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1* Introduction* The structure of the lattice L is known to depend
upon properties of the distributive lattice #(L) of all congruence rela-
tions on L; for example,

(1.1) (Birkhoff [1]) L is a subdirect union of a finite number of
simple lattices if and only if #(L) is a finite Boolean algebra,

(1.2) (Dilworth [2]) L is a direct union of a finite number of simple
lattices if and only if #(L) is a finite Boolean algebra in which all the
elements permute.

In the early development of structure theory for lattices, L was
assumed to be modular, and the notion of projectivity was used to study
congruence relations. For non-modular lattices a more general concept
was needed; accordingly, Dilworth [2] devised the notion of weak pro-
jectivity and showed that complementation has a strong influence on
structure. He proved:

(1*3) Every relatively complemented lattice satisfying the ascending
chain condition is the direct union of a finite number of simple relat-
ively complemented lattices;

(1.4) Every finite dimensional locally relatively complemented lattice
is a subdirect union of a finite union of simple, locally relatively com-
plemented lattices;

(1.5) A relatively complemented lattice which satisfies a chain con-
dition is simple if and only if all prime quotients are projective.

More recently these results have been developed and generalized by
Tanaka [7], Maeda [6], and Hashimoto [4].

It is interesting to observe for the lattices described in (1.3), (1.4),
and (1.5), weak projectivity of prime quotients reduces to projectivity.
The present paper studies the relationship between weak projectivity
and projectivity of prime quotients. It is shown that if L satisfies the
descending chain condition and if each join irreducible element of L
covers some element, then the corresponding irreducible congruence re-
lations generate &{L) and provide simple criteria for the structure of L.

2. Definitions* This section contains definitions of the basic terms
which are used terminology generally conforms to that given in Birkhoff
[1].
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(a) Quotients. If α 2 6 in L, the quotient {xeL\b c; $ c α} is
denoted by α/6. If α covers b (α >- 6), then α/δ is called a prime
quotient. The quotient c/d is contained in a\b if and only if b^d^cQa.

(b) Weαfc projectivity. A quotient α/6 is said to be weakly pro-
jective into a quotient cjd (α/6 WP c/eZ) whenever there exists a finite
sequence of quotients ajb = xo/2/o> #i/2/i, , #*/#* = c/c£ such that a^-i/^-i
is contained in a transpose of x j ^ Weak projectivity of quotients is a re-
flexive and transitive relation, but, unlike projectivity, is not symmetric.

(c) Congruence relations. A congruence relation θ on L is an equi-
valence relation which is preserved by the two basic lattice operations.
Congruence relations are partially ordered by writing θ c φ if and only
if a == b (θ) implies a = b (</>). Under this ordering the set of all con-
gruence relations on L is a complete lattice #(L) in which the operations
are defined by

a = b (U sθ<χ) means a = x0, xlf , xk = b exist such that xt-λ = αjf
(βα) for some 0*eS,

α = 6 (n S^Λ) means a = b (θa) for all θa e S.
Furthermore, #(L) is distributive (Funayama and Nakayama [3]). Two
congruence relations are said to permute whenever a = c (θ) and c = b(φ)
imply that d exists such that a = d (φ) and cί = 6 (^). The center Γ(L)
of #(L) is the set of all φed(L) which permute with all θe&(L). The
trivial congruence relations c and ω are the unit and null elements of
#(L). The quotient α/6 is said to be collapsed by θ if and only if α = 6 (θ).
Clearly x = y (θ) if and only if (x\Jy)l(xΓ\y) is collapsed by θ. Then
every quotient is collapsed by c, and no proper quotient is collapsed by ω.

(d) Structural properties. L is simple if and only if the congruence
relations on L are trivial. L is irreducible if and only if there exist
distinct elements α and 6 such that α == 6 (θ) for every θ Φ ω. Simpli-
city implies irreducibility, but not conversely.

(e) Dimensionality. For the methods of this paper it is necessary
to impose on L the condition

(δ) L satisfies the descending chain condition, and each join
irreducible element covers some element.
Any such lattice will be called a 8-lattice.

(f) Quotient ideals. Given a congruence relation θ on a lattice L,
let N(θ) denote the set of all quotients collapsed by θ. Then N(θ) is
a quotient ideal as defined by Maeda [5]; that is, N(θ) satisfies

(2.1) α/α e N(θ),
(2.2) if α/6 e N(θ) and c/d c α/6, then c\d e N(θ),
(2.3) if α/δ e N(θ) and α/6 P eld, then c\d e N(θ),
(2.4) if albeN(θ) and b/ceN(θ), then ajceNφ).

Conversely, given any quotient ideal N, a congruence relation Θ(N) is
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defined by writing α == b (Θ(N)) if and only if (α U δ)/(α Π 6) e N. It fol-
lows that N(Θ(N)) = N. Furthermore,

(2.5) N(θ) c JSΓCΦ) if and only if θ c φ.

The connection between quotient ideals and weak projectivity is
established as follows: let S be any set of quotients of L, and denote
by N(S) the set of all quotients α/δ for which there exists a chain
a = xQ Ώ. Xι Ώ Ώ. XJC = δ such that Xi-Jxi is weakly projective into a
quotient of S, for i = 1, • ••,&. Then JVXS) is the minimal quotient
ideal containing S. In this way S determines a congruence relation
Θ(S) = Θ(N(S)) which is the minimal congruence relation which collapses
the quotients of S.

This paper is concerned primarily with the case in which S consists
of a single irreducible prime quotient q\cq, where q is join irreducible
and q > cq; the corresponding congruence relation will be denoted by
θq. Such a relation will be called an irreducible congruence relation.
This terminology is justified by the fact that precisely these congruence
relations are the join irreducible elements of ϋ(L).

3 Irreducible congruence relations• Let L be a δ-lattice, and let
Q be the set of its join irreducible elements. For each aeL define

Q(a) = {qeQ\q c a} .

Since the descending chain condition holds, each a e L is the union of a
finite subset of Q(a).

LEMMA 3.1. // o o δ , then q\cq WP a/b for every qeQ(a) — Q(b),
and q/cq P (gUδ)/δ for every q which is minimal in Q(a) — Q(b).

Proof. If q e Q(a) - Q(b), then qjcq c qj(q n δ) T (q{j δ)/δ c α/δ, so
g/Cg TFP α/δ. If q is minimal in Q(a) — Q(δ), then g >• #(Ίδ, and the
second statement holds.

For each congruence relation θ on L let ^(fl) denote the set of all
irreducibles q for which q\cq is collapsed by θ; that is,

W(θ) = {qeQ\q^ cq(θ)} = {qeQ\q\cq e N(θ)} .

Likewise for any quotient α/δ, let θ(a/b) be the congruence relation
generated by collapsing α/δ; it follows that

W(θ(a/b)) = {geQ|g/c, WP α/δ} ,

and we write W(a/b) in place of W(θ(a/b)). Using similar notation for
projectivity, let
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P(α/6)= {qeQ\qlcq P α/6} .

The following statements are easy consequences of these definitions,
the properties of projectivity and weak projectivity, and Lemma 3.1.

(3.1) The sets P(q/cq) for q e Q form a partition of Q.
(3.2) P(a/b) c W(a/b).
(3.3) If ajb is prime and if q is minimal in Q(a) — Q(6), then P(a/b) =

P(g/cβ) and TΓ(α/6) = W(q/cq).
(3.4) If g e TF(α/6), then P(?/cβ) c TΓ(g/cg) c TΓ(α/δ).
(3.5) TΓ(α/6) - V wialb)P(qlcq).
The remainder of this section is devoted to proving a sequence of

lemmas concerning these sets, weak projectivity, and congruence re-
lations to demonstrate the role of irreducible congruence relations in
generating &(L).

LEMMA 3.2. If aΏb, then a == b(θ) if and only if 0(α/δ) £ θ.

Proof. Let a == b (θ) and x = y {θ(ajb)). A chain,
2 . . . Da f c = xil2/, exists for which a^/a* TFP a/6 e JV(0). By (2.2), (2.3),
and the definition of weak projectivity, a^^ e N(θ). Then (x U y)/(a? Π y) e
ΛΓ((9) by (2.4), and N(θ(a/b)) c JSΓ^). The lemma follows from (2.5),
the reverse implication being trivial.

COROLLARY, q e W(θ) if and only if θq c 6>.

The next lemma is of fundamental importance, since it reveals that
the collapse of any quotient can be accomplished by the collapse of a
finite number of irreducible prime quotients; hence any congruence re-
lation is a finite union of irreducible congruence relations.

LEMMA 3.3. // αz)6, there exists a finite set S c Q(a) — Q(b) such
that a = b(\jsθq).

Proof By the descending chain condition it may be assumed that
every element properly contained in a has the property asserted in the
lemma. Let St c Q(a) — Q(b) be chosen so that qx e Sx is not redundant
in the representation α = δ u U * 1 ? Let S2 — S1 — qly and let α2 =
b U UU2 q then azDa2Ώ.b. A finite set S3 c Q(α2) — Q(δ) exists such that
a2 = δU(U^3 «̂) ^ s o a fin^e s e ^ 4̂ ̂  Q(Qi) — Q(^2Γigi) exists such that
qx = a2 Π tfi(UU4 ̂ «). Then S = S3 V S4 is a finite subset of Q(a) - Q(δ)
for which α =

LEMMA 3.4. // α z> δ, ί/̂ βrβ exists a finite set S c Q(α) —

<9(α/δ) = U^ ^

Proof. Lemmas 3.2 and 3.3 imply θ{ajb) cz IJ 5 βq. Conversely,
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Lemma 3.1, the definition of W(θ), and the Corollary imply θq^θ(ajb)
for every q e Q(a) — Q(b).

LEMMA 3.5. For some finite set S c W(θ), θ = \JS θq.

Proof. From the Corollary, \JW{Θ) 0q c θ. Conversely, let x = y(θ),
n Φ V, by L e m m a 3.3 x [j y = x f]y (\JS θq) for s o m e finite S c Q(x \Jy)~
Q{x (Ί y). H e n c e θ <^\Jsθq. B u t q\cq e N(x U 2//^ Π j / ) c ΛΓ(6>) for e v e r y
g e S , s o S c

LEMMA 3.6. T7(0) c γF(φ) £/ cmd o ^ if θ ^ ψ.

Proof. The direct implication follows from Lemma 3.5, while the
reverse implication follows from (2.5) and the definition of W(θ). Ob-
serve that if equality holds in either relation, it holds in both.

LEMMA 3.7. θ is completely join irreducible in &(L) if and only
if θ = θq for some q eQ.

Proof. From Lemma 3.5 it is clear that any completely join irre-
ducible θ must be of the form θq for some q e W(θ) c: Q. Conversely,
for any q eQ suppose θq = U«e^« Then q = cq(\JaeA θa), so there exists
a finite sequence

q :== xo, Xι, , Xfe z:zz cq

such t h a t

xί_1 = Xi(θai), for some α.z G A ,

for i = 1, 2, ••-,&. Then

(»i-i Π (?) U cβ Ξ (a?t Π q) U cQ(^.) .

But

q Ώ. (xt (Ί g) U cq 2 cg ,

so for each i = 0, 1, ,fc, (a;4 Π ί) U cg equals g or cq. Since g = (x0 Π g') U cq

and cq = (xfc Πg)U cg, there exists an index j , 1 < j < k, for which

g = (Xj^ Πq)Όcq~ {xj Π g) U cg = c g(^.) .

By Lemma 3.2, θq e ^Λ j; also the reverse relation holds by hypothesis,
so 6>α = 6>α..

Thus any completely irreducible element of ??(L) is an irreducible
congruence relation, θq, generated by collapsing an irreducible prime
quotient of L. It follows from (3.3) and Lemma 3,3 that the collapse
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of any prime quotient generates an irreducible congruence relation.
Clearly the number of distinct completely irreducible elements of #(L)
cannot exceed the number of distinct irreducibles in L. Two additional
remarks concerning weak projectivity conclude this section.

LEMMA 3.8. If α/6 WP c/cf, then for each q e Q(α) — Q{b) there
exists q e Q(c) — Q(d) such that q/cq WP q/cι

Proof. Let q e Q(a) - Q(δ), where a\b WP φ. Then q e W(cld),
and θq c θ{cjd) = \Jsθq, where S c Q(c) — Q(d). But in a distributive
lattice if an irreducible is contained in the join of elements, it is con-
tained in one of those elements. Hence θa c: θq for some qeS. By
Lemma 3.6, q/cq WP q\cq.

LEMMA 3.9. If ajb WP c/d, then θ{ajb) c θ(c/d); the converse holds
if a\b is prime.

Proof. If a\b WP eld, then W(a/b) c W(cld) since weak project-
ivity is transitive. By Lemma 3.6, θ(alb) c θ(c/d). Conversely, if a/b
is prime, then a/b T q\cq for any minimal q e Q(a) — Q(b) c T7(a/6). If
also θ(a/b) c β(c/d), g e W(c/c£), so α/6 TFP c/d.

4 Structure theorems* We now consider the role of irreducible
congruence relations in determining the structure of L. From the
theorems quoted in the introduction, it is clear that complementation
in #(L), permutability in #(L), and the relation between weak project-
ivity of prime quotients have important effects on the structure of L.

THEOREM 4.1. In any S-lattice the following statements are equi-
valent :

(a) #(L) is a Boolean algebra,
(b) for every q e Q, θq > ω,
(c) the relation of weak projectivity is symmetric on the set of all

irreducible prime quotients.

Proof. Any join irreducible element of a Boolean algebra must be
a point, so (a) implies (b). Let θq be a point, and suppose q\cq WP q/cq.
By Lemma 3.9, θq cz θqj and equality must hold. Then qlcq WP qlcqy

again by Lemma 3.9, so (b) implies (c). If weak projectivity is sym-
metric for all irreducible prime quotients, the sets W{qfcq) partition Q.
For arbitrary θ, let ff = \}w,m θqj where W'(θ) = Q - W(θ). Then θ' is
a complement of θ in ΰ(L), which therefore is a Boolean algebra.

It follows from the preceding argument that ύ(L) is a Boolean
algebra if and only if the sets W(q/cq) partition Q. But also the sets
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P(qlcq) partition Q, and P(qlcq) c W(qlcq). Thus if ϋ(L) is a Boolean
algebra, the partition of Q imposed by projectivity is a refinement of
the partition imposed by weak projectivity. These two partitions can
be distinct, even when L is simple. However, weak projectivity of
prime quotients does reduce to projectivity for a wide class of lattices
—for example, modular lattices and the lattices described in (1.3), (1.4),
and (1.5). In this connection the following theorem underlies correspond-
ing results obtained by Dilworth [2] and Hashimoto [4] for relatively
complemented lattices.

THEOREM 4.2. Let a 8-lattice L satisfy the condition that if two
irreducible prime quotients are mutually weakly protective, then they
are protective. Then L is simple if and only if all prime quotients
are protective.

Proof. Hashimoto uses the term uniserial to describe lattices in
which all prime quotients are projective. Clearly any uniserial lattice
is simple, because the collapse of any quotient collapses all of L. Con-
versely, if L is simple, let ajb and cjd be prime quotients. By (3.3)
and Lemma 3.6, θ(a/b) = θ(q/cq) = θ(c/d) = θ(qjcq) where the middle
equality holds since L is simple, and where q and q can be chosen to
be minimal, respectively, in Q(a) — Q(b) and Q(c) — Q(d). Then ajb T
q\cq WP q\cq T c\d, and q\cq WP q\cq. Hence q\cq P q/cq, and ajb P cjd.

THEOREM 4.3. If L is a 8-lattice for which d{L) is a Boolean
algebra, then L is simple if and only if L is irreducible.

Proof. Let a Φ b be elements which establish the irreducibility of
L; a = b(θ) for all θ Φ ω. For all qeQ,a = b(θq) thus θ(aUb/aΠb)cθq.

Therefore, for some q and all q, θ(a U b/a Π 6) = θq c θqf so &(L) has 0~
as its only point. But if ϋ(L) is also a Boolean algebra, θq = θq for all
q, and therefore L is simple. The converse is well known.

COROLLARY. A δ-lattice L is irreducible if and only if ΰ(L) has
a single point.

Proof. The preceding proof shows that ϋ (L) has a unique point if
L is irreducible. But if θq is the only point of #(L), then θ φ ω im-
plies θq c θ, and thus q = cq(θ). Therefore q and cq satisfy the condi-
tion of irreducibility for L.

Our remaining remarks concern complementation and permutability
of irreducible congruence relations. The investigation of these proper-
ties arises naturally because any direct decomposition of L determines
a congruence relation θ which has a complement and which permutes
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with all congruence relations. A congruence relation with these two
properties is called a decomposition congruence relation, and the set of
all decomposition congruence relations forms a Boolean sublattice of

LEMMA 4.1. θq has a complement in &(L) if and only if θq satisfies
the condition that q eQ and θq Π θ% φ ω imply θq c θq.

τ

Proof. Let #* be a complement of θq\ it is easily verified that
W(θ*) is the complement of W(θq) in Q. Let θq Π θq = θ z> ω. Then
W{θq) 3 W(θ) so W(θ) A W(θ*) is void. Also W(θ) c IF(6>-), so if
q e T7(6>*), then by the Corollary following Lemma 3.2, W(θ) c TΓ(^) c
W(θ*)f which is a contradiction. Hence q e W(θq) and 0j c 0β. Con-
versely, suppose #α satisfies the condition stated in the lemma. Let
W* = Q - ΪF(0β), and let 0* = UTF*0?. Then ϊ̂ (6>*) 3 T7*, so θq{jθ*=ry

and ^ Π 0* = UTF* (0β Π θq). But § e TF* implies θq ς£ θq, so θq Γίθq=ω
for all § e T7*. Thus (9, n 0* = ω.

THEOREM 4.4. If L is a 8-lattice, then #(L) is α Boolean algebra
if and only if θq has a complement for every q eQ.

Proof. The condition is trivially necessary. Suppose each θq has
a complement; then Lemma 4.1 implies that if θq Π θq Φω, then θq Qθq

and θq^θq. Hence for each qeQ,θq must be a point, so by Theorem
4.1 #(L) is a Boolean algebra.

THEOREM 4.5. If L is a δ-lattίce, then Γ(L) = #(L) i/ and only if
θq and θq permute for all q,qeQ.

Proof. The necessity is trivial the sufficiency follows from Lemma
3.5 and the fact that if θ permutes with each member of a set of con-
gruence relations, then θ permutes with any union of them.

Combining Theorems 4.4 and 4.5 with (1.1) and (1.2), we see that
under suitable dimensionality conditions, L is a subdirect union of simple
lattices if and only if each θq has a complement, while L is a direct
union of simple lattices if and only if each θq is a decomposition con-
gruence relation.
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