ON A COMMUTATOR RESULT OF TAUSSKY AND ZASSENHAUS

Marvin Marcus ${ }^{1}$ and N. A. Khan ${ }^{2}$

1. Introduction and results. Let M_{n} denote the set of n-square matrices over a field F. For A, B in $M_{n} \operatorname{let}[A, B]=A B-B A^{\prime}$, where A^{\prime} is the transpose of A and define inductively

$$
\begin{equation*}
[A, B]_{k}=\left[A,[A, B]_{k-1}\right] . \tag{1.1}
\end{equation*}
$$

If $P^{-1} J P=A$, then

$$
[A, X]=\left[P^{-1} J P, X\right]=P^{-1}\left[J, P X P^{\prime}\right]\left(P^{-1}\right)^{\prime},
$$

and similarly

$$
\begin{equation*}
[A, X]_{k}=P^{-1}\left[J, P X P^{\prime}\right]_{k}\left(P^{-1}\right)^{\prime} . \tag{1.2}
\end{equation*}
$$

Now for a fixed A let T be the linear map of M_{n} into itself defined by

$$
\begin{equation*}
T(Y)=[A, Y] \tag{1.3}
\end{equation*}
$$

and (1.1) implies that

$$
T^{k}(Y)=[A, Y]_{k} .
$$

In a recent paper [1], Taussky and Zassenhaus showed that A is nonderogatory if and only if any nonsingular X in the null space of T is symmetric. In this note we investigate the structure of the null space of both T and T^{2} for arbitrary A.

Enlarge the field F to include $\lambda_{i}, i=1, \cdots, p$, the distinct eigenvalues of A, and let $\left(x-\lambda_{i}\right)^{e_{i j}}, j=1, \cdots, n_{i}, e_{i 1}>\cdots>e_{i n_{i}}, i=1, \cdots, p$ be the distinct elementary divisors of A where $\left(x-\lambda_{i}\right)^{e_{i j}}$ appears with multiplicity $r_{i j}$. Set $m_{i}=\sum_{j=1}^{n_{i}} r_{i j} e_{i j}$, the algebraic multiplicity of λ_{i}. Let $\eta(T)$ denote the null space of $T, \sigma(T)$ denote the subspace of symmetric matrices in $\eta(T)$, and $\gamma(T)$ denote the subspace of skew-symmetric matrices in $\eta(T)$. We show that

$$
\begin{gather*}
\operatorname{dim} \eta(T)=\sum_{i=1}^{p}\left[\sum_{j=1}^{n_{i}}\left(r_{i j}^{2} e_{i j}+2 r_{i j} \sum_{k=j+1}^{n_{i}} r_{i k} e_{i k}\right)\right], \tag{1.4}\\
\operatorname{dim} \sigma(T)=\frac{1}{2} \sum_{i=1}^{p}\left[\sum_{j=1}^{n_{i}}\left\{r_{i j}\left(r_{i j}+1\right) e_{i j}+2 r_{i j} \sum_{k=j+1}^{n_{i}} r_{i k} e_{i k}\right\}\right], \tag{1.5}
\end{gather*}
$$

[^0]\[

$$
\begin{gather*}
\operatorname{dim} \eta\left(T^{2}\right)=\sum_{i=1}^{p}\left[\sum_{j=1}^{n_{i}}\left\{r_{i j}^{2}\left(2 e_{i j}-1\right)+4 r_{i j} \sum_{k=j+1}^{n_{i}} r_{i k} e_{i k}\right\}\right], \tag{1.6}\\
\operatorname{dim} \sigma\left(T^{2}\right)=\frac{1}{2} \sum_{i=1}^{p}\left[\sum_{j=1}^{n_{i}}\left\{r_{i j}^{2}\left(2 e_{i j}-1\right)+r_{i j}+4 r_{i j} \sum_{k=j+1}^{n_{i}} r_{i k} e_{i k}\right\}\right] .
\end{gather*}
$$
\]

In case A is nonderogatory, $n_{i}=1, r_{i j}=1, i=1, \cdots, p$ and (1.4) and (1.5) reduce to

$$
\operatorname{dim} \eta(T)=n=\operatorname{dim} \sigma(T)
$$

Thus every matrix X satisfying

$$
\begin{equation*}
A X=X A^{\prime} \tag{1.8}
\end{equation*}
$$

where A is non-derogatory is symmetric, the result in [1]. Moreover, if every matrix X satisfying (1.8) is symmetric then $\operatorname{dim} \eta(T)=\operatorname{dim} \sigma(T)$. Using the formulas (1.4) and (1.5) we see that this condition implies that

$$
\sum_{i=1}^{p} \sum_{j=1}^{n_{i}}\left(r_{i j}^{2}-r_{i j}\right) e_{i j}+2 \sum_{i=1}^{p} r_{i j} \sum_{k=j+1}^{n_{i}} r_{i k} e_{i k}=0 .
$$

Now since $r_{i j}, e_{i j}$ and n_{i} are all positive integers we conclude that $r_{i j}=1, j=1, \cdots, n_{i}$ and $n_{i}=1$. That is, there is only one elementary divisor corresponding to each eigenvalue. Hence, if every matrix X satisfying (1.8) is symmetric then A is non-derogatory, a result also found in [1].

We also show in this case that $\eta(T)$ consists of matrices of the form $P X P^{\prime}$ where P is fixed (depending on A) and X is persymmetric, (i.e. all the entries of X on each line perpendicular to the main diagonal are equal).

We next note that $\eta(T)=\sigma(T)+\gamma(T)$ (direct) and $\eta\left(T^{2}\right)=\sigma\left(T^{2}\right)+$ $\gamma\left(T^{2}\right)$ (direct). The first statement is easy to show; we indicate the brief proof of the second statement:
Since $X=\frac{X+X^{\prime}}{2}+\frac{X-X^{\prime}}{2}$, if $X \in \eta\left(T^{2}\right)$, then

$$
\begin{aligned}
T^{2}\left(X+X^{\prime}\right) & =\left[A,\left[A, X+X^{\prime}\right]\right] \\
& =\left[A,[A, X]+\left[A, X^{\prime}\right]\right] \\
& =[A,[A, X]]+\left[A,\left[A, X^{\prime}\right]\right] \\
& =T^{2}(X)-\left[A,[A, X]^{\prime}\right] \\
& =[A,[A, X]]^{\prime} \\
& =\left(T^{2}(X)\right)^{\prime}=0 .
\end{aligned}
$$

Similarly, $T^{2}\left(X-X^{\prime}\right)=0$. Thus any $X \in \eta\left(T^{2}\right)$ is expressible uniquely as a sum of two elements, one in $\sigma\left(T^{2}\right)$ and the other in $\gamma\left(T^{2}\right)$. Hence

$$
\begin{align*}
& \operatorname{dim} \gamma(T)=\operatorname{dim} \eta(T)-\operatorname{dim} \sigma(T) \tag{1.9}\\
= & \frac{1}{2} \sum_{i=1}^{p}\left[\sum_{j=1}^{n_{i}}\left\{r_{i j}\left(r_{i j}-1\right) e_{i j}+2 r_{i j} \sum_{k=j+1}^{n_{i}} r_{i k} e_{i k}\right\}\right], \\
& \operatorname{dim} \gamma\left(T^{2}\right)=\operatorname{dim} \eta\left(T^{2}\right)-\operatorname{dim} \sigma\left(T^{2}\right) \\
= & \frac{1}{2} \sum_{i=1}^{p}\left[\sum_{j=1}^{n_{i}}\left\{r_{i j}^{2}\left(2 e_{i j}-1\right)-r_{i j}+4 r_{i j} \sum_{k=j+1}^{n_{i}} r_{i k} e_{i k}\right\}\right] .
\end{align*}
$$

In case A is non-derogatory, (1.6), (1.7) and (1.10) reduce to

$$
\begin{aligned}
\operatorname{dim} \eta\left(T^{2}\right) & =2 n-p \\
\operatorname{dim} \sigma\left(T^{2}\right) & =n \\
\operatorname{dim} \gamma\left(T^{2}\right) & =n-p
\end{aligned}
$$

We thus conclude that unless all the eigenvalues of A are distinct ($p=n$) there exist skew-symmetric matrices X satisfying

$$
\begin{equation*}
A^{2} X-2 A X A^{\prime}+X\left(A^{\prime}\right)^{2}=0 . \tag{1.11}
\end{equation*}
$$

If $p=n$, and A is non-derogatory

$$
\operatorname{dim} \eta\left(T^{2}\right)=n=\operatorname{dim} \sigma\left(T^{2}\right)
$$

and any matrix X satisfying (1.11) is symmetric.
On the other hand suppose

$$
\operatorname{dim} \eta\left(T^{2}\right)=\operatorname{dim} \sigma\left(T^{2}\right)
$$

From (1.6) and (1.7) we conclude that

$$
\sum_{i=1}^{p}\left[\sum_{j=1}^{n_{i}}\left\{r_{i j}^{2}\left(2 e_{i j}-1\right)-r_{i j}+4 r_{i j} \sum_{k=j+1}^{n_{i}} r_{i k} e_{i k}\right\}\right]=0 .
$$

Hence $n_{i}=1, r_{i j}=1, e_{i k}=1$ and we conclude that $p=n$. That is, if every matrix X satisfying (1.11) is symmetric then the eigenvalues of A are distinct.

We show finally (Theorem 2) that if A is an n-square matrix with p distinct eigenvalues then both $\operatorname{dim} \gamma(T)$ and $\operatorname{dim} \gamma\left(T^{2}\right)$ are at most $\frac{1}{2}(n-p)(n-p+1)$. Moreover, for each p this bound is best possible.

Thus if there exists a skew-symmetric solution of (1.8) or (1.11), then A has multiple eigenvalues, without the assumption that A is nonderogatory.
II. Proofs. Let $E_{i j} \in M_{n}$ be the matrix with 1 in position i, j and 0 elsewhere. With respect to this basis, ordered lexicographically, it may be checked that T has the matrix representaion

$$
\begin{equation*}
T=I \otimes A-A \otimes I \tag{2.1}
\end{equation*}
$$

where \otimes indicates Kronecker product.
From (1.2) we may take A to be in Jordan canonical form J, since $[A, X]_{k}=0$ if and only if $\left[J, P X P^{\prime}\right]_{k}=0$ and $P X P^{\prime}$ is symmetric if and only if X is. We write

$$
\begin{equation*}
J=\sum_{s=1}^{p} \cdot J_{s} \tag{2.2}
\end{equation*}
$$

where

$$
\begin{equation*}
J_{s}=\lambda_{s} I_{m_{s}}+\sum_{t=1}^{n_{s}} \cdot \sum_{1}^{r_{s t}} \cdot U_{e_{s t}} ; \tag{2.3}
\end{equation*}
$$

Σ^{\cdot} indicates direct sum, I_{t} is a t-square identity matrix, U_{t} is t-square auxiliary unit matrix (i.e. 1 in the superdiagonal and 0 elsewhere) and ${ }^{r_{j i}} \cdot U_{e_{s t}}$ is the direct sum of $U_{e_{s t}}$ with itself $r_{i j}$ times.

By a routine computation we see that

$$
T^{k}(Y)=0
$$

if and only if

$$
\begin{equation*}
\sum_{\alpha=0}^{k}\binom{k}{\alpha}(-1)^{\alpha} J_{s}^{k-\alpha} Y_{s t}\left(J_{t}^{\prime}\right)^{\alpha}=0, \quad s, t=1, \cdots, p \tag{2.4}
\end{equation*}
$$

where $Y=\left(Y_{s t}\right), s, t=1, \cdots, p$ is a partitioning of Y conformal with the partitioning of J given by (2.2).

For $s \neq t$, it is clear that the matrix representation of (2.4),

$$
\left(I_{m_{t}} \otimes J_{s}-J_{t} \otimes I_{m_{s}}\right)^{k}
$$

has the single nonzero eigenvalue $\left(\lambda_{s}-\lambda_{t}\right)^{k}$ and thus $Y_{s t}=0$. Hence we need only consider the equation (2.4) for $s=t$. We may again partition $Y_{s s}$ conformally with J_{s} in (2.3). We are thus led to consider the null space of the mapping

$$
\begin{equation*}
\left(I_{e_{s i}} \otimes U_{e_{s j}}-U_{e_{s i}} \otimes I_{e_{s j}}\right)^{n} \tag{2.5}
\end{equation*}
$$

Lemma 1. Let $T=I_{m} \otimes U_{n}-U_{m} \otimes I_{n} . \quad$ Then

$$
\begin{gather*}
\operatorname{dim} \eta(T)=\min (m, n), \tag{2.6}\\
\operatorname{dim} \eta\left(T^{2}\right)= \begin{cases}2 \min (m, n), & \text { if } m \neq n \\
2 n-1, & \text { if } m=n\end{cases} \tag{2.7}
\end{gather*}
$$

Proof. Suppose $n \leqq m$ and that $T(X)=0$. Let x_{1}, \cdots, x_{m} be the column n-vectors of X. Then we have

$$
\begin{align*}
U_{n} x_{j}-x_{j+1} & =0, \quad j=1,2, \cdots, m-1 \tag{2.8}\\
U_{n} x_{m} & =0 \tag{2.8}
\end{align*}
$$

For $r=1,2, \cdots, n-1$ consider the $(r-j+1)$ coordinate of for $j=1, \cdots, r$ and we conclude that

$$
x_{r+1,1}=x_{r, 2}=\cdots=x_{1, r+1}=c_{r+1} .
$$

Next consider the $(n-j+1)$ coordinate of (2.8) for $j=1, \cdots, n$ to obtain

$$
0=x_{n 2}=x_{n-1,3}=\cdots=x_{1, n+1} .
$$

Similarly we see that the remaining elements of X are zero. Hence we find that the j th column of the $n \times m$ matrix X is the transpose of the n-vector

$$
\left[c_{j}, c_{j+1}, \cdots, c_{n}, 0, \cdots, 0\right]
$$

for $j=1,2, \cdots, n$. The other $m-n$ columns are zero.
In case $n \geqq m$, it is easy to check that the j th row of X is the m-vector

$$
\left[c_{j}, c_{j+1}, \cdots, c_{m}, 0, \cdots, 0\right]
$$

for $j=1,2, \cdots, m$. The other $n-m$ rows are zero.
This establishes (2.6). To prove (2.7) let $T^{2}(X)=0$ and $x_{1}, x_{2}, \cdots, x_{m}$ be the column n-vectors of X. Let us consider the following cases:
(i) $m=n$.

We have

$$
U_{n}^{2} x_{n}=0, \quad U_{n}^{2} x_{n-1}=2 U_{n} x_{n}
$$

and

$$
U_{n}^{2} x_{j}-2 U_{n} x_{j+1}+x_{j+2}=0, j=1,2, \cdots, n-2
$$

Solving these equations recursively we find that the lst, 2nd and j th rows of X are respectively

$$
\begin{gathered}
{\left[x_{11}, x_{12}, \cdots, x_{1, n-2}, x_{1, n-1}, x_{1 n}\right]} \\
{\left[x_{21}, x_{22}, \cdots, x_{2, n-2}, x_{2, n-1}, 0\right]}
\end{gathered}
$$

and

$$
\begin{array}{r}
(j-1)\left[x_{2, j-1}, x_{2, j}, \cdots, x_{2, n-1}, 0, \cdots, 0\right] \\
- \\
(j-2)\left[x_{1, j}, x_{1, j+1}, \cdots, x_{1, n}, 0, \cdots, 0\right]
\end{array}
$$

for $j=3,4, \cdots, n$.
The number of arbitrary parameters in X is $2 n-1$.
(ii) $n<m$.

Here we have the following equations:

$$
\begin{gather*}
U_{n}^{2} x_{j}-2 U_{n} x_{j+1}+x_{j+2}=0, j=1,2, \cdots, m-2 \tag{2.9}\\
U_{n}^{2} x_{m-1}-2 U_{n} x_{m}=0 \\
U_{n}^{2} x_{m}=0
\end{gather*}
$$

and by solving recursively again we find that the 1st, 2 nd and j th rows of X are respectively the m-vectors

$$
\begin{gathered}
{\left[x_{11}, \cdots, x_{1, n-1}, x_{1, n}, n x_{n, 2}, 0, \cdots, 0\right]} \\
{\left[x_{21}, \cdots, x_{2, n-1},(n-1) x_{n, 2}, 0,0, \cdots, 0\right]}
\end{gathered}
$$

and

$$
\begin{aligned}
& {\left[(j-1) x_{2, j-1}, \cdots,(j-1) x_{2, n-1},(n-j+1) x_{n, 2}, 0, \cdots, 0\right]} \\
& \quad-(j-2)\left[x_{1, j}, \cdots, x_{1, n}, 0,0, \cdots, 0\right]
\end{aligned}
$$

for $j=3,4, \cdots, n$.
In case $n>m$, by similar computation we find that the 1st, 2 nd and j th rows of X are respectively

$$
\begin{aligned}
& {\left[x_{11}, \cdots, x_{1, m-2}, x_{1, m-1}, x_{1 m}\right],} \\
& {\left[x_{21}, \cdots, x_{2, m-2}, x_{2, m-1}, x_{2 m}\right]}
\end{aligned}
$$

and

$$
\begin{array}{r}
(j-1)\left[x_{2, j-1}, \cdots, x_{2, m-1}, x_{2 m}, 0, \cdots, 0\right] \\
\quad-(j-2)\left[x_{1, j}, \cdots, x_{1, m}, 0,0, \cdots, 0\right]
\end{array}
$$

for $j=3,4, \cdots, m+1$. The remaining $n-m-1$ rows are zero.
From case (ii), we observe that the number of parameters in X is $2 \min (m, n)$.

We now state and prove the following

Lemma 2. Let A be an n-square matrix with the single eigenvalue λ and let $(x-\lambda)^{n_{i}}$ be an elementary divisor of A of multiplicity r_{i}, $i=1, \cdots, p, n_{1}>\cdots>n_{p}$. Then the most general matrix X satisfying (1.11) has

$$
\begin{equation*}
\sum_{i=1}^{p}\left[r_{i}^{2}\left(2 n_{i}-1\right)+4 r_{i} \sum_{j=i+1}^{p} r_{j} e_{j}\right] \tag{2.10}
\end{equation*}
$$

arbitrary parameters.
Moreover if X is symmetric it contains

$$
\begin{equation*}
\frac{1}{2} \sum_{i=1}^{p}\left[r_{i}^{2}\left(2 n_{i}-1\right)+r_{i}+4 r_{i} \sum_{j=i+1}^{p} r_{j} n_{j}\right] \tag{2.11}
\end{equation*}
$$

parameters.
Proof. Without any loss of generality we can assume that

$$
\begin{equation*}
A=\sum_{i=1}^{p} \cdot \sum_{j=1}^{r_{i}} \cdot U_{i} \tag{2.12}
\end{equation*}
$$

where $\sum \cdot U_{i}$ indicates the direct sum of U_{i} with itself r_{i} times. We partition X conformally with A in (2.12) and observe that the equation

$$
U_{i}^{2} X_{i j}-2 U_{i} X_{i j} U_{j}^{\prime}+X_{i j}\left(U_{j}^{\prime}\right)^{2}=0
$$

determines the structure of any block $X_{i j}$ in the partitioning of X.
From case (i) of Lemma 1, we conclude that any block $X_{i j}$ corresponding to equal U_{i} 's contains $2 n_{i}-1$ arbitrary parameters and there are r_{i}^{2} such blocks. Also from case (ii) any block in X that corresponds to U_{i} and $U_{j}, i<j$, contains $2 n_{j}$ arbitrary parameters. Hence the total number of parameters in X is given by (2.10).

In order to find the number of parameters in a symmetric X we first consider a diagonal block. Its structure has been discussed in Lemma 1, case (i). We observe that if this matrix is symmetric, the number of parameters in it reduces from $2 n_{i}-1$ to n_{i}.

Then we consider two symmetrically placed off-diagonal blocks $X_{i j}$ and $X_{j i}$ of orders $n_{i} \times n_{j}$ and $n_{j} \times n_{i}$ respectively. If X is to be symmetric then by equating the terms of $X_{i j}$ and $X_{j i}$ which are symmetrically placed about the main diagonal of X, the number of arbitrary parameters in $X_{i j}$ and $X_{j i}$ reduces from $2\left(2 n_{j}\right)$ to $2 n_{j}$. If $X_{i j}$ and $X_{j i}$ are of order $n_{i} \times n_{i}$ then the number of parameters reduces from $2\left(2 n_{i}-1\right)$ to $2 n_{i}-1$.

We are now in a position to sum the number of parameters in X if it is symmetric and satisfies (1.11). There are r_{i} blocks in the main diagonal, each of order $n_{i}, i=1, \cdots, p$. The number of parameters in each of these blocks is n_{i}. There are $r_{i}\left(r_{i}-1\right) / 2$ other square blocks of order n_{i}. Each of them contains $\left(2 n_{i}-1\right)$ parameters. Thus

$$
\frac{1}{2} \sum_{i=1}^{p}\left\{r_{i}^{2}\left(2 n_{i}-1\right)+r_{i}\right\}
$$

is the number of parameters in all those blocks of X which are square. Since any block of order $n_{i} \times n_{j}$ where $n_{i}>n_{j}$ contains $2 n_{j}$ parameters, and since we are considering X to be symmetric, we conclude that the total number of arbitrary parameters in X is given by (2.11).

We can similarly prove the following
Lemma 3. Let A be the matrix given in Lemma 2. Then the most
general matrix X satisfying (1.8) has

$$
\sum_{i=1}^{p}\left(r_{i}^{2} n_{i}+2 r_{i} \sum_{j=i+1}^{p} r_{j} n_{j}\right)
$$

arbitrary parameters.
Moreover if X is symmetric, it contains

$$
\frac{1}{2} \sum_{i=1}^{p}\left[r_{i}\left(r_{i}+1\right) n_{i}+2 r_{i} \sum_{j=i+1}^{p} r_{j} n_{j}\right]
$$

parameters.
We now state and prove the following
Theorem 1. Let A be an n-square matrix with distinct eigenvalues $\lambda_{1}, \cdots, \lambda_{p}$ and let $\left(x-\lambda_{i}\right)^{e_{i j}}, j=1, \cdots, n_{i}, e_{i 1}>\cdots>e_{i n_{i}}$ be the elementary divisors of A corresponding to λ_{i}, where each $\left(x-\lambda_{i}\right)^{e_{i j}}$ has been repeated $r_{i j}$ times. Then (1.4), (1.5), (1.6) and (1.7) hold.

Proof. It was pointed out earlier that if $Y=\left(Y_{r s}\right), r, s=1, \cdots, p$ is the partitioning of Y conformal with the partitioning of J in (2.2), then all the off-diagonal blocks are zero. Hence we have simply to find the number of parameters in $Y_{i i}, i=1, \cdots, p$.

As proved in Lemma 2, the number of parameters in $Y_{i i}$ is

$$
\sum_{j=1}^{n_{i}}\left[r_{i j}^{2}\left(2 e_{i j}-1\right)+4 r_{i j} \sum_{k=j+1}^{n_{i}} r_{i k} e_{i k}\right] .
$$

Summing the above with respect to i we obtain the formula (1.6). In case Y is symmetric, the number of parameters in $Y_{i i}$ is

$$
\frac{1}{2} \sum_{j=1}^{n_{i}}\left[r_{i j}^{2}\left(2 e_{i j}-1\right)+r_{i j}+4 r_{i j} \sum_{k=j+1}^{n_{i}} r_{i k} e_{i k}\right]
$$

Summing the above on i we obtain (1.7).
Similarly, we can make use of Lemma 3 in proving (1.4) and (1.5).
We now prove
Theorem 2. Let A be as given in Theorem 1. Then the maximum number of linearly independent skew-symmetric matrices satisfying (1.8) or (1.11) is

$$
\frac{1}{2}(n-p)(n-p+1) .
$$

Proof. In order to prove our result for $\operatorname{dim} \gamma\left(T^{2}\right)$, let $m_{i}=\sum_{j=1}^{n_{i}} r_{i j} e_{i j}$ and consider

$$
\begin{aligned}
& m_{i}^{2}- m_{i}- \\
&=\sum_{j=1}^{n_{i}}\left[r_{i j}^{2}\left(2 e_{i j}-1\right)-r_{i j}+4 r_{i j} \sum_{k=j+1}^{n_{i}} r_{i k} e_{i k}\right] \\
&= \sum_{j=1}^{n_{i}}\left[r_{i j}^{2} e_{i j}^{2}+2 r_{i j} e_{i j} \sum_{k=j+1}^{n_{i}} r_{i k} e_{i k}-r_{i j} e_{i j}\right] \\
&-\sum_{j=1}^{n_{i}}\left[r_{i j}^{2}\left(2 e_{i j}-1\right)-r_{i j}+4 r_{i j} \sum_{k=j+1}^{n_{i}} r_{i k} e_{i k}\right] \\
&= \sum_{j=1}^{n_{i}}\left[r_{i j}^{2}\left(e_{i j}-1\right)^{2}-r_{i j}\left(e_{i j}-1\right)+2 r_{i j}\left(e_{i j}-2\right) \sum_{k=j+1}^{n_{i}} r_{i k} e_{i k}\right] .
\end{aligned}
$$

Now, it is clear that $r_{i j}^{2}\left(e_{i j}-1\right) \geqq r_{i j}\left(e_{i j}-1\right)$. The last term in the above expression will be negative only when $e_{i j}=1$. But we know that $e_{i 1}>e_{i 2}>\cdots>e_{i n_{i}}$, so that $e_{i j}$ will be 1 only for $j=n_{i}$. In that case $\sum_{k=j+1}^{n_{i}}$ does not appear, and we have

$$
\frac{1}{2} \sum_{j=1}^{n_{i}}\left[r_{i j}^{2}\left(2 e_{i j}-1\right)-r_{i j}+4 r_{i j} \sum_{k=j+1}^{n_{i}} r_{i k} e_{i k}\right] \leqq \frac{1}{2}\left(m_{i}^{2}-m_{i}\right) .
$$

This holds for $i=1, \cdots, p$.
To determine a bound on $\gamma(T)$, consider

$$
\begin{aligned}
& \quad m_{i}^{2}-m_{i}-\sum_{j=1}^{n_{i}}\left[r_{i j}\left(r_{i j}-1\right) e_{i j}+2 r_{i j_{j}} \sum_{k=j+1}^{n_{i}} r_{i k} e_{i k}\right] \\
& =\sum_{j=1}^{n_{i}}\left[r_{i j}^{2} e_{i j}\left(e_{i j}-1\right)+2 r_{i j}\left(e_{i j}-1\right) \sum_{k=j+1}^{n_{i}} r_{i k} e_{i k}\right] \\
& \quad \geqq 0, \text { since } e_{i j} \geqq 1 .
\end{aligned}
$$

Thus we have

$$
\frac{1}{2} \sum_{j=1}^{n_{i}}\left[r_{i j}\left(r_{i j}-1\right) e_{i j}+2 r_{i j} \sum_{k=j+1}^{n_{i}} r_{i k} e_{i k}\right] \leqq \frac{1}{2}\left(m_{i}^{2}-m_{i}\right) .
$$

It may be observed that the upper bound is attained for $r_{i 1}=m_{i}, e_{i 1}=1$ and the remaining e 's and r 's all zero.

We have thus proved that

$$
\operatorname{dim} \gamma\left(T^{2}\right) \leqq \frac{1}{2} \sum_{i=1}^{p}\left(m_{i}^{2}-m_{i}\right)
$$

and

$$
\operatorname{dim} \gamma(T) \leqq \frac{1}{2} \sum_{i=1}^{n}\left(m_{i}^{2}-m_{i}\right)
$$

where m_{i} is the multiplicity of the eigenvalue λ_{i} of A.
Now we have to maximize $\sum_{i=1}^{p}\left(m_{i}^{2}-m_{i}\right)$ under the condition that
$m_{1}+\cdots+m_{p}=n$, the order of A. Note that

$$
m_{i}^{2}-m_{i}=\left(m_{i}-1\right)^{2}+\left(m_{i}-1\right)
$$

and each $m_{i}-1 \geqq 0$. Hence, we have

$$
\sum_{i=1}^{p}\left(m_{i}-1\right)^{2} \leqq\left[\sum_{i=1}^{p}\left(m_{i}-1\right)\right]^{2}=(n-p)^{2}
$$

Thus the maximum value of both $\operatorname{dim} \gamma\left(T^{2}\right)$ and $\operatorname{dim} \gamma(T)$ is

$$
\frac{1}{2}\left[(n-p)^{2}+(n-p)\right]
$$

The bounds are achieved when $m_{1}=\cdots=m_{p-1}=1$ and $m_{p}=n-p+1$.

Reference

1. O. Taussky and H. Zassenhaus, On the similarity transformation between a matrix and its transpose. Pacific J. Math. 9 (1959), 893-896.

The University of British Columbia, Vancouver, Canada AND
Muslim University, Aligarh, India

[^0]: Received December 17, 1959. The work of this author was supported by U.S. National Science Foundation Grant, NSF-G5416. The second author is a Postdoctorate Fellow of the National Research Council of Canada. The authors are grateful to Professor O. Taussky for her helpful suggestions.

