
ON JACOBI FUNCTIONS

EMMA LEHMER

The Jacobi functions1 Rm are usually denned by

Rm = R™(a) = g α l ng l n d - ( " ι + 1 ) l n d <
s=\

where a — e2πίllc and ind s = ind9 s is taken with respect to some primi-
tive root g of a prime p = kn + 1. Therefore Rm depends in general
on the choice of primitive root and all the explicit results which have
been given for special cases, as in [1], [2], ]7] and others contain am-
biguities of sign due to this indeterminancy. In a recent work on power
character matrices [4] it became necessary to make the known results
more explicit and to obtain some new ones. It is the purpose of this
note to give explicit results in case 2 is not a feth power residue of p
for k = 3, 4, 5 and 6 and for all m. The case in which 2 is a kth power
residue of p still remains ambiguous.

We find it more convenient to use the character notation

( 2 ) m u h )

(-0 otherwise

in order to make use of all the multiplicative properties of the charac-
ters. In this notation Rm becomes

(3) Λw = ΣZ(β)tt(β + l)l-w- 1.
S = l

The following relations are well-known and can be easily derived from
the definition as in [4].

(4) Rm = χ(-l)Rk^.m = Z(-1)ΣZ(8)Γ(8 + 1)
S — l

(5) i2 fc_1= _ χ ( _ l ) = (_i)»+i.

We shall need three other relations which we proceed to prove.

LEMMA 1. Ifk is odd, then

(6 ) Rλ(a) = R^a*) for k = 2λ + 1

Proof. Let ss = 1 (mod p) Then
1 Received November 17, 1959. The notation Rm is used here as in [2] instead of Jacobi's

original ψ as in [1] and [4] to avoid conflict with JacobsthaΓs ψ.
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N 7 ^ '

— 2 J *
8=1

LEMMA 2. If k is even, then

7 ) Rμ = X(A)Rlf where k — 2μ .

Proof. Using (4)

p-2

= Z ( - I ) Γ Σ z(«)[i + &(s + i)]
Ls=i

If s + 1 is not a square, then the expression in the square brackets
vanishes. Letting s + 1 = t2 we obtain

- 1) + Z(-l)l - Z(-l) ΣZίί1 - 1) .
J ί=0

Now let t = 2s + 1, then

i?μ = Z(-4) ΣZ(β)Z(β + 1) = Z(4)JB! .
S = l

LEMMA 3. If k is oddly even, then

( 8 ) Λg>(α) = Z2v+1(4)i2ί2v+1)(/5) where k - 4y + 2, and 0 = α 2.

Proof.

= Σ*)Z 2 v + 1 ( s + 1) - Σ Z@r+1(β + 1)

= Σ z4v+I(s)z2v+2(s + 1 ) = Σ r v (s)r v + i (s +
l

= Σ «.+i(β)[l + Z2(s + 1)] - Σ
S ' l S = l

Letting s + 1 = ί2 as before:

P—2 p—2

ί=0 S=l
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by Lemma 1.
But by (4) and Lemma 2:

Hence by Lemma 3:

Armed with these relations we can express all the Jacobi functions for
k — 3, 4, 5 and 6 in terms of the corresponding Rλ as follows.
k = 3, R2 = - 1

k = 4, R, = - Z ( - l ) , R, = Z(-l)i?i by (3)
& = 5, JB4 = — 1, J?3 = i?i by (3) and J?2 = i?i(α2) by Lemma 1.
fc = 6, i25 = - Z ( - l ) . # 4 = Z(-l)J?i and R3 = X(-1)R2 by (3).
By Lemma 2, however, iϋ3 = Z(4)iϋi and hence R2 = Z(—4)i2l0 Moreover
by (9) R{6) = χ(-4)Rf so that it is sufficient to determine Rλ for k = 3
in order to determine all the R's for /c = 3 and k = 6.

We now proceed to expand i^ in powers of a. If we write

p — 2 fc-l

tC\ — X{ 1) ^_J Z's jZ's + 1) — Z( J-j ^_i d^oί
S=l V = 0

then αv is the number of solutions of

r»2 I Q /-γfcί +-V ί4- 0 1 a -n 1 ^

and is given by

fc-l n-\

v^o t-o

Hence

B, = χ ( - l ) Σ ΣZ 2 (1 + 4ff*ί+v)αv

V=0ί=0

+

where [5]

— )ψk{D) if k is even

V ( 5 ) if k is odd
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= Σ
35 = 1

(x* + D) = -(£yk(D), A; even

is the well-known Jacobsthal [3] function. Hence

(10)
Ψ*

T- Σ
k v=o

if k is even

if k is odd .

Making use of the relations [5]

(11) ΨA^D

(12) ψ-*(m*i)

and

(13) f +
we have for k even, substituting (13) into (10)

By (11) and (12)

(14) R1

Ψ,

Σ ψ*/i(4ffv)αv if k/2 is odd

2X( D|>E/2(4g v)a v if m is even .

Since the functions φ and ψ- have been unequivocally determined by
us in [5] and [6] for k = 3, 4, 5 and 6 in case 2 is not a fcth power
residue we can apply these results directly to the determination of
the corresponding Rt. For k = 3 let p = A2 + 3£ 2 = Zn + 1, A^B =
1 (mod 3).
By (10)

By [6]

ί-(2A + 1) if Z> Ξ v? (mod p)

- 3 B - l i f 2 > s 2w3(mod p)

[A + 3B-1 if D = 4%3(mod 2))
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Hence

(i- [(A + 3B-1)- (2A + l)ω + (A - 35 - l)ω2] if ind 2 s 1 (mod 3)
B'=

i
U- [(Λ + SB - 1) - (A - 3B - l)ω - (2A + l)ft)2] if ind 2 = 2 (mod 3)

o

or

(25 + (5 - A)α> if ind 2 Ξ 1(3) or if χ3(2) = α>
1 ~ (25 + (B - A)ω2 if ind 2 s 2(3) or if Z3(2) = ω2 .

Hence if χ(2) ψ 1, then

(15) i2, = 2B + (B - A)χd{2) , A = B = 1 (mod 3) .

If 2 is a cubic residue, 5 = 0 (mod 3) and the sign of B is not de-
termined. However

1) + (A ± SB - 1)0) + (A T 3β -

= -A± B(ω - ω2) = (-A ± B) ± 2Bω .

For k — ^ p ~ a2 + b2 — 4M + 1, a ^ 1 (mod 4) we obtain from (14)

We know that2 [5]

= -Un)2a

<P2(2u*) = -χ1(«)26 if L(2) = - 1 , [6/2 s 1 mod 4)]

~«2) = -Z,(«)26 if χ,(2) = + 1 , [6/4 s (-1)"'2 (mod 4)] .

If χ,(2) = - 1 , then & ( - l ) = - 1 , and ind 2 s 1 or 3 (mod 4) so that

_ | - ( α + *ί») if ind 2 = 1 (mod 4)
1 ~ \-(a - ib) if ind 2 = 3 (mod 4)

or

(16) B1=-[a + 6χ4(2)] if χ,(2) = - 1 , [6/2 = 1 (mod 4)] .

2 There is a misprint in the corresponding formula (13) in [6] for 6/4 = ( — l) t t read
6/4 Ξ (-l)w/ 2 . The same mistake is repeated four lines down.
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If χ2(2) = + 1 , then Z4(-l) = + 1. But χ4(2) = - 1 and indτ/2" = 1 or
3 (mod 4). Hence

ί — a — hi if ind τ/2" — 1 (mod 4)
Rl = \-a + bi if i n d y ^ s l (mod 4)

or

(17) i?x = - [ α + 6χ4(τ/2)] if Z,(2) = 1, [6/4 = (-1)*'2 (mod 4)] .

If χ<(2) = +1, then χ 4 (-l) = +1, and

Rx = —α ± 6i

but the sign of b remains undetermined.
For k = 5, we have by (10)

The φ's have been determined previously [6] in terms of the partition

(16p = x2 + 50tt2 + 50 v2 + 125 w2

\xw = v2 — v? — 4MV, X = 1 (mod 5)

to read

[ 4 ^ + 25^ + 10(u + 2v)]
4

[ 4 ^ 2 5 ^ + 10(2u - v)]
4

- v)]

\ [-4 - α;
4

This gives

1 2u

+ a\-5w - 4u + 2v) + α4(5^ - 2u —

In a previous paper [6] we have determined (x, u, v, w) uniquely in case
ind 2 = 1 (mod 5) by selecting u even and v = x + u (mod 4). If
ind 2 = m (mod 5), the coefficient of amv becomes φ{Ag^) or the coefficient
of αv is φ(Agm"). This transformation is achieved if the solution:
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(x, u, v, w) is replaced by

\xf v, —u, —w) ind 2 = 2 (mod 5)

(x, —v, u, —w) ind 2 = 3 (mod 5)

(x> —u, —vf w) ind 3 Ξ= 4 (mod 5) .

As before, if ind 2 = 0 (mod 5), the indeterminancy remains.
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