ON UNIVALENCE OF A CONTINUED FRACTION

E. P. MERkKES AND W. T. ScoTT

1. Introduction. For a fixed positive integer a let K, denote the
class of functions f(z) which are regular at z = 0 and which have C-
fraction expansions of the form

1.1 ~F @2 e 2T <14,
O Wi i el B L

From an elementary convergence theorem for continued fractions [4, p.42],
it follows that each function of the class K, is regular for |z ]| < 1.
This and the one-to-one correspondence between C-fractions and power
series [4, p.400] permit a replacement of the correspondence symbol in
(1.1) by equality for |z | < 1.

The purpose of this paper is to determine for K, the radius of
univalence, U(a), and bounds for the starlike radius, S(«), and the radius
of convexity, C(a). In the case of S-fractions it was shown by Thale
[3] that U(1l) = 121/2-16 and Perron [2] established the fact that actual
equality holds. This result is a special case of Theorem 2.1 whose proof
employs value region techniques similar to those used by Thale and
Perron. Moreover, the result S(1) = 8/9 in [3] is improved in Theorem
4.2,

The developments in this depend on the following value region

theorem which is an immediate consequence of a result of Paydon and
Wall [1]:

THEOREM 1.1. If f(R)e K, and |z]*=p* <4r(1 —7r), 0 < r < 1/2,
then

1.2) f@ 1 | _r

P 1—r2l =" 1—p"

Moreover, for z = Var@ —ryem™*, (m =1,2, --+, a), there is a value
of f(z)|z on the boundary of the disc (1.2) if and only if there exists
a @,0 =@ <27, such that f(2) = f(z; p), where

1.3 no) =2 A2 R R
1.3) f(¢)1+1+1+ LT 4

2. Determination of U(a). For f(z) e K, and for a fixed positive
integer n put
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fo,n(z) =z,

2z
n = , = 0, 1’ e, —_— 1 ,
Sot1.0(2) e (» n —1)

2.1)

where the numbers a, are the coefficients in the C-fraction expansion
(1.1) of f(2). It is easily seen that f,.(2) is the approximant of (1.1)
of order n + 1, and that f,.(2) € K, for each p.

For non-negative integers s, t, and for non-zero numbers z,, z,, (2.1)
may be used to show that

ziz;fzﬁl,n(zl) - ziz;)fmﬁl.n(zz)

(2.2) = fv+1»n(z;)£p+1,n(zz) {3412t — 2825 — @[22 f, (2))
142
- z§+lz;+w_lfp,n(z2)]} ’ (p = Oy 11 e, M — 1) .

This identity plays a fundamental role in the proof of the following
theorem.

THEOREM 2.1. The radius of univalence of K, is given by

U@) =2v2/3,

2.8) (U@ = [61/’a2 - 2c(ra+_92')—2 2a + 7)

], (@=1,8,4,++).

There is no larger region, containing the disc |z | < U(a), in which all
functions of K, are univalent.

Proof. For f(z)e K, and for a fixed positive odd integer n=2m+1
it follows from (2.2) that

fnn(zl) - fnn(zz)
(2‘4) = M{% — R — a/l[zf_lzzfn—l,n(zl) - zlzg_lfn—l,n(%)]} .

2.2,
Repeated application of (2.2) yields

(27 2 fr1() — 21257 fro1.n(20)]

— El(zlzz)(j—l)wﬂ(z?—l _ zg—l) ﬁlaﬂfn—p,n(zl)fn—p,n(zz)
=1 p=1 2%,

(2.5)

- jil (zlzz)m(zl — 2,) f—_j[ a,pfn—z?.n(zl)fn—p,n(z2) .

22,
For 2, and 2, in the disc |2| <1, r can be chosen with 0 < r < 1/2 such
that |2,|* < 4r(1— 1), (¢ =1, 2), and by Theorem 1.1, | £, .(z:)/2;| £ 1/(1—7),

t=1,2;,p=0,1, ---,n). When the triangle inequality is applied to
the right member of (2.5) and the indicated bounds are used, there
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results
[ a, | l 72 fr1.(21) — 2287 frm1.0(22) |
m+1 2j—1 mn 2
-1 . r r J]
=1z zzl[é(a 1)<1—'r> +J§1<1—r>

<lzl—zzllquﬂ[a—l—(a—zyr].

This inequality and (2.4) give

SO F Y 0 P D P CE S TGRS i |

Izlzzl 1—2r

Since Theorem 1.1 shows that neither of the factors | £, .(z;)/z; |, (¢=1, 2),
is zero, it follows from (2.6) that f, .() # fa.n(2:) for z, # z, if » is such

that 1 — 2r > r[a — 1 — (a — 2)r]. This is equivalent to the condition
r < ra) where

7(2) = 1/3

a+1—1Va—2a+9

To(a) = 2 — 2) ’

(a:1y3y4’ "')7

and it is easily seen that f,,.1.m::(2) is univalent for [z |* < [U(®)]® =
dr@)[1 — r(a)].

If the function f(z) has a non-terminating C-fraction (1.1), the uni-
valence of f(z) for |z| < U(a) is an immediate consequence of the fact
that f(z) is the uniform limit of its sequence of even approximants,
Somiramni(2), for | 2] < o < 1. The case where f(z) has a C-fraction ex-
pansion (1.1) terminating with an odd number of partial quotients may
be reduced to the previously considered case for even approximants by
adding a partial quotient, a,,2*/1 with a,,,=0, and noting that f.,—1..m—1(2)=
Famem(?) in this case.

In order to complete the proof that the radius of univalence of K,
is the value U(a) given in (2.3), it suffices to exhibit a function of K,
which is not univalent in |z| < p for any p > U(a). Such a function
is the function f(z, ) of (1.3), that is,

2z
Ten =g e
where the branch of the radical with positive real part for |z| <1 is
used. This function is not univalent at the points e *U(a), (m =
1,2,---, a), where its derivative vanishes.
The final statement in Theorem 2.1 may be verified by applying to
the function f(z, ©) the observation that, for every real ¢, e~%f(¢*2) € K,



1364 E. P. MERKES AND W. T. SCOTT
whenever f(z) € K,.

3. A covering theorem. The value region inequality (1.2) can be
rewritten as

L 20-VI—p9
S24pr+ 21— p0

3. 1) _ 4
(8-1) 2 240+ 21— p”

where | 2| = o and f(2) € K,. Thus for | z| = p the following inequalities,
which provide a means of comparison between K, and various classes
of univalent functions, are obtained:

2 f(z) 2

3.2 3—1/1—pw§9%{z}§1+1/1—pw’
Sf(z) 21 — V1 — o)

(3-3) 'sz \§2+pw+21/1—p~’

20 201 — VI =%
(3.4) W ——‘Ow é If(z) l é pm_l ’
(3.5) ’arg&‘ < arc sin 1—-VI—p .

2 2

Each of the inequalities (3.2)-(3.5) is sharp. This fact follows at
once from Theorem 1.1 since equality in any one of (3.2)-(3.5) depends
on the attainment by f(2)/z of a suitable boundary value for the disc
(3.1) or (1.2).

The following theorem is an immediate consequence of (3.4) and
Theorem 2.1:

THEOREM 3.1. If f(2) € K,, then the image of |z | < U(a) by w = f(2)
contains the disc

2U(e)
(36 R S

and s contained in the disc

3.7 ol = VI—TU@J
&0 S

These results are sharp.

4. A lower bound for S(a). An upper bound for S(a), the starlike
radius for the class K,, is evidently the value U(a) determined in §2.
In this section a lower bound for S(«) is found by determining a number
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pOi(a) such that every function of K, is starlike in the disc |z | < py ().

LeEmMA 4.1. If f(z)e K, and |a| = 1/4, then

_ __a"f(?)
@1 \ w(e) = 1+ a2 'f(2)
satisfies
re r
*2) yw_ 1—r = 1—19

whenever |z]* < 4r(l—1), 0 < r < 1/2.
Proof. The lemma is obvious when ¢ = 0. For 0 < |a| < 1/4, (4.1)
yields
fR) _ 1 —wR

2 az® 1+ w(z)’

and the desired result is easily obtained by applying the inequality
|f()/z| =1/ — r), which is a consequence of Theorem 1.1.

LEMMA 4.2. If « s a posttive integer and if for fixed r, 0<r<<1/2,
¢ and d are numbers such that

1+ (ax— 2)r 0<d:1+(a—2)'r

(4.3 0<c< , —c,
43 =0= T g 1—2r ¢
then ¢ = 1 satisfies

(4.4) lo—cl=d.

Moreover, if w is a parameter satisfying (4.2) and if 7, satisfies (4.4),
then o, satisfies (4.4) where

(4.5) oo=1+wlo,+a—1).

Proof. It is obvious that 1 —¢ < d holds for all », 0 < r < 1/2,
and that —d <1 — ¢ holds provided

cgw
= 2a-—2r)

The fact that ¢ = 1 satisfies (4.4) may be verified by noting that the
upper bound of ¢ in this last inequality exceeds the upper bound on ¢
in (4.3) for all », 0 < » < 1/2.

The proof of the second statement is obtained by using (4.2), (4.3),
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(4.4), (4.5), and the triangle inequality to show that

lo,—¢|<|1—cy T a—Dr

1—17
+e+ra-Dlw— Tt w]o—c|
1— 7
é1+(a—2)7'2—(1—2r2)c_l_(c+a—1)r+ rd —d.
1—1 1— 17 1—7

LEMMA 4.3. If (4.3) holds for 0 < r < 1/2, there is a wvalue of ¢
satisfying ¢ = d if and only if 0 < r < r,(«a), where r(a) is the smal-
lest positive root of

(4.6) 1—(@+2)r+2a—1—2a—2r=0.

Proof. By (4.3) the inequality ¢ = d holds if and only if

1+ (@—2)r' 1+ (a—2)r
1—2rr ~— 20-—2r) '’

which is equivalent to the statement that the left member of (4.6) is
nonnegative. Clearly r,(a) < 1/2.

THEOREM 4.1. If f(z)e K, and ¢,d satisfy (4.3), where |z|* =
0% < 4r(1 — r), then

@ zL(z)—cI <d.
f(z)
Proof. For the functions f,,(z) of (2.1) put
— f;on — an—pzw—lfp+1.n
Oppn =275, Wpnp= — ’
" fp.'n ! 1 + an—pzm—lfpﬂ.n

and note by differentiation that o¢,,,,=1+ w,.(0,,+ a—1). For
| 2| = p inductive application of Lemmas 4.1 and 4.2 shows that (4.7)
holds for f,, and the validity of (4.7) in this case for |z| < p follows
from the maximum property for harmonic functions. Inasmuch as f, .,
is the (n + 1)th approximant of (1.1) the theorem holds for functions
of K, having terminating C-fraction expansions. The validity of the
theorem in the case of non-terminating C-fractions (1.1) is an immediate
consequence of the uniform convergence of f,, to f on any closed subset
of |z] < 1.

THEOREM 4.2. The starlike radius of K, satisfies S(a) = o,(a) where
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[0()]® = 4r(a)[1 — r(a)] and where r(a) is the smallest positive root

of (4.6).

Proof. For r < r(a) Lemma 4.3 shows that Theorem 4.1 can be
applied to any function f(z) € K, with ¢ = d, and hence that

snez!%'(%lgo, 2] < pya) .

Since this inequality insures that f(z) is starlike for |z | < p,(«) the proof
is complete.

In particular, (1) = (13 —1)/2 and S(1) = 413 — 6 which im-
proves the lower bound of 8/9 obtained for S(1) in [3].

5. A lower bound for C(a). It is clear that S(a) and U(a) are
upper bounds for C(a), the radius of convexity of K,. In this section
a lower bound for C(a) is found by determining a number p,(a) such
that every function of K, is convex for |z | < o,(«).

LEMMA 5.1. Let « denote a positive integer and let r a) be the
smallest positive root of the equation:

(5.1) 1 — (o + 2 + 6)r + 6(a® + a + 2)r* — 4(3a® + 2)r*
+ 12(a — Dar* — da(a — 2)r° =0 .

If for fized r, 0 < r < ra), g, and g, are numbers which satisfy
(5.2) lo,—cl=d, |o,—cl=d,
where

3 Lr@=2r _ _l+@—2r , 1+@—2r
2(1—-21") 1 — 292 1_ 9r

and if

—1J g 20, + a — 2
5.4 =200, — 1)+ 2 . a—l——O—————],
54 = (0, ) + 7 L700_0+a_1+( )oo+a—1

then | v,| =1 implies | v, | < 1.

Proof. For 0 < r < r(a), where r(a) is as determined in Theorem
4.2, 0 <d <c¢ and

T _arf(a—1) — 2(a — 2)r + 2(a — 2)r*]
Godimes @ — 2ry( — 2r7) =0

Thus by (5.2)
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and it follows that

“c—d )

Similarly, (5.2) can be used to show that

I c+d
oo+a—11"c¢c+d+a—1"

o, +a—1 Te+dta—1

IA

For |v,| = 1 application to (5.4) of the triangle inequality, (5.2) and the
bounds determined above lead to the inequality

1 ](Za— (¢ + d) + (a — 1)(a — 2)
d c+d+a—1

(5.5) [ <20c+d—1) +[

The desired inequality, | v, | =< 1, will hold for those values of r < r(a)
for which the right member of (5.5) does not exceed 1, or equivalently,
for which

(5.6) c—d

Ca — 1)(c + d) + (¢ — 1) (a — 2)
“(2a—1)(c+d)+(a—1)(a 2)+[3—2(c+d)][c-|—d+a—1]

Since 2¢ = (¢ + d) + (¢ — d), (5.3) shows that the existence of a value
of ¢ satisfying (5.6) is insured for all » < r,(a) for which

(5.7) plt@=2r" - . L y+D.
1— 27

This last inequality is equivalent to the requirement that the polynomial
in the left member of (5.1) be non-negative.

The proof of the lemma will be completed by establishing the existence
of a smallest positive zero, 7,(a) of (5.1) for which r,(a) < r(a). Since
the equation (4.7) determining r,(a) is equivalent to

and since D > 0 for r = r,(a), it follows that (5.7) fails to hold for
r = ri(a). The desired conclusion about r,(«) is then easily obtained by
noting that (5.7) holds with strict inequality for » = 0.
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THOREM 5.1. The radius of convexity of K, satisfies
(5.8) [C(@)]* = 4r()[1 — r()] = [0()]"

where rya) is the smallest positive root of (5.1)

Proof. For the functions f, () of (2.1) put

! "
= g on Vpom = 2211

Fon " fh
It is easily verified from (2.1) that

g

».n

—1 v, 0 20,4+ a—2
=200,,—1 Tp1 [ 2P a—1)—=—— = ]
Ton = 200 — 1) + Cpir op+a—1+( )op—l—a—l

where the subscript » has been omitted. Theorem 4.1 and the fact that
Yon = 0 show that the hypotheses of Lemma 5.1 are satisfied, and
inductive application of the lemma yields |v,.,.| =< 1. It follows that

Re[l + 7,.] =0, |2] = o),

which insures the convexity of the (n + 1)th approximant of any C-frac-
tion (1.1) for | 2z | < py(@), and the proof of the theorem may be completed,
as in Theorem 4.1, by reference to uniform convergence.

It is found that p,(1) > .641. An upper bound for C(a) can be
obtained by finding for the function f(z, 7) of (1.8) the zeros of 2f"'(2, 7) +
f'(z, r) with smallest modulus. For a = 1 this smallest modulus is ap-
proximately .707.
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