LIE MAPPINGS IN CHARACTERISTIC 2

I. N. HERSTEIN AND ERWIN KLEINFELD!

1. Introduction. In a previous paper [2] one of the authors proved
that Jordan homomorphism, that is, an additive mapping ¢ onto a prime
ring of characteristic not 2 or 3 which preserves squares, is either a
homomorphism or an anti-homomorphism. Smiley [6] then showed that
this was also true in the characteristic 3 case; in the characteristic 2
case he showed that the same conclusion holds for ¢ if one assumes
p(aba) = p(a)p(b)p(a) for all @ and b.

We concern ourselves here with mappings ¢ onto a simple ring of
characteristic 2 which preserve commutators and cubes. This situation
is of interest for in characteristic 2 Jordan homomorphisms are the same
thing as Lie homomorphisms, that is, mappings which preserve commu-
tators. Lie mappings for matrices have been completely determined [5].
However little information is known for general simple rings.

Of particular interest is the type of argument used to establish the
result for it uses the theory of Lie and Jordan ideals and substructures
of simple rings developed by Herstein |3].

2. Main section. As is customary the commutator ab-ba will be
denoted by [a, b].

Initially ¢ will be a mapping from a simple ring R onto a simple
ring R’ + 0 of characteristic 2 which satisfies

(i) P+ y) = () + ¢(y)
(ii) P(z*) = p(2)°
(iii) P(2%) = p(z)°

for all x,y,ze R. Later we weaken (ii) to the assumption that
Plry — yx) = p@)P(y) — P(Y)P(x).

Although we do not assume that the characteristic of R is 2, it can
be easily proved. Clearly ¢(2x) = 0 for all x e R; but the kernel of ¢
is a Jordan ideal of R, and if the characteristic of R is not 2, the only
non-zero Jordan ideal of R would be R itself [3]; thus 2xz = 0 for all
x € R and R has characteristic 2.

Assume that ¢ is a mapping satisfying (i), (iii) and (i) @(xy+yx)=
p(x)p(y) + ¢(y)p(x) for all z,ye R, and that R is a field. From (i),
R’ is a field. On linearizing (iii) we find that

(1) e@y(@ +9) =9@)e@) e +y) for all x,ye R. Let W=
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{ze R|p(z) = 0}. Thus if 0 = ze W from (1), for all b € R, @(zb(z+b))=0.
Putting b = 27" in this yields 0 = ¢(2) = @(z7!). If we replace b by 27* we
obtain @(1) = ¢(27°) = @(27')* = @(2)* = 0. Thus putting x = 1 in (1) leads
to ¢(b*) = @(b) for allbe R. In (1), putting x = b~ we arrive at @(b*)=
P(1 + 07°) = P(b7)Pd)(P(b + b7)). Since p(b~°) = ¢(b7'), ¢(b°) = ¢(b),

(2) P07) = @b NPd)Pb + b)) = (b + b™") from (1). By sym-
metry, @(b)* = (b 4+ b7'), and so @(b*) = @(b)* = (b)) = ¢(b~*), whence
@(b* 4+ b)) = 0. Thus, using this in (2) we have that @(b~*)=p(b*+b-*)=0,
and so @(b~°) = 0; thus @(b™") = 0 for all be R, that is, ¢(x) = 0 for all
xe R, forcing R' =0. So we must assume that ¢(z) = 0 implies that
z2=0.

In (1) let # = 0,1 be arbitrary, y = 2~'. Then

Pr+a’) = pe)p(r e + 27",

and since x 4+ 27! = 0, we have that @(x)p(x~') = 1. Since 0 = ¢(1) =
P(1®) = (1)}, »(1)* = 1, and since R’ is a field of characteristic 2, this
forces (1) = 1. Thus @(z™') = ¢(x)™" for all x + 0e R. By a result of
Hua [4] # must be an isomorphism. If R = GF(2), then since ¢(0)=0,
@(1) =1 it is trivial that ¢ is an isomorphism. Therefore the special
case that R is a field is disposed of, and we assume henceforth in the
paper that R is a simple ring which is not a field.

Suppose that R is simple and has a unit element and ¢ satisfies (i),
(ii)’ and (iii). Suppose ¢(1) = a. By (ii)’, @ is in Z’, the center of R’.
Also @* =91 =9(1®) =a, and so a =0 or > =1. If a* =1, since a
is in Z’, and R’ is simple of characteristic 2, ¢ = 1. Suppose that a=
®(1)=0. Thus for all x € R, p(z)’'=p(z+1)=p((x+1))=p(@*+2*+2+1).
Thus @(x*) = @(x); replacing x by x + ¥ in this yields @(xy + yx) =0
for all z,ye R, and so R’ is a field. Now

P + 2y + xyx + y2* + y'r + yey + 2y’ + ) = o((x + v))
= (@) + 2@))° = ¢(x)* + P@)Py) + ) e) + »¥) .

This leads, using @(ab + ba) = 0 to

(2) p(xy + y'x) = p(2)p(y) + P(yye(x) for all z,yeR.

In this replace x by x + 2. A simple computation then shows that
@((xz+2x)y)=0 for all z, ¥y, ze R. From this we get that p(R(xz+zx)R)=0
for all z,ze R; if xz + 2x + 0 by the simplicity of R, R(xz + zx)R=R.
Since R’ + 0 we are forced to assume that xz + zx = 0 for all x,z¢e R.
But then R is a field and from the case already disposed of we know
that @ is an isomorphism and so ¢(1) = 1, contradicting (1) = 0. Thus
we have shown that if ¢ is an additive mapping preserving cubes and
commutators and if R has a unit element, then (1) = 1. Now consider-
ing o(x + 1)* we readily see that ¢(x?) = ¢(x)’. Thus (ii)’ and (iii) imply
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(ii). Thus it would suffice in this case to assume that ¢ preserves cubes
and commutators.
We begin with

LEMMA 1. For all x,ye R,

p(xyr + yry) = P@)P(y)P@) + »@)e(x)p(y) .

Proof. Linearizing (ii) it is clear that ¢(ab + ba)=p(a)p(b)+ ¢(b)p(a).
In (iii) replace z by  + y. Then

P + 2y + xyx + yo* + ¥ + yey + 2y + ¥ = @) + e@)e(y)
+ p@)P(y)P(x) + P)P(x) + Py)Ye(x) + ey)e(x)P(y)
+ P@)Py) + ey) .

Because of (iii) @(x*) = @(x)?, (¥*) = ¢(y)*. Also from (ii) and its linear-
ized form, @(x%y + y2’) = p(@)p(y) + »W)r®) and Py + xy’) =
P(y)'p(x) + P(@)P(y)’. Substituting these results into the above linearized
form of (iii) we obtain the result of the lemma.

Lemma 1 will now be strengthened to

LEmMA 2. For all z,y,2€ R,

P(ryz + zyx) = P@)PY)P () + PE)p@)p(r) .

Proof. In the result of lemma 1 replace x by # + 2. Carrying out
the linearization and using Lemma 1 on the resulting expressions we are
left with the expression in Lemma 2.

LemmA 3. If ¢(z) =0 then z = 0.

Proof. Suppose ¢(z) = 0. From Lemma 2 it follows that
Plryz + zyx) = P@)P(y)P(2) + PE)P(Y)P) = 0

for all x,yeR.

However, ¢(xyz+zey)=9(xy)p(z) + 9(2)p(xy)=0. Adding these two
to we obtain ¢(z(xy+yx))=0 for all x,ye R. Letting z'=z(axy-+yx)
and repeating the argument used above, @(z'(uv+wvu)=0, that is,
P(2(xy +yx)(uv + vu)) = 0. Continuing in this manner, ¢(za) = 0 for all
a in the subring generated by all the elements xy 4+ yx with z,ye R.
Since R is simple and not a field, by a result of Herstein [3], the subring
generated by all the xy + yx is R itself. Thus ¢xR)=0. By a
symmetrical argument, ¢(Rz) = 0. But then, replacing z by Rz we obtain
that (RzR) =0. If 2+ 0, by the simplicity of R, RzR = R, and so
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@(R) =0, whence R’=0, contrary to assumption. Hence we can
conclude that z = 0.
We now prove

LEMMA 4. For all 2,y e R ¢(xyx) = ¢(x)p(y)p(x) + N where \ com-
mutes with ¢(x) and with ¢(y).

Proof. Since x*yx+ xyx*=x(xyr)+ (xyx)r we know that ¢(x*yx +ayx?)=
p(x)p(ryx) + ¢(zyx)e(x). But, on the other hand, by Lemma 2

p(ryr + zya®) = p(2)Py)P®) + PE)Py)P(e) .
Equating these two expressions it follows that

p(x)(P(ryr) + P(@)P(y)P) = (Pryr) + PE)P(Y)P(E)P(r) .

From Lemma 1,

P(yxy) + Py)PE)e(y) = P(ryx) + ¢(@)P(y)e(x)

and so it also commutes with ¢(y), proving the lemma.
Of central importance in our subsequent arguments is the

Lemma 5. If zy = yx then @(xy) = @(®)py).

Proof. Note that 0= ¢(0) = p(xy + yz) = P@)P(Y) + 2W)P(*),
P(x)p(y) = PY)P(x).
From Lemma 2 we have that

p(xyz + zyx) = p(x)P(Y)P(2) + PR)P(Y)P(2) ,

while from our assumptions on ¢, @(xyz + 2xy) = P(2yY)P(2) + P(2)P(xy).
Since zxy = zyx, we deduce that p = ¢(xy) + ¢(x)®(y) has the property
that [p, (z)] = 0 for all z.

On the other hand, xz(xy) = (xy)x, and so by a similar argument
o = p(x%) + ¢(x)p(xy) has the property that [o, ¢(z)] = 0. Moreover,
since 2* and y commute, by the same argument as above ¢(z’y) =
@(x)'¢(y) + T where [7, 9(z)] = 0. Thus

0 =17 + p)(p(ry) + P(x)py)) =T + P(r)o .

But then [¢(x)0, #(2)] = 0 and so [@(x), ()]0 = 0. Since o is in the
center of R’ and R’ is a prime ring we must have either 0 =0 or
[e(x), ()] = 0. If o =0 we have proved our contention. If 0 # 0,
[¢(x), ()] = 0 for all z, and so [z, 2] = 0. Using Lemma 3, we deduce
that [z,2] = 0, hence x is in the center of R. Similary ¥ is in the
center of R. Since R is not a field there is an element w not in the
center of R. Since z is in the center, xw = wx. As we have just seen,
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either @(xw) = @(x)p(w) or both x and w are in the center of R. Since
w is out of the center, p(xw) =p(x)p(w). Since y is in the center of
R,y + w is not in the center so

P(ry) + p(e)p(w) = p(xy) + plaw) = P(xy + xw)
Py + w)) = p@)p(y + w) = P(x)P(y) + P@)p(w) .

Thus ¢(zy) = P(x)P(y), and so 0 = 0, contrary to the assumption that
0 # 0. Thus in any case we conclude that p = 0 and so that @(xy) =
@(x)p(y), thereby proving the lemma.

LEMMA 6. If the center of R contains an element N #+ 0,1 then
P(ryx) = P(@)P(y)P(®) for all »,ye k.

Proof. Substituting Mz for x in Lemma 1 we see that

PNy + Myry) = eOX)P(y)P(\x) + P(y) Pur)P(y) -
In light of Lemma 5, o(\Mxyx) = p(\)*p(zyx) ,

P(\x) = p(M)p(x) and P(\yxy) = P(N)P(yey) -
Thus

PN p(ryx) + p(NP(yry) = POV P(x)P(y)P(x) + PON)Py)P(x)P(y) .

Multiplying the identity of Lemma 1 by o(\) and subtracting from the
above we have

(PO + (V) (P(xyx) + P(@)Py)p(x) = 0 .

However, o(\)’ + ®(\) = @(\* + \), and since M = 0,1 A* + \ # 0, hence
by Lemma 3, @(\* + \) # 0. Thus @A) + @()\) is a non-zero element in
the center of a prime ring R’; since it is annihilated by @(xyx) + @(x)p(y)P(x),
it must be that ¢(xzyx) + @(x)P(y)e(x) = 0. This completes the proof of
the lemma.

LEMMA 7. For any x,y€ R define z by
P(z) = p(zyx) + pE)P(y)P(x). Then pz') = ¢(z).

Proof. From Lemma 4 it follows that [¢(z), ¢(x)] =0 and [@(z), P(y)]=
0. But then ¢[z,2] =0 and @[z, y] = 0; consequently by Lemma 3,
[2,2] = 0 and [z, ] = 0. Substituting zz for x in Lemma 1 and repeat-
ing the argument used in the proof of Lemma 6 it can be shown that

(P(z* — 2))(p(xyx) + P(x)PY)P(x)) =0 .

But then @(2*> — 2)p(z) = 0; since 2> — z commutes with 2z, Lemma 5 im-
plies that ¢((22 — 2)z) = 0, that is, P(2°) = @(2?). The lemma is thus
proved.
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This lemma allows us to generate idempotents. It is thus natural
to examine the behavior of an idempotent under . We do this in the
next two lemmas.

LEMMA 8. If e ts an idempotent in R then for all x R,
P(ewe) = p(e)p(x)p(e) and p(xex) = p(x)p(e)p(x) .

Proof. Since e commutes with « + ex 4+ xe, by applying Lemma 5
we obtain

plexe) = p(e(x + ex + xe)) = p(e)p(x + ex + xe)
= p(e)(¢(x) + P(e)p(x) + p(x)P(e)) -

Since exe commutes with e, and since @(e)* = @(e?) = @(e), right-multiply-
ing the relation obtained by ¢(¢) we have that

P(exe) = p(exe)p(e) = P(e)(P(x) + pe)p(x) + P(x)p(e))P(e)
= p(e)p(x)p(e) .

The second part of the lemma follows from this and Lemma 1.

LEMMA 9. If R contains an idempotent e + 0,1 then @p(xyr) =
p(x)p(y)p(x) for all z,ye R.

Proof. If e and f are any two idempotents then
P((e + flz(e+1)) = plexe) + p(faf) + plexf + fae)
= p(e)p(x)p(e) + P(f)P@)p(f) + P(e)p(x)P(f) + P(f)r(x)p(e)

by Lemmas 8 and 2. Thus @((e + f)x(e + f)) = @le + f)p(x)P(e + f) for
all e R. By the main result of Amitsur [1] and a direct verification
for 2 x 2 matrics over GF(2), in a simple ring having a non-trivial
idempotent every commutator v can be written as a sum of idempotents,

so that ¢(vzv) =p(v)p(x)p(v), consequently @(xve) = @(x)p(v)p(x) by
Lemma 1. Now

[p(zy), P(2)] = Ploye, 2] = P(zeys + cyz) .
But
zeyx + xyxz = (xz + zx)yx + xy(xz + 22) + 2(yz + zy)x .
Since yz + zy is a commutator,

P(x(yz + 2y)x) = P(X)P(Yz + 2y)P(®)
= p(x)p(W)P@)P(r) + P(@)P(2)P(Y)P(x) .

Also, by Lemma 2,
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p{(xz + zx)yx + xy(xz + 22)}
= p(x)pR)P(Y)P(x) + P(2)p(@)p(y)p®) + P(E)P(y)P(E)P(2)
+ p(@)P(y)P(R)P(x) .

Combining all these relations we have that

Pzayx + xyxz) = PR)p@)py)pe) + e@)P(y)e(@)7(z)
= [p(@)p(y)P(x), P(2)] .

As a consequence,

[P(xyx), P(2)] = [p@)py)p(n), P(2)],

and so
N = @(eyx) + P(x)P(y)p(x)

must be in the center of R’. If A = 0 we would have proved the lemma.
If, on the other hand, N # 1, by Lemma 6 it would follow that X\ = 0.
Thus, for some z, y € R, suppose that ¢p(axyzx) + ¢(@)p(y)p(x) = 1. Then

p(xyx?) = p(e)p(xyx)p(x) + 1 = pe)yey)e(x) + ) + p

where g is in the center of R’. On the other hand, @(x’yx’) =
p(x)p(y)p(x) + o where o is in the center of R’. Comparing these
equalities we see that o(x)* is in the center of R’. Thus x* must be in
the center of R. But then x commutes with xy + yx; by Lemma 5,

P(x(xy + yr)) = p@)p(ry + yx) = P(x)(P(x)P(y) + P(Y)P(x))
= p(@)P(y) + P(@)P(y)P(x) .

Since 2* and y commute, @(2*%) = @(x)*?(y). Thus by subtraction, ¢(zyxz)=
P(x)P(y)p(x), contradicting p(xyx) + ¢(x)P(y)P(r) = 1. Hence p(ryx) =
p(x)p(y)p(x) for all x, y € R, proving the lemma.

We now are in a position to show that products of the form aba
are preserved by ¢; this will allow us to use Smiley’s result thus
characterizing . We do this in.

LEMMA 10. For all z,y e R, p(xyx) = @(x)p(y)P(x).

Proof. If R contains an idempotent e # 0, 1 then the lemma is true
as a consequence of Lemma 9. Hence we assume that R has no non-
trivial idempotents; since ¢ preserves squares and has only 0 in its kernel,
R’ also has no non-trivial idempotents. Let @(z) = p(xyx) + @(x)P(y) p(x).
As we have seen in Lemma 7, ¢(z)° = @(z)*; thus

P(2) = P(2)' = P)'P(2) = P2)P(2)
= P(2) = P2)" = P



850 I. N. HERSTEIN AND ERWIN KLEINFELD

Consequently 2! = 22, and so 2*is an idempotent. But then, either 2z*=0
or 22 = 1. Suppose that z’=1; then @(z*)=1. and since ¢(z)*=p(z)’P(z)=
@(z)! =1, it follows that ¢(z) =1, and so z = 1.

Now let x be any fixed element of R and let S’ be the set of all
elements '€ R’ such that r = @(xyx) + ¢(x)p(y)p(x) for all ye R. S’
is clearly closed under subtraction. Also, for all ze R,

[, p(2)] = ¢layz, 2] + PR)PE)P(Y)P() + PX)P(y)P(x)P(2).
Since |xyzx, 2] = |z, zlyx + x|y, 2]z + xyx, 2],

playz, 2] = p(2ly, z|lz) + 2(l2, 2DPW)P@) + P@)P(y)Ple, 2]
= ¢(aly, 2]%) + P(@)PR)P(Y)P(x) + P(2)P(x)P(Y)P(v)
+ P(x)P(Y)P(R)P(2) + P(x)P(y)P(2)P(r)

from Lemma 2.

Thus [, 9(2)] = ¢(x[y, 2]x) + ¢(x)Ply, z]@(x), and so is in S’. Thus
S’ is a Lie ideal of R'. Suppose that r,seS’. We claim that they must
commute. If either is equal to 1 this of course is true. Suppose other-
wise. Then r*=s*=0. If it is also true that (r + s)* =0, then
rs +sr =0, and » and s do commute. So it must be that r + s =1,
but then trivially » and s commute. Thus in all cases rs = sr.

By a theorem of Herstein [3], since S’ is a Lie ideal of R’, either
S’ is contained in the center of R’ or S’ contains all commutators, ex-
cept if R’ is 4-dimensional over its center. In the last instance, R’ has
a non-trivial idempotent, which we have ruled out. So indeed either S’
is in the center of R’ or contains all commutators.

However any two elements of S’ commute, so the ring generated
by S’ is commutative; however by a result of Herstein [3], the ring
generated by the commutators is all of R’ unless R’ is a field, (but in
that case R is a field, contrary to assumption). So S’ can not generate
all of R’, whence S’ is contained in the center of R’.

If S’ is contained in the center of R’, it can have non-zero nilpo-
tent elements. Thus S’ consists only of 0 and 1.

If the lemma is false, for some ye R, p(xyx) = ¢(x)p(y)p(x) + 1.
Now @(zyx?) = ¢(x)'p(y)p(x)* + B for B in center of R'. But o(z’yx*)=
p(x-zyx-x) = Pp(-axyx-x) = p(x)p(ryx)P(x) + a (where « is in the center
of R') = p(x)* + () p(y)p(x)* + a. Comparing the two results leads to
the fact that @(x)* lies in the center of R’, and so «* is in the center
of R. But then x commutes with 2y + yx and so, by Lemma 5

P(x(xy + yx)) = p(r)P(xy + yx) = ¢(x)(P(*)P(y) + P(y)P(x)) .

Since x* is in the center of R, (x*) = @(x)*¢(y). The above relation
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then reduces to ¢(zyx) = P(x)p(y)p(x), contrary to the fact that p(xyx)=
o(x)p(y)p(x) + 1. This contradiction leads to the proof of Lemma 10.

From this point on the proof given by Smiley [6] can be used to
show that

THEOREM 1. If @ is an additive mapping from a simple ring R
onto a simple ring R' # 0 of characteristic 2 and if o(x*) = P(x)’,
o(x*) = p(x)® for all x € R then ¢ is either an isomorphism or an anti-
1somorphism.

The following remark is in order. The assumption (ii) may be weak-
ened to

(i)*  p(xy — yx) = p(x)P(y) — PY)P(x) .
For then

P(x)’ + (y) + P(ye(y) + e@)p(y)P(x) + Py)PE) + PYy) )
+o(y)p(x)p(y) + P(x)P(y)
=p((x + y)) = (@ + ¥ + 2y + zyr + y2* + y'x + yry + 297 .

Since

p(x’) = ("), P(¥°) = P(y)’, and @2, y] = [P(x?), P(¥)]
= ¢z, 2y + yx] = [P(x), P(2)P(y) +P(Y)P(x)] = [P(x), P(Y)] .
Thus @(x?) — @(x)* = M is in the center of R’. But then

Py)P@’) + P(x)P(y) = p(y)P(x) + 2(x)e(y) ,

and

P(x)P(y’) + P(y)p(r) = P(2)P(y): + P(y)p(x) .

Substituting these in the linearized form above of ¢((x 4 ¥)?), we obtain

P(ryx + yay) = P(@)P(y)P(x) + P(y)P(@)P(y) .

If the center of R’ consists only of 0 then from above, @(x*)=p(x)
follows and so the theorem would follow from Theorem 1. Suppose that .
R’ has a non-trivial center. Then 1€ R’. Let a € R be such that ¢(a)=1.
Thus for all xe R, p(ax + 2a) = 0. Let K= {ueR|pu)=0}. Kis a
Lie ideal of R. If R is 4-dimensional over its center, then R has a unit
element and by the remark made earlier in the paper this would imply
that o(2?) = @(x)* for all x € R, which by Theorem 1 would imply the
theorem. If R is more than 4-dimensional over its center by the main
result of [3], since K is a Lie ideal of R, either K if contained in Z the
center of R or K D[R, R].

In the first case, since ax+xa e K for all xe R, if w=ax+2a+0,
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then Z # 0, and so R has a unit element and the result would follow.
If ax + 2xa = 0 then again 0 = ae€ Z and the result follows.

So suppose K D[R, R]. Thus R’ is a field. But then as we have
previously seen in [2], @(xy + ¥'x) = o(x)e(y)p(x + y). Putting 2 =a
where ¢(a) =1, we obtain that @(a’y+y’a) = ¢(y)+e(y)’. Let teR,
such that @(t) = 0. Then ¢ty + ¥*t) = 0. Also ¢(a +t) =1, so

P((a + t)’y + y'(a + 1)) = y) + »(y)
=p(a’y + y'a + (at + ta)y + ty + y*%) .

Using the results obtained above this relation simplifies to ¢((at + ta)y)=0
for all y. But then ¢(R(at + ta)R) = 0; if at + ta + 0, by the simplicity
of R this yields R’ = ¢(R) = 0. So we must assume that at = ta for
all ¢ such that @(t) = 0. In particular @ must commute with all com-
mutators. Thus a(ax + xa) = (ax + xa)a, and so @’ is in the center. If
a’ =0 then a®* =0 and so 0 = ¢(a¢’) = ¢(a)® = 1, a contradiction. Thus
a*+# 0 and so Z+ 0. Thus 1€ Z and so ¢ must preserve squares. Thus
using Theorem 1 again we would be done. Thus we have seen that at
all times (i), (ii) and (iii) are satisfied and the conclusion of Theorem 1
still holds. This establishes

THEOREM 2. If @ is an additive mapping from a simple ring R
onto a simple ring R’ + 0 of characteristic 2 and if P(xy — yx) =
P(2)P(y) — P(y)P(x) and ¢(x®) = p(x)® for all x,yc R then @ 1is either
an isomorphism or an anti-isomorphism.
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