ANALYTIC AUTOMORPHISMS OF BOUNDED SYMMETRIC COMPLEX DOMAINS

Helmut Klingen

In a former paper [2] I determined the full group of one-to-one analytic mappings of a bounded symmetric Cartan domain [1]. Those investigations were incomplete, because it was impossible to treat the second Cartan-type of $n(n-1) / 2$ complex dimensions for odd n by this method. The present note is devoted to a new shorter proof of the former result (n even), which furthermore covers the remaining case of odd n.

Take the complex $n(n-1) / 2$-dimensional space of skew symmetric n-rowed matrices Z. The irreducible bounded symmetric Cartan space in question is the set \mathcal{E}_{n} of those matrices Z, for which

$$
I+Z \bar{Z}>0, Z^{\prime}=-Z
$$

is positive definite. Here I is the n by n unit matrix. Obviously \mathcal{E}_{2} is the unit circle. It is easy to see that analytic automorphisms of \mathcal{E}_{n} are described by the group ϕ of the mappings

$$
\begin{equation*}
W=(A Z+B)(-\bar{B} Z+\bar{A})^{-1} \tag{1}
\end{equation*}
$$

where the n-rowed matrices A, B fulfill

$$
M^{*} K M=K \quad \text { with } \quad M=\left(\begin{array}{rr}
A & B \\
-\bar{B} & \frac{B}{A}
\end{array}\right), \quad K=\left(\begin{array}{rr}
I & 0 \\
0 & -I
\end{array}\right)
$$

Here M^{*} denotes the conjugate transpose of M. For $n=4$

$$
W=\widetilde{Z}
$$

is a further analytic automorphism, where \widetilde{Z} arises from Z by interchanging the elements z_{14} and z_{23},

$$
\widetilde{Z}=\left(\begin{array}{cccc}
0 & z_{12} & z_{13} & z_{23} \\
-z_{12} & 0 & z_{14} & z_{24} \\
-z_{13} & -z_{14} & 0 & z_{34} \\
-z_{23} & -z_{24} & -z_{34} & 0
\end{array}\right) \text {. }
$$

For $W \bar{W}$ and $\widetilde{Z} \overline{\widetilde{Z}}$ have the same characteristic roots. But this mapping is not contained in ϕ, since $C Z=\widetilde{Z} D$ cannot be satisfied identically in Z by non-singular constant matrices C, D. On the other hand the following theorem holds.

Received October 13, 1959.

Theorem. Each analytic automorphism of \mathcal{E}_{n} can be written as $W=f(Z)$ or $W=f(\widetilde{Z})$ (only for $n=4$) with $f \in \phi$.

Therefore the group ϕ is already the full group of analytic automorphisms for $n \neq 4$. Only in the exceptional case $n=4$ there are the further mappings $W=f(\widetilde{Z})$, which together with ϕ form the full group of analytic automorphisms. The proof of this theorem consists of two parts. The first analytic part is a reproduction of my former proof [2], which will be given here again for completeness, the second part is of algebraic character.

The group ϕ acts transitively on \mathcal{E}_{n}. For take an arbitrary point Z_{1} of \mathcal{E}_{n}, choose the matrix A such that

$$
A\left(I+Z_{1} \bar{Z}_{1}\right) A^{*}=I
$$

and define $B=-A Z_{1}$. Then (1) maps Z into 0 . Therefore it is sufficient to investigate the stability group of the zero matrix.

First we show that each analytic one-to-one mapping $W=W(Z)$ of \mathcal{E}_{n} with the fixed point 0 is linear. For an arbitrary point $Z_{1} \in \mathcal{E}_{n}$ let $r_{1}, \cdots, r_{n}, 0 \leqq r_{1} \leqq \cdots \leqq r_{n}<1$, be the characteristic roots of $Z_{1} Z_{1}^{*}$. Then also $t Z_{1}$ belongs to \mathcal{E}_{n}, if t is a complex number with $t \bar{t} r_{n}<1$. Consequently there exists a power series expansion

$$
\begin{equation*}
W\left(t Z_{1}\right)=\sum_{k=1}^{\infty} t^{k} W_{k}\left(Z_{1}\right), \quad t \bar{t} r_{n}<1 \tag{2}
\end{equation*}
$$

The elements of the skew-symmetric matrices $W_{k}\left(Z_{1}\right)$ are homogeneous polynomials of degree k in the independent elements of Z_{1}. Because of $I+W\left(t Z_{1}\right) \bar{W}\left(t Z_{1}\right)>0$ for $\bar{t} t=1$, one obtains from (2)

$$
\begin{equation*}
\frac{1}{2 \pi i} \int_{-\bar{t}=1}\left(I+W\left(t Z_{1}\right) \bar{W}\left(t Z_{1}\right)\right) \frac{d t}{t}=I+\sum_{k=1}^{\infty} W_{k}\left(Z_{1}\right) \bar{W}_{k}\left(Z_{1}\right)>0 \tag{3}
\end{equation*}
$$

and in particular $I+\bar{W}_{1}\left(Z_{1}\right) W_{1}\left(Z_{1}\right)>0$. Therefore the linear function $W_{1}(Z)$ is an analytic mapping of \mathcal{E}_{n} into itself. Its determinant D is at the same time the Jacobian of the function $W(Z)$ with respect to Z. By interchanging Z and W it can be assumed $D \bar{D} \geqq 1$. Consequently $W(Z)$ is an analytic automorphism of \mathcal{E}_{n} and even maps the boundary onto itself. Take now in particular

$$
Z_{1}=U^{\prime} P U, \quad P=\left[(0), p_{1} F, \cdots, p_{m} F\right], \quad F=\left(\begin{array}{rr}
0 & 1 \tag{4}\\
-1 & 0
\end{array}\right)
$$

with an unitary matrix $U, m=[n / 2] . \quad P$ shall be the matrix, which is built up by the two-rowed blocks $p_{1} F, \cdots, p_{m} F$ and possibly by the element 0 along the main diagonal. Z_{1} belongs to the interior of \mathcal{E}_{n}, if $-1<p_{k}<1(k=1, \cdots, m)$, and to the boundary, if $-1 \leqq p_{k} \leqq 1(k=$
$1, \cdots, m)$ and $p_{k}= \pm 1$ for at least one k. Now $\left|I+W_{1}\left(Z_{1}\right) \bar{W}_{1}\right|$ is a polynomial in p_{1}, \cdots, p_{m} of total degree $4 m$ and on the other hand (see [2], Lemma 4) the square of a polynomial. As $\left|I+W_{1}\left(Z_{1}\right) \bar{W}_{1}\right|$ vanishes on the boundary of \mathcal{E}_{n}, this polynomial is divisible by

$$
\left|I+Z_{1} \bar{Z}_{1}\right|=\prod_{k=1}^{m}\left(1-p_{k}^{2}\right)^{2} .
$$

Because the constant terms and the degrees of both polynomials are equal, one obtains

$$
\begin{equation*}
\left|I+W_{1}\left(Z_{1}\right) \bar{W}_{1}\right|=\left|I+Z_{1} \bar{Z}_{1}\right| \tag{5}
\end{equation*}
$$

even identically in Z_{1}; for each skew-symmetric matrix Z_{1} permits a representation (4) (see [2], Lemma 3). On account of (5) and the linearity of W_{1} the matrices $W_{1} \bar{W}_{1}$ and $Z \bar{Z}$ always have the same characteristic roots and this implies

$$
\begin{equation*}
W_{1}(Z)=U^{\prime} Z U \tag{6}
\end{equation*}
$$

with unitary U, which for the present still depends on Z.
Put now

$$
Z=u X, \quad X=U_{1}^{\prime},\left[e^{i \zeta_{1}} F, \cdots, e^{i \zeta_{r}} F,(0)\right] U_{1}, \quad 0 \leqq u \leqq 1,
$$

with real variables $\zeta_{1}, \cdots, \zeta_{r}$. Then $Z \in \mathcal{E}_{n}$ and by (6)

$$
W_{1} W_{1}^{*}=u^{2} U^{\prime} U_{1}^{\prime}\left(\begin{array}{lr}
I^{(n-1)} & 0 \\
0 & (0)
\end{array}\right) \bar{U}_{1} \bar{U}
$$

for all u between 0 and 1 . Because of (3) one obtains

$$
\bar{U}_{1} \bar{U}\left(I+W_{1} \bar{W}_{1}+W_{k} \bar{W}_{k}\right) U^{\prime} U_{1}^{\prime}>0 \quad(k=2,3, \cdots) .
$$

If u tends to 1 , one gets

$$
\left(\begin{array}{rr}
0 & 0 \\
0 & (1)
\end{array}\right)+\bar{U}_{1} \bar{U} W_{k} \bar{W}_{k} U^{\prime} U_{1}^{\prime}>0,
$$

hence $W_{k}(X)=0$. As W_{k} is a polynomial, $W_{k}(Z)$ even vanishes identically in Z. Therefore the stability group of \mathcal{E}_{n} is linear.

The investigation of $W=W_{1}(Z)$ is now a purely algebraic problem. The representation (6) shows that rank $W=$ rank Z and beyond this the equality of the characteristic roots of $W \bar{W}$ and $Z \bar{Z}$. These properties will be used in order to determine $W(Z)$ explicitly. We have to prove

$$
\begin{equation*}
W(Z)=U^{\prime} Z U \quad \text { or } \quad W(Z)=U^{\prime} \widetilde{Z} U \tag{7}
\end{equation*}
$$

with unitary constant U, where the second type only occurs for $n=4$. The proof of this fact will be given by induction. The assertion (7) is trivial for the unit circle $(n=2)$. Let us assume its correctness for $2,3, \cdots, n-1$ and consider \mathcal{E}_{n}. Write the linear mapping $W(Z)$ of \mathcal{E}_{n} onto itself as

$$
W=\sum_{k<l} z_{k l} A_{k l}
$$

with constant skew-symmetric n by n matrices $A_{k l}$. Because of the equality of the characteristic roots of $W W^{*}$ and $Z Z^{*}$ the hermitian matrix $A_{k l} A_{k l}^{*}$ has $1,1,0, \cdots, 0$ as characteristic roots. Therefore after unitary transformation of W we can assume $A_{12}=E_{12}$, where in general $E_{k l}$ denotes the skew-symmetric matrix the elements of which are all zero besides the element in the k th row and l th column and the element in the l th row and k th column, which are 1 respectively -1 . Since $\operatorname{tr}\left(A_{12} \bar{A}_{k l}\right)=0$ for $(k, l) \neq(1,2)$, one obtains

$$
A_{k l}=\left(\begin{array}{cc}
0^{(2)} & * \\
* & *
\end{array}\right) \quad(k, l) \neq(1,2)
$$

$A_{12}=E_{12}$ does not change, if W is transformed by

$$
\left(\begin{array}{ll}
U^{(2)} & 0 \\
0 & V
\end{array}\right)
$$

with unitary $U, V,|U|=1$. Therefore

$$
A_{13}=\left(\begin{array}{rr}
0^{(2)} & B \\
-B^{\prime} & C
\end{array}\right), \quad B=\left(\begin{array}{ccc}
b_{1} & 0 & 0 \\
0 & b_{2} & 0
\end{array}\right)
$$

can be assumed. From rank $W=\operatorname{rank} Z$ identically in Z one obtains possibly after unitary transformation $A_{13}=E_{13}$.

For $A_{14}=\left(a_{k i}\right)$ we get two possibilities. First the equation $\operatorname{tr}\left(A_{12} \bar{A}_{14}\right)=$ $\operatorname{tr}\left(A_{13} \bar{A}_{14}\right)=0$ implies $a_{12}=a_{13}=0$. After unitary transformation all the elements of the first row besides a_{14} are zero. Then take only the elements z_{12}, z_{13}, z_{14} of Z distinct from zero; from $\operatorname{rank} W=\operatorname{rank} Z=2$ one sees

$$
A_{14}=E_{14} \quad \text { or } \quad A_{14}=E_{23} .
$$

By a similar consideration $A_{1 \nu}$ turns out to be $E_{1 \nu}$ or E_{23}. But actually for $\nu>4$ the second possibility $A_{1 \nu}=E_{23}$ may not occur. For $A_{14}=A_{1 \nu}=$ E_{23} is impossible because of $\operatorname{tr}\left(A_{14} \bar{A}_{1 \nu}\right)=0$. If $A_{14}=E_{14}, A_{1 \nu}=E_{23}$, choose only the elements $z_{1 v}, z_{14} \neq 0$, then rank $Z=2$ but rank $W=4$. Therefore $A_{1 \nu}=E_{1 \nu}(\nu \neq 4), A_{14}=E_{14}$ or E_{23}. Furthermore $A_{14}=E_{23}$ may only happen if $n=4$. For assume $A_{14}=E_{23}, A_{15}=E_{15}$ and take only the elements $z_{14}, z_{15} \neq 0$. This implies rank $Z=2$ but rank $W=4$.

Let us summarize our results. After a suitable unitary transformation W can be written as

$$
W=\left(\begin{array}{rr}
0 & z^{\prime} \\
-z & L\left(Q Z_{0}\right)
\end{array}\right), \quad Z=\left(\begin{array}{rr}
0 & z^{\prime} \\
-z & Z_{0}
\end{array}\right),
$$

besides the exceptional case $n=4, A_{14}=E_{23}$. Now $L\left(Z_{0}\right)$ is an analytic automorphism of \mathcal{E}_{n-1} with the fixed point 0 . For $n=3$ we know $L\left(Z_{1}\right)=$ $e^{i \zeta} Z_{1}$ with a real constant ζ. Therefore $W=U^{\prime} Z U$ with a constant unitary matrix U, which is the theorem for $n=3$. For $n>5$ the induction hypothesis shows

$$
W=\left(\begin{array}{cc}
0 & z^{\prime} U^{\prime} \\
-U z & Z_{0}
\end{array}\right)
$$

with constant unitary U. From the equality

$$
\operatorname{rank} W=\operatorname{rank} Z
$$

U turns out to be a diagonal matrix. Finally consider the sum of the two-rowed principal minors of $W \bar{W}$ and $Z \bar{Z}$. These two quantities are equal identically in Z because of the fact that $W \bar{W}$ and $Z \bar{Z}$ have the same characteristic roots. By this identity one obtains $U=a I$ with a complex number a of absolute value 1 , which again proves our theorem.

There still remain the cases $n=4$ and 5 . For $n=4, A_{14}=E_{14}$ we can use the reasoning above. Let $A_{14}=E_{23}$; since

$$
\operatorname{tr}\left(A_{1 \nu} \bar{A}_{23}\right)=\operatorname{tr}\left(A_{1 \nu} \bar{A}_{24}\right)=\operatorname{tr}\left(A_{1 \nu} \bar{A}_{34}\right)=0 \quad(\nu=2,3,4)
$$

W only differs from \widetilde{Z} in the last row, where a linear combination of z_{23}, z_{24}, z_{34} appears. The identity between the ranks of Z and W shows $w_{14}=a_{1} z_{23}, w_{24}=a_{2} z_{24}, w_{34}=a_{3} z_{34}$. Now it is easy to compute the sum of the two-rowed principal minors of $W \bar{W}$ and $Z \bar{Z}$. This computation shows again the assertion for $n=4$.

For $n=5$ we know by the induction hypothesis

$$
L\left(Z_{0}\right)=U^{\prime} Z_{0} U \quad \text { or } \quad L\left(Z_{0}\right)=U^{\prime} \widetilde{Z}_{0} U
$$

with constant unitary U. The first case can be treated as above. In the second case one obtains

$$
W=\left(\begin{array}{cc}
0 & z^{\prime} U^{\prime} \\
-U z & Z_{0}
\end{array}\right) .
$$

Choose once only $z_{14}, z_{24} \neq 0$, then only $z_{14}, z_{34}, z_{45} \neq 0$. In any case rank $Z=2$, hence rank $W=2$. But this implies that all the elements of the third column of U vanish, which is a contradiction to the unitary character of U. This final remark completes the proof.

References

1. E. Cartan, Sur les domaines bornés homogènes de l'espace de n variables complexes, Oeuvres, partie 1, 1259-1304.
2. H. Klingen, Diskontinuierliche Gruppen in symmetrischen Räumen, Mathematische Annalen 129 (1955), 470-488.

Mathematisches Institut der Universität
Göttingen, Germany

