u^{2}+50 v^{2}+125 w^{2} \\
x w=v^{2}-u^{2}-4 u v, x \equiv 1(\bmod 5)
\end{array}\right.
$$

to read

$$
\begin{aligned}
\varphi_{5}(4) & =x-1 \\
\varphi_{5}(4 g) & =\frac{1}{4}[-4-x+25 w+10(u+2 v)] \\
\varphi_{5}\left(4 g^{2}\right) & =\frac{1}{4}[-4-x-25 w+10(2 u-v)] \\
\varphi_{5}\left(4 g^{3}\right) & =\frac{1}{4}[-4-x-25 w-10(2 u-v)] \\
\varphi_{5}\left(4 g^{4}\right) & =\frac{1}{4}[-4-x+25 w-10(u+2 v)]
\end{aligned}
$$

This gives

$$
\begin{aligned}
R_{1}= & \frac{1}{4}\left[x+\alpha(5 w+2 u+4 v)+\alpha^{2}(-5 w+4 u-2 v)\right. \\
& \left.+\alpha^{3}(-5 w-4 u+2 v)+\alpha^{4}(5 w-2 u-4 v)\right]
\end{aligned}
$$

In a previous paper [6] we have determined (x, u, v, w) uniquely in case ind $2 \equiv 1(\bmod 5)$ by selecting u even and $v \equiv x+u(\bmod 4)$. If ind $2 \equiv m(\bmod 5)$, the coefficient of $\alpha^{m \nu}$ becomes $\varphi\left(4 g^{\nu}\right)$ or the coefficient of α^{ν} is $\varphi\left(4 g^{\bar{m} \nu}\right)$. This transformation is achieved if the solution:

$$
(x, u, v, w) \text { is replaced by }\left\{\begin{array}{l}
(x, v,-u,-w) \text { ind } 2 \equiv 2(\bmod 5) \\
(x,-v, u,-w) \text { ind } 2 \equiv 3(\bmod 5) \\
(x,-u,-v, w) \text { ind } 3 \equiv 4(\bmod 5)
\end{array}\right.
$$

As before, if ind $2 \equiv 0(\bmod 5)$, the indeterminancy remains.

References

1. P. Bachmann, Die Lehre von der Kreistheilung (Leipzig, 1872).
2. L. E. Dickson, Cyclotomy, higher congruences and Waring's problem, Amer. Math. 57 (1935), 391-424.
3. E. Jacobsthal, Anwendungen einer Formel aus der Theorie der quadratischen Reste, Dissertation (Berlin 1906).
4. D. H. Lehmer, Power Character Matrices, Pacific J. Math. 10 (1960), pp. 895-907.
5. Emma Lehmer, On the number of solutions of $u^{k}+D \equiv w^{2}(\bmod p)$, Pacific J. Math. 5 (1955), 103-118.
6. -, On Euler's criterion, The Journ. of the Australian Math. Soc. 1 (1959), 64-70.
7. A. L. Whiteman, The sixteenth power residue character of 2, Canadian J. Math. 6 (1954), 364-373.

[^0]: ${ }^{1}$ Received November 17, 1959. The notation R_{m} is used here as in [2] instead of Jacobi's original ψ as in [1] and [4] to avoid conflict with Jacobsthal's ψ.

[^1]: ${ }^{2}$ There is a misprint in the corresponding formula (13) in [6] for $b / 4 \equiv(-1)^{n}$ read $b / 4 \equiv(-1)^{n / 2}$. The same mistake is repeated four lines down.

