
THE STRUCTURE OF THREADS

CHARLES R. STOREY

A thread, as defined by A. H. Clifford, is a connected topological
semigroup in which the topology is the interval topology induced by a
total order. A resume of papers on the subject can be found in the
introduction of [1] or in section three of [3].

Briefly, the main classes of threads which have been described are:
that of compact threads with an identity and a zero for which the
underlying space is a real interval [4]; that of threads defined on the
real interval [0, co) in which "zero" and "one" play their usual roles
[6]; and the class of compact threads with idempotent endpoints, [1] and
[2]. Since the separability of the real numbers is not needed for the
proofs involved, we will interpret the results of [4] and [6] as applying
also to threads in which the underlying space is not real.

The object of this paper is to investigate the structure of more
general threads. In the second, third and forth sections we study
maximal subgroups, subthreads and the minimal ideal respectively of an
arbitrary thread. Theorem 5.5 generalizes the result in [6] by describing
all threads S with a zero as an endpoint for which S2 = S. In the final
section, we are able to describe at least half of any thread satisfying
S2=S. More explicitly, if such a thread has no minimal ideal, or if it
is itself the minimal ideal, then the entire structure of the thread is
determined; while, if there is a proper minimal ideal, then the set of
elements larger or the set of elements smaller than the minimal ideal
forms a subthread which, satisfying the hypotheses of Theorem 5.5, can
be completely described.

It is a pleasure to acknowledge the careful direction by Professor
A. H. Clifford of the research leading to this paper.

1. Preliminaries. As defined in [1], a standard thread is a compact
thread in which the minimal element is a zero and the maximal element
an identity. The primary examples are the real interval [0,1] under
the natural order and multiplication and the Rees quotient of [0, 1] by
the ideal [0, i]. The structure of any standard thread can be given as
follows [7, Theorem B]: The set of idempotents is closed and thus its
complement is a union of disjoint open intervals. If (e, f) is one of
these intervals, then [β, /] is a subthread isomorphic with one of the
two examples just given. Finally, if e is an idempotent and if x ^ e ^ y,
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then xy — yx = x.
We say that a thread with a zero and an identity is a positive

thread if the zero is a least element and if there is no greatest element.
The result in [6] is that, in a positive thread, there exists a largest
idempotent e less than the identity, [0, e] is a standard thread, {t\e < t}
is isomorphic with the group of positive real numbers, and xy — yx — x
whenever x ^ e ^ y.

Given a thread S which has a zero as a least element, we construct
a new thread which we denote by &{S). Let S' be a copy of S\{0},
and let xr be the element of S' corresponding to the element x of S\{0};
put 0' = 0. Let &(S) = S' U S, and extend the order on S to ̂ p(S)
by reversing the order in S' and declaring each element of S' to be
less than every element of S. Now extend the multiplication in S to
&(S) by defining x'y — yx' = {xy)f and x'y' ~ xy. It is easy to verify
that &(S) is a thread.

We state Lemma 1 of [1] which will be repeatedly used without
reference. If α, b and c are elements in a thread, then [αc, be] c [α, b]c
and [ca, cb] c c[α, 6], The same holds for open and for half-open
intervals. The proof is a simple application of the fact that a con-
tinuous image of a connected set is connected.

If there is a homeomorphism between threads S and T which is
also an algebraic homomorphism, S and T are iseomorphic and we write
S ^ T. If the iseomorphism is also order preserving (it must either
preserve or reverse the order), then S and T are isomorphic and we
write S = T. A subthread is, of course, a connected subsemigroup.
The order dual of a thread is the thread obtained by reversing the
order while leaving the multiplication unchanged. As in [8], H(e) is
the maximal subgroup containing the idempotent e, Γ{x) is the topologi-
cal closure of the set of powers of x, and J(x) is the ideal generated
by x.

The groups of positive and non-zero real numbers will be denoted
by & and X respectively. Throughout the paper, S will always be a
thread.

2. Maximal subgroups. Let e be an idempotent in an arbitrary
thread S. We wish to investigate the maximal subgroup H(e) of S
having e as its identity. We recall that

H{e) = eSeΠ{x\eexSΠ Sx} .

Since H(e) is an algebraic group and a topological semigroup, it is
homogeneous. Thus, if H(e) contains any open interval of S, it contains
an open interval about e. Denoting the component of H(e) containing
e by G, either G — e or e is a cut point of G. But G is clearly a cancel-
lative thread, and by a theorem of Acel and Tamari (as stated on page
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81 of [1]), every such thread is isomorphic with a subthread of ^ .
Since the only subthread of <3? of which the identity is a cut point is
& itself, we see that G = e or G = &*.

Again, observe that translations of eSe, the set on which e acts as
an identity, by elements of H(e) are homeomorphisms. Thus, if any
element of H(e) is a cut point of eSe, then e is a cut point. Consequently,
if H(e) contains more than two elements, then e is a cut point of eSe.

2.1 LEMMA. If e is an idempotent in S, then either e = eSe, or e
is an endpoint of eS U Se, or e cuts eSe. In the first two cases, H(e)
contains at most two elements; while in the last, the identity component
of H(e) is isomorphic with ^ .

Proof. It will suffice for the proof to show that the following are
equivalent: the identity component of H(e) is isomorphic with &\ H(e)
contains more than two element; e cuts eSe; e Φ eSe and e cuts eS U Se.
Moreover, the first of these obviously implies the second; we have already
seen that the second implies the third; and the third clearly implies the
forth.

Suppose then that e Φ eSe and that e is a cut point of eS U Se.
Since eS n Se — eSe, this means that e cuts one of eS and Se, and that
Se Φ e Φ eS. The two cases being similar, assume that e cuts eS, and
choose a and b in eS such that a < e < b. Using the continuity of
multiplication, there exists an open interval W about e such that W c
(a, b) and Wa < e < Wb. Thus, if x is in W, e e (xa, xb) c x(a, b).
Repeating the argument, using W in place of (a, b), we obtain an open
interval V about e such that e e zW for each z in V. Now if z e V Π
eSe, then there exist x in W and s in (α, b) such that e = zx = xs.
Since z e Se while s e eS,

z — ze — z(xs) = (zx)s — es — s .

Hence V (Ί eSe c H(e). Observing that V Π eSe is a non-degenerate
interval containing e, it follows from the argument of the first para-
graph in this section that the identity component of H(e) is isomorphic
with ^ .

2.2 THEOREM. If e is an idempotent in a thread S and if e cuts
eSe, then H(e) = & or H(e) & % % Moreover, if the identity component
G is not all of S, then the boundary of G in S contains exactly one
point f, either G = (/, oo) or G = (— oo,/), and f acts as a zero for G.

Proof. Assuming that e cuts eSe, G = & by 2.1. Certainly, H(e)
is a topological group of which G is a normal subgroup. Since the
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remainder of the theorem is evident otherwise, we assume G Φ S.
We claim now that if M and N are cosets of G in H(e) and if

t e M*\M, then ίiV* and N*t contain but one point each. For, since
each coset is homeomorphic with G, each coset is open and connected,
and thus has at most two boundary points. Since t does not belong to
H(e), Nt misses H(e). Thus Nt c (NM)*\NM. But Nt is connected
and (NM)*\NM, the boundary of some coset, contains at most two points.
Hence Nt consists of a single element, and by continuity, the same
must be true of N*t. Likewise, tN* contains only one element.

Now take / in G*\G, and let C be any coset. If t e C*\C, then,
using the result of the preceding paragraph, £G* = te = t and G*t =
et = t. In particular, / acts as an identity on C*\C. But applying the
result again, /C* and C*/ contain one point each. Thus the coset C
has exactly one bDundary point. Taking C — G, we see that G has
only one boundary point / and thus G — (/, oo) or G = (—oo,/). More-
over, /G* = G*/ = / implies that G is iseomorphic (we do not know
whether / is the least or the greatest element of G*) with the thread
of non-negative real numbers. If H(e) = G, the proof is complete.

Assuming H(e) Φ G, it follows from the fact that each coset has
only one boundary point in S that there can be only one other coset
besides G. Take b e H(e)\G and observe that the function on G* which
takes g into b~τgb is a continuous automorphism which (since δ2 e G and
G is commutative) is its own inverse. But the only such automorphism
of the non-negative real numbers is the identity, and thus b~ιgb — g for
each g in G. It follows that H(e) is commutative, and from this it is
easy to verify that H(e) is iseomorphic with ^.

2.3 THEOREM. Let e be an idempotent in a thread S.

(1) If H(e) = {d, e} with d < e, then Se = eS = [d, e] and there
exists a zero for S in (d, e). Denoting the zero by z, [z, e] is a standard
thread and [d, e] = &{[z, e\).

(2 ) If H(e) & % then the complete structure of S is determined.
Namely, there exists a positive thread T such that S

Proof. Let H(e) = {d, e} with d < e, and observe that [d, e] c eSe.
Then eS U Se fg e, for otherwise e cuts eS or Se and 2.1 yields a con-
tradiction. Now since d is in iϊ(e) and d2 = β, left multiplication by cί
is a strictly decreasing function from eS onto itself. Hence

d = de ^ d(eS) = eS ,

so that [d, e] = βS. Moreover, there exists a unique element q in eS
such that dq = g. However, if s is any element of Sf then gs e eS and
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d(qs) — qs. Since q is unique, q is a left zero for S. Similarly [d, e] = Se
and there exists a right zero for S in Se. Evidently these two one
sided zeros are equal, and putting z = q, z is a zero for S. Now, [d, e]
is a subthread with an identity e and a zero z in which d2 — e. Applying
part one of Theorem 6.2 in [4], we conclude that [z, e] is a standard
thread and that [d, e] = &{[z, e]).

Turning to the proof of (2), let H(e) & ^Γ. Since S is iseomorphic
with its order dual, we may assume that e is larger than the element
u which corresponds to — 1. Each coset in H(e) has exactly one boundary
point in S and thus H(e) = (•— oo, h) U (/, oo) where h ^ / . Since we
have assumed that u < e, (/, oo) ~ &%

One sees easily that f2 — h2 — f and that fh — hf' = fc, i.e., i ϊ(/) =
{&, /}. If h=f then S i s iseomorphic with the multiplicative thread
of all real numbers which is certainly &(T) where T is the thread of non-
negative reals. Assuming h < /, we may apply the conclusion of (1).
Thus S has a zero between h and /, [z, f] is a standard thread, [h, f]
is commutative, and Sf — fS = [h,f].

Since / is an identity for [z, f] and a zero for G, each element of
G acts as an identity on [z,f]. Consequently, [z, oo) is a positive thread.

If 2/e[2,/], then uy = u(fy) = (uf)y and yu = y(fu). Now, /
commutes with w, and since ufe [h,f], uf commutes with y. Thus u
commutes with each element of [z,f] as well as with each element of
(/, oo). Armed with these facts, it is a straightforward exercise to show
that the function g defined on &([z, oo)) by g(t) — t and g(t') = ut is
an iseomorphism onto S.

2.4 COROLLARY. If x10 < x < xp for some x in a thread S and for
some positive integers k and p, then S & &{T) for some positive thread
T. Moreover, if e is the identity of S, then x e H(e) and e separates
x and x2.

Proof. Since x is evidently not an idempotent, we assume that
x < x2. The case where x2 < x is entirely similar. Taking j to be the
least positive integer such that xj+1 < x, we have 2 ^ j and x < xj.
Now x e (xj+\ x2) and (xj+\ x2) c x(x, xj) Π (as, xj)x, so x — xs = tx for
some s and t in (x, x3). It follows that s is a right identity on Sx and
that £ is a left identity on xS. But (a?, xj) c (xj+\ xj) axS f] Sx, hence
s = ts = t. Putting e — s, e e (x, xj) and (x, xj) a xS f) Sx = exS Π Sxe c
eSe, so that e is a cut point of eSe. By 2.2, iί(β) = g? or iϊ(e) ^ ^ .
But e 6 α?S Π Sx and # e eSe imply that a? e H{e), and in view of the
hypothesis on the powers of x, H(e) = 3? is impossible. The result now
follows from 2.3.

The following facts concerning the sets eS and Se will be useful later.
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2.5 LEMMA. Let e be an idempotent in a thread S.

(1) If e — eSe, then either eS = e or Se = e\ and in either case,
SeS is the minimal ideal of S. It is a closed connected set of one
sided zeros.

(2 ) Either eS c Se or Se c eS, and thus SeS = eS U Se.

Proof. Let e — eSe, and recall that eSe = eS Π Se. By way of
contradiction suppose that eS Φ e and that Se Φ e. Then either eS ^
e ^ Se or Se ̂  e ̂  eS; and in either case, e is in the interior of eS U Se.
Thus there exists an open interval V about β such that V2 a eS {J Se.
Choosing x and y in V such that x e eS, x Φ e, ye Se, and y Φ e, we
have yx e eS [j Se. But if 2/# e eS, then

e = e(yx)e = (yx)e = (ye)xe = y(exe) = ye = y ,

contrary to the choice of y; and if yx e Se9 then similarly, e = x, con-
trary to the choice of x.

Now if eS = e9 SeS = Se. Since Sβ is the image of the connected
set S under right translation by e, it is connected; and since it is the
set on which right translation by e agrees with the identity mapping,
it is closed. Moreover, for each k in SeS,

icS = (ke)S - k(eS) = ke = k .

Thus, SeS is a closed connected set of left zeros and is clearly the
minimal ideal of S. If Se — e, then SeS consists of right zeros.

In order to prove (2), consider the three cases of 2.1. If e = eSe,
then one of eS and Se is just {e} and is clearly contained in the other.
If e is an endpoint of eS U Se, then since eS and Se are connected sets
extending from e in the same direction, one evidently contains the
other. Finally, if e cuts eSe,- then the identity component of H(e) ex-
tends to one end of the thread. Since H(e) c eS Π Se, the result again
follows from the connectedness of eS and Se.

3 Subthreads

3.1 LEMMA. Let A be a subset of S which contains, with x, all
elements larger than x. If A contains no idempotents and if a < α2

for some a in A, then A is a subthread in which max {x, y} < xy for
each pair of elements x and y in A.

Proof. Let a be an element in A such that a < a2, and let x be
any element of i , If x2 < x, then, since A is evidently connected and
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since the function mapping each element onto its square is continuous,
there is an idempotent between x and a contrary to the assumption
that A contains no idempotents. Hence x < x2. If xn < x, for some
positive integer n, then there is an idempotent between x and x2 by
2.4. And again, if Γ(x) is bounded, it is a compact semigroup and thus
contains an idempotent. Hence x e A implies that x tί Γ{x) and that
Γ(x) is unbounded.

Now suppose that yz = y with y and z in A. For each positive
integer n, yzn = y, thus zn is a right identity for Sy. But both Γ(y)
and Γ\z) are unbounded, so for some n and m, y2 < zn < ym. Thus zn

is in Sy and- znzn = zn. Since A contains no idempotents, yz = y is im-
possible.

Finally, if yz < y, then, by the continuity of right multiplication
by z and the fact that z < zz, there exists a t between y and z for
which tz — t, a contradiction. Hence y < yz, and dually z < yz.

3.2 LEMMA. If e is an idempotent, if eS [j Se ̂  e, if C is a con-
nected set containing e as a least element, and if [e, x) c xC Π Cx
whenever x e C; £feew β <Ξ C2.

Proof. Appealing to 2.5 we will lose no generality by assuming
that eS c Se. Thus t e eC implies et — te — t. Moreover, if t — ex
with x in C, then e = sx for some s in C, and thus

(es)t — (es)(ex) = [(es)e]x = (es)x = e(sx) = β .

It follows that βC is a subgroup of H(e). But eC is connected and
contains e while, by 2.1, H(e) contains at most two elements. Hence
eC = e.

Now suppose that xy < e for some x and y in C. Clearly e < #
and therefore e < #£ for some t in C Now xy < e < xt implies that
e = xw for some w between y and t. But if y < w, then #?/ 6 xwC =
eC = e; and if t < w, then #£ 6 xwC — eC — e. Since this contradicts
xy < e < xt, we have e ̂  x#. Hence, e ̂  C2.

The following result, which is a generalization of Faucett's Lemma
4 in [5], will be extremely useful in the remainder of the paper.

3.3 THEOREM. If e and f are idempotents in a thread S and if
eS U Se ̂  e < / , then [e,f] is a standard thread. If, in addition, f
cuts fSf, then [e, oo) is a positive thread.

Proof. Since ef e eS and fe e Se, neither ef nor fe is larger than
e. But ef e Sf and fe e fS, and these sets are connected. Thus e e
SfΠfS, and/acts as an identity on [e,f]. Then, for each x in [e, f],
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[β, x] c [ex,fx] Π [xe, xf] c [e,f]x Π %[e,f]. Consequently, by 3.2, e <:
[e,/]2, and in particular, e acts as a zero for [β, / ] .

Now if fSϋ.Sf^f; then [ e , / ] c / S implies [e ,/] 2 c/S and the
theorem is established. If on the other hand, fS U S / | / ; then, by
2.1, / cuts fSf.

Finally, if / cuts fSf; then, since e cannot be in H(f), it follows
from 2.2 that there exists an idempotent h in [e,f) such that (h, oo) is
isomorphic with &. Since hS U Sh ^ Λ, the preceding paragraphs show
that [e, ft] is a standard thread (it may of course be simply one point
if e = h). Evidently then, [e, oo) is a positive thread of which [e,/] is
a standard subthread.

3.4 LEMMA. If [α, b] and [b, c] are subthreads, then so is [α, c].

Proof. Let x e [α, 6], let y e [6, c], and suppose that c < #?/. Then,
since xb e [α, 6], [6, c] c [ccδ, ̂ ] c x[b> c\. Now Γ(α?) and [6, c] are both
compact, and by Wallace's Theorem 1 in [11], we conclude that [6, c] =
x[b, c] contrary to c < xy. Thus xy ^ c; and similarly, one proves that
a ^ xy and that a ^yx ^ c.

3.5 THEOREM. If e and f are any two idempotents in a thread,
then the closed interval between them is a subthread.

The proof of this result will be postponed until the end of section
four. The proof will be much easier then, and we promise not to apply
the result in the meanwhile.

4. The minimal ideal*

4.1 THEOREM. If S has no minimal ideal, then a zero may be ad-
joined as an endpoint and the resulting semigroup is again a thread.

Proof. We show first that S has no bounded ideals. Indeed, if M
is a bounded ideal, then M* is a compact ideal. In particular, ikf * is a
compact topological semigroup, and as such (see Theorem 3 in [10]),
there is an idempotent e in M* such that eM*e is a group. But M*
is an ideal and thus eSe = eM*e, thus eSe is a compact connected group.
It follows from 2.1 and 2.5 that eSe = e and that SeS is the minimal
ideal of S. Hence, S has no bounded ideals.

Next observe that every ideal contains a connected ideal. For if x
is any element of an ideal /, then SxS is a connected ideal contained
in J.

Now fix y in S and let J be an ideal contained in S\y. Such an
ideal does exist, for if not, then y is in each ideal of S, the intersection
of all ideals is not empty, and S has a minimal ideal. Since we may
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take J to be connected, we lose no generality if we assume that J < y.
If x < y then again there is a connected ideal M contained in S\x.

In fact, M < x, for otherwise M Π J is a bounded ideal. Thus M* is a
connected, closed, unbounded ideal whose elements are all less than or
equal to x. Hence, for each x less than y, there exists a c not greater
than x such that (— oo, c] is an ideal. Evidently a zero can be adjoined
as a least element.

4.2 THEOREM. If S has a minimal ideal K, then either S = K and
S = &*, or there exists an idempotent e such that e = eSe. In the
second case, it follows from 2.5 that K — SeS and is a closed connected
set of one sided zeros.

Proof. Let x e K and consider the subthread xK. We claim that
xK contains an idempotent. If not, we may assume without loss of
generality that a < a2 for some a in xK. It follows from 3.1 that
a < (xK)a(xK). But K{ax)K is an ideal contained in if and must there-
fore be equal to K. Consequently (xK)a(xK) — xK so that a e (xK)a(xK).
Hence, xK (and by an analogous proof, Kx as well) contains an idempotent
for each x in K.

Let e be an idempotent in K and recall that one of eS and Se
contains the other by 2.5. Assuming eS c Se, we have eSe = eS = eK.
Notice that eSe contains no idempotents other than e. For if / e eSe,
then f=ef = fe. But also, / e K so that e e SfS = Sf \J fS, hence
e=f.

Now if x e eSe, then xK contains an idempotent. But

xK = (#e)J£ = x(eK) = α (eSe) c eSe ,

and eSte contains only one idempotent. Hence x e eSe implies e e x(eSe),
i.e. eSe is a group.

Since eSe is also connected, either e = eSe or eSe = &*. In the
latter case, eSe is both open and closed and hence eSe = S. Thus S = ^
and S = K.

We are now in a position to give the overdue proof of Theorem 3.5.
We are to show that the closed interval between two idempotents in a
thread is a subthread.

Proof of 3.5. Since we can adjoin a zero if not, we assume that
S has a minimal K; and since the assertion is vacuously true otherwise,
we assume that K consists of one sided zeros. Observe that because of
the trivial multiplication within K, any closed interval contained in K
is a subthread.

If / is an idempotent larger than each element of K, and if k = sup K,
then [k,f] is a standard thread by 3.3. Similarly, if f<K and if
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I = inf K, then [/, ί] is the order dual of a standard thread. Moreover,
the interval between any two idempotents in a standard thread is again
a standard thread.

Finally, using these facts along with Lemma 3.4, which allows us
to sew the subthreads together, the theorem follows easily.

5 Threads with a zero The principal result of this section is the
characterization in 5.5 of all threads which have a zero as an endpoint
and for which S2 = S. However, the series of lemmas leading to this
result will be used again in the following section; consequently they are
more troublesome than is apparently necessary.

It will be convenient to introduce the following partial order when-
ever S has a zero:

x < y if and only i ί 0 ^ x < y o r y < x ^ 0 .

Obviously this does define a partial order on S.

5.1 LEMMA. Let S be a thread with a zero in which each idem-
potent e is an endpoint of eSe. Then Γ(x) is compact for each x in S,
J(x) ^ x when 0 < x, and x ^ J(x) when x < 0.

Proof. We show first that 0 < x implies Γ(x) ^ x. This is clear
if x e [0, e] for some idempotent e, for [0, e] is a standard thread by
3.3. Assume that x is larger than each idempotent, and let e be the
largest idempotent. Now if x < x2, then by 3.1, max{t/, x) < xy for each
y larger than e. By continuity, x ^ xe, and thus, 0 < e < x while
x e Se. But using 2.1, this implies that e cuts eSe, contrary to hypothesis.
Hence x2 < x, and it follows from 2.4 and the assumption that each
idempotent e is an endpoint of eSe that Γ(x) <Z x. Repeating the argu-
ment with all inequalities reversed, x ^ Γ(x) when x < 0.

Next we prove that Γ(x) is compact for each x larger than 0. This
is obvious if Γ(x) c [0, x]. If Γ(x) ςt [0, x], let xj be the first power of
x which is less than 0. Since xj ^ Γ{xj), xjn e [xj, x] for each positive
integer n. By the choice of j , xι e [xJ, x] for each positive integer i
less than j as well; therefore Γ(x) c \x\ xf U [xj, x], a compact set.
Similarly, Γ(x) is compact when x is less than 0.

To establish the last statement of the lemma, let 0 < x and suppose
that x ^ sxt. Then [0, x] c s[0, x\t, while [0, x], Γ(s), and Γ(t) are
compact. By Corollary 2 in [11], [0, x] — s[0, x]t. Therefore SxS ^ x,
and using the one sided analogues of the result just used, it can be
proved that Sx ^ x and that xS ^ x. This gives J(x) ^ x, and it follow
similarly that x <g J(x) when x < 0.

5.2 LEMMA. Let S be a thread with a zero. If S2 — S, then, for
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each x larger than 0, there exist an element u and a compact set A
such that x — uA and such that x is in the interior of uV for each
open set V which contains A.

Proof. Given x larger than 0, choose y larger than x\ or if x is
maximal, put y = x. Since S2 — S, we can choose u and v in S so that
y — uv. Now if 0 < v, let

p = inf {t I 0 ^ t ^ v and x ^ u[t, v]} ,

q — sup{t\p ^ t ^ v and x = ̂ [p, £]} ,

and let A = [p, q\. And if i; < 0, define p, q, and A analogously. The
details are easy to verify in either case. Actually, this proof is just a
slight generalization of the usual proof of the intermediate value theorem
for continuous functions on the real line.

5.3 LEMMA. Let S have a zero, let S2 = S, and let J(x) <£ x for
x > 0. If T is a connected set containing 0 such that Tu is bounded
for each u in S, and if h is defined on {x | 0 ̂  x] by h(x) = sup Tx,
then h is continuous.

Proof. Since Tx c J(x) <^ x, 0 ̂  h(x) ^ cc for each x greater than
0, and consequently, h is continuous at 0.

Now let 0 < x and let a < h(x) < b. Choose c and t so that t e T,
a < £x, and h(x) < c < 6, and let u and A be as in 5.2. We have

(Γw)*A c {TuAγ = (Γa?)* ^ h(x) < c ,

and since Tu is bounded by hypothesis, {Tu)* and A are both compact.
Thus (Lemma 2 in [9]) there exists an open set V such that A a V and
TuV < c. If y e uV, then fe(#) = sup Ty ̂  c < δ; and by 5.2, uV con-
tains an open set about x.

Since α < tx, there is another open set Wabout x such that a <tW.
Thus, y e W implies

a < ty ^ sup TV = h(y) .

Taking the intersection of W and the interior of u V, we have produced
a neighborhood of α? which is mapped into (α, b). Thus /̂  is continuous.

5.4 LEMMA. Let S have a zero and let A be a set such that Γ(a)
is compact for each a in A. If [0, x) c Ax for each x greater than 0,
then rt ^ st whenever 0 ̂  r < s.

Proof. If 0 lies strictly between rt and st, then there exists c in
(r, s) for which ct = 0. But then r e [0, c) so that rt e (Ac)t = A(cί) = 0
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which contradicts the assumption that zero lies strictly between rt and
st. Hence rt and st are at least comparable with respect to -<.

Since r e [0, s), we can choose an a in A such that r — as. Now
if st ^ rt, then

{x I 0 ̂  x ^ st} c {x I 0 ̂  x ^ asί} c <φ | 0 ̂  a? ̂  si}

and since both Γ(a) and {# 10 ̂  # ̂  si} are compact, we have
{x \0 ^ x ^ st} = a{x \0 ^ x ^ st} (Theorem 1, [11]). Thus rt = ast ̂  si.

5.5 THEOREM. If S is a thread with a zero as a least element and
if S2 = S, then S is a standard thread, or S is a standard thread
with its identity removed, or S is a positive thread.

Proof. If there exists an idempotent f in S which cuts fSf, then
S is a positive thread by 3.3. Hence, assume that no idempotent e cuts
eSe. By 5.1, Γ(x) is compact and J(x) c [0, x] for each x in S.

If we put h(x) = sup Sx, then h is continuous by 5.3. We claim
moreover that h is the identity. For suppose h(a) Φ a. Then a Φ 0
and h(a) < a. Using the continuity of h we choose an element t and
an open interval V, containing a, such that h(V) < t < V. Since S2 — S,
we can write a =yx and thus h(0) < a ̂  h(x). Again using continuity,
choose, b so that a = h(b). Now take any c in V such that c < a, and
observe that c e Sb = S(S6). Thus c e Sp for some p in S6. But then
c ^ p ^ α so that p e F , and hence Λ(p) < t < c contrary to c e Sp.

Since fc is the identity, [0, x) c S# for each x; and an analogous
argument gives [0, x) c xS. Thus we conclude from 5.4 and its left-right
dual that the multiplication in S is monotone.

If S is compact with w as its largest element, then w is an idem-
potent and S is a standard thread. Indeed, we can write w = xy, and
it then follows from J(x) ̂  x and J(y) ̂  y that w — x —y.

If S is not compact, then let T be the semigroup obtained by
adjoining an identity to S, and extend the order of S to T by declaring
that the identity is larger than each element of S. Since S is not
compact, T is evidently connected. Finally, the continuity of multipli-
cation in T follows immediately from the continuity and monotonicity
is S along with the relation [0, x) c xS Π Sx. Thus, T is a thread, and
in fact, a standard thread.

5.6 COROLLARY. If S is a thread with no idempotents, and if S2=S,
then S is iseomorphic with the real interval (0, 1) under the natural
multiplication.

Proof. Since S has no idempotents, it follows from 4.2 that S has
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no minimal ideal; and by 4.1, a zero may be adjoined as an endpoint to
S. Then either the extended thread or its order dual satisfies the
hypotheses of 5.5. Thus, S must be the result of removing both the
zero and the identity from a standard thread which has no other idem-
potents and which has no nilpotent elements. But Faucett proved in
Theorem 2 of [5] that any such standard thread is iseomorphic with [0, 1].

6. Threads in which S2 = S. Let S be a thread satisfying S2 = S.
If S has no minimal ideal, then a zero may be adjoined as an endpoint.
After taking the order dual, if necessary, the extended thread can then
be described by 5.5. Consequently, the structure of S is determined.
If S does have a minimal ideal, and if K = S, then the structure of S
is given by 4.2.

Thus, we have left only the case where S has a proper minimal
ideal which consists either of left zeros or of right zeros. We include,
of course, the special case in which S has a zero. Throughout this
section, when we say that S has a minimal ideal K, it will be tacitly
assumed that K is proper and thus consists of zeros.

The following notation will be used when there exists a minimal
ideal K:

R = {t\k^t for each k in K) ,

L = {t 11 ί£ k for each k in K} ,

If S has a zero, we have, R = {t | 0 ^ ί} and L = {ί 11 ̂  0}.

6.1 LEMMA. If S has a minimal ideal K, if S2 = S, and if there
exists a connected proper ideal of S containing L, then R2 = R.

Proof. Let J be a connected proper ideal containing L, and let
c = sup J". If J* — S, then S\J = c; and since S2 = S, c is an idem-
potent. Thus by 3.3, R is a standard thread, and certainly R2 = R.

Now assume that J* is a proper ideal, and let B = {ί | c <̂  ί}. Since
J * is closed and connected, T = SjJ* is a non-degenerate thread with
a zero as a least element and with T2 = T. By 5.5, T is a positive
thread or T is a standard thread with or without its identity. In any
case, [0, t) c tT Π Tt for each t larger than zero in T. Since the natural
homomorphism of S onto T is strictly increasing on B and takes J *
onto 0, we conclude that [c, b) c bB n Bb for each b larger than c in S.

Taking k = sup ϋΓ, fc is the least element of R and kS U Sk ^ k.
Since 6i2 and iϋί> are connected sets, [fc, 6) c bR Π iϋ& for each b larger
than c. Now fix b larger than c and let r be any element of R such
that r ^ c. Then there exist s and t in iϋ such that r = sb = bt. Thus,

, r) c [sfc, sδ) c 8[k, b) c sδi? = rR ,
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and similarly, [k, r) c Rr. Hence, for each r in R, [k, r) c rR Π Rr.
Applying 3.2, with C = R and e — k, we have R2 c R. On the other
hand, R2 Z) R follows immediately from the facts that J is a proper ideal
containing L and that S2 = S.

6.2 LEMMA. Let S have a zero, and let S2 = S. If R c LS U SL
and i/ i/̂ ere exists a set A such that (d, 0] c dA Π Ad /or eacfe d less
than 0 awd swc/?, that Γ(a) is compact for each a in A, then the multi-
plication in S is monotone with respect to < and 0 is an endpoint of
L2, R2, LR, and RL.

Proof. First, notice that the second conclusion follows from the
first. Indeed, it suffices to show that if x and y are -<-comparable and
if u and v are •< -comparable, then so are xu and yv. But if x < y
and u < v; then, assuming that the multiplication is monotone, xu ̂  yu
and yu ^ yv, so that xu ̂  yv.

To prove monotonicity, observe that (using both order and left-right
duality) 5.4 gives dt ^ pt and td ^ tp whenever p < d ^ 0. Since
R c LS U SL, while each of LS and SL is a connected set containing
0, either R c LS or R a SL; and without loss of generality we assume
that R c LS.

Now if x > 0, choose d in L and g in S such that x — dq. Then

[0, x) = [0g, dq) c (d, 0]g c Adq = AE .

Thus, again by 5.4, rί ^ st whenever 0 ̂  r < s.
The only case left to demonstrate is tr ^ ts for 0 <J r < s. Again

choose d and g with d in L so that dq = s. Then r e [0g, dg) so that
r = pq for some p in (d, 0]. Since d < p <̂  0, we have £p ̂  td, i.e.,
either 0 ̂  tp ^ id or id ^ ίp ̂  0. In either case we can multiply on
the right by q to obtain

tr = £pg ^ £dg = is .

6.3 LEMMA. // S λ,αs a zero, if S2 = S, and i/ either L2 = L or
ίfeβ conclusions of 6.2 Λoid.

Proof. The other case being quite similar, let us assume that
L2 = L. By 5.5, the order dual of L is a positive thread or a standard
thread with or without its identity. In the first case, L has an identity
e, Γ(x) is compact for each x in [e, 0], and (d, 0] c d[e, 0] Π [β, 0]d for
each d less than 0. In the second case, Γ(x) is compact for each x in
L and (d, 0] c dL Π Ld when d < 0.

Hence, if J? c LS U SL as well, then monotonicity follows from 6.2.
However, even if R ς£ LS U SL, we may still apply 5.4 to conclude that
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dt ^ pt and td^tp for p < d g 0. Thus, if we show that R2 = R,
then monotonicity follows by dualizing the foregoing argument.

Now assume that R <£ LS U SL; we must show that R2 — R. If R
contains an idempotent e which cuts eSe, this is an immediate con-
sequence of 3.3. Assume that each idempotent e in R is an endpoint
of eSe.

If each idempotent / in L is also an endpoint of fSf, then by 5.1,
J(x) <, x whenever 0 < x. From this it follows that L U SL U LS is
an ideal, and thus a connected proper ideal containing L. If some
idempotent f in L cuts fSf, then by 3.3 and 2.5, fS U Sf is a connected
proper ideal containing L. Thus, in either case, 6.1 yields R2 — R.

6.4 LEMMA. // S has a zero, if S2 = S, if J(x) ^ x for x > 0, and
if x ^ J(x) for x < 0; then either L c L2 or RaR2.

Proof. Suppose by way of contradiction that neither L c L2 nor
RaR2. Since L d S2 = L2 [j SR I) RS, while each of the three sets on
the right is connected and contains 0, L must be contained in one of
the three. Consequently L c SR or L c RS.

If L c &R, then

Λ c S2 - SL U SR c S(SΛ) [J SR = SR = R2 U LR ,

and thus iϋ c Liϋ. Now

RaLRa L(LR) = (L2 Π L)R U (L2 n Λ)Λ c (L2 Π L)Λ U R2 .

Again, Jί c (L2 n L)^; and hence L c. SR a S(L2 Γ) L)R.
If L c JRS, we obtain similarly, L c i?(L2 (Ί L)S. But then, in either

case, L c S(L2 n L)S; and choosing d less than L2, d e SpS for some
p in L2 Π L contrary to p ^

6.5 LEMMA. Let S have a zero, let S2 = S, Zeί Sx be bounded for
each x, let J(x) ίg cc for 0 < x, Zet cc g J(x) for x < 0, ami define a
function f on S by:

1 i n f S a , if x ^ 0 .

Then f is continuous. Moreover, if f is the identity on a set B, then
f also acts as the identity on BS.

Proof. The continuity of / is immediate from 5.3 and its order
dual.

Since Sx is connected and contains 0, f(x) = x if and only if
{V I y ^ %} c Sx. Now if /(&) = 6, and if ί = bs, then
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{y \y ^ t} = {y \y ^ bs} a {y \y ^ b}s (Z Sbs = St.

Thus f{b) = b implies f(bs) = bs.

6.6 LEMMA. Let S be a thread with a zero in which J(x) ^ x for
0 < x and x ^ J(x) for x < 0. Let Γ(x) be compact for each x in S,
and let R2 = S. Then R = S.

Proof. Since J(x) ^x for 0 < x, L U LS U SL is an ideal. If
R qL LS U SL, then L U LS U SL is a proper connected ideal containing
L, and by 6.1, S — R2 = R. Hence we assume that R c LS U SL.

If J(x) is unbounded for some x larger than 0, then L is unbounded
and L c J(x). But then, R is unbounded, and at the same time R c
LS U SL c J(x) ^ x. Hence x ^ 0 implies that J(x) is bounded. If
/(#) is unbounded for some x < 0, then ϋ? is unbounded and R c /(#).
Since R2 = S, α? e J(r) for some r in iϋ. Hence i? c J(r) ^ r, a con-
tradiction. Thus, So? and xS are bounded for each x in S.

In the remainder of the proof we will prove that {d, 0] c Sd Π ώS
for each d less than 0. Actually we only prove that {d, 0] c Sd; the
other case depends on an analogous argument. Then we will be able
to apply 6.2 and conclude that 0 is an endpoint of R2, and thus S = R.

Let a e S and choose Λ in R such that a e Sh. From S2 = S it
follows that α e Sc^ for some αx in Sh. Continuing inductively, we con-
struct an infinite sequence {an} such that an e San+1 and an+1 e Sh.
Replacing {an} by an infinite subsequence if necessary, we may assume
that either {an} c L or {an} a R. In either case, it follows from the
hypotheses that an ^ αn+1.

Since each aw e Sh while Sh is bounded, the least upper bound of
{an} with respect to •< exists. Let b be this least upper bound. Let /
be the function defined in Lemma 6.5. Then an ^ f(an+1) ^ αn+1, and
since / is continuous, f(b) = b. This means that {x \ 0 ^ x -< b} c Sb.
Now if &! = b then α e Sαx = Sδ, and if αx •< b then α e Saλ c S(S6) = Sδ.
We have shown that for each a in S there exists b such that a e Sb
and f(b) = b.

Let B = {x\ f(x) — x} and let A = BS. We have just proved that
SJ5 = S and thus SA = S. Moreover, / is the identity on A by 6.5;
and since we can write A = (j {δS| 6 e J5}, A is a connected right ideal.

Suppose that neither L a A nor R a A. Then choose cί in L and r
in R such that c£ < A < r. Since SA = S, there exist s and t in A
such that d e Ss and r e St. It follows from d < A and A < r that
£ < 0 < s. But then s e [0, r] and [0, r] c Si, so that d e SsaSt con-
trary to t ^ J(ί). Hence, either L c A or R c A. Moreover, if R c A
then L c R2 c Aiϋ c A, and thus L c A in any case. Finally, / acts
as the identity on L and thus (d, 0] c Sc£ for each d less than 0.
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6.7 THEOREM. Let S be a thread with a proper minimal ideal K,
and let S2 = S. Then, passing to the order dual if necessary, R2 = R
and is thus completely described by 5.5. Moreover, if L c L2 then
L = L2 as well. Finally, K does not separate R2, L2, LR, or RL, and
the multiplication in SjK is monotone with respect to <.

Proof. Since K is connected and closed, T = S/K is a thread which
obviously has a zero and satisfies T2 = T. We show first that, after
passing to the order dual if necessary, R2 = R in T.

If some idempotent / cuts fSf in T then by 3.3 either L or R is
a positive thread, and clearly either L2 = L or R2 — R. Otherwise, each
idempotent e in T is an endpoint of eSe and 5.1 can be applied. Thus
J(x) <̂  x for x > 0, J(x) ^ x for x < 0, and Γ(x) is compact for each
x. Now by 6.4, either L c L2 or R a R2, and passing to the order dual
if necessary, we assume that R c R2. Since d ^ J(d) for each d less
than 0, R2 is itself a thread. Moreover, it satisfies the hypotheses of
6.6, and thus R2 = R.

Next, applying 6.3 to T, we see that the multiplication in T is
monotone with respect to •<, and that 0 is an endpoint of L2, R2, LR,
and RL. This evidently gives the last assertion of the theorem.

Finally, going back to S itself, we clearly have R c R2. Since K
does not separate R2, K U R is a thread satisfying 6.1 and thus R = R2.
Likewise, if L cL2 in S, then L = ZΛ
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