
REGULAR COVERING SURFACES OF RIEMANN SURFACES

SIDNEY M. HARMON

Introduction. The homotopy and homology groups of a given arc-
wise connected surface are topological invariants. A smooth covering
surface F * is a locally-topological equivalent of its base surface F. Con-
sequently, it is natural that the fundamental and homology groups of
F*, T(F*) and H{F*) respectively, should be related to those of F,
T(F) and H(F) respectively. In this paper the term homology is always
used for the 1-dimensional case. The cover transformations of a covering
surface F* are topological self-mappings such that corresponding points
have the same projection on F. These cover transformations form a
group which we will denote by Γ(F*). The homology properties of F
should influence Γ(F*) by means of the composition of the self-topologi-
cal mapping and the locally-topological mapping F* —> F.

Section 1 considers the general class of smooth covering surfaces on
which there exists a continuation along every arc of the base surface.
We refer to such a covering surface as a regular covering surface F*.
A number of results are collected and put into the form in which they
are needed to derive the main theorems. The class {F*} is shown to
form a complete lattice. Next there is shown a one to one correspondence
between all subgroups Nt c T(F), such that Nt contains the commutator
subgroup Nc of T(F), and the set of all subgroups Ht c H(F). This
correspondence leads to isomorphisms which relate the associated sub-
groups.

Section 2 considers a special class of regular covering surfaces {F£}
in which F* is characterized by the properties that it corresponds to a
normal subgroup of T(F) and Γ(F*) is Abelian. In our notation these
covering surfaces form the class of homology covering surfaces (cf.
Kerekjarto [5]). An equivalent characterization of the property that
F* corresponds to a normal subgroup is the assumption that above any
closed curve on F there never lie two curves on F* one of which is
closed and the other open. There are derived here for {F*} an isomor-
phism and correspondence theorem which relates subgroups Γt c Γ(F*)
to quotient groups of H(F) and T{F). The class {F£} is shown to
form a complete and modular lattice. If the base surface F is an
orientable or non-orientable closed surface, with covering surface JPΛ*,

the rank of Γ(F*) is determined in terms of the genus of F and the
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rank of an associated subgroup Hi c H(F).
Section 3 considers the Schottky covering surface F£ of a closed

orientable surface. We denote the boundary of the conf ormal equivalent
of Fs in the plane by Es. There is obtained here a criterion for the
vanishing of the linear measure of Es.

We will refer to functions defined on a Riemann surface by an ab-
breviated notation as follows: Green's functions by G, nonconstant ana-
lytic functions with finite Dirichlet integral by AD and non-constant
analytic bounded functions by AB. We denote the class of Riemann
surfaces on which there does not exist any G, AD and AB functions
respectively by OG, OAD and OAB. If W is an open (non-compact) Riemann
surface we are led to the problem of studying it from the following
comparative viewpoint (Sario [13]). Suppose that P is a property of all
closed (compact) Riemann surfaces, determine open Riemann surfaces
which possess the same property. Recently Mori [8] established a con-
nection between homology covering surfaces and the classes Oβ9 OAD and
OAB.

Section 4 applies the results of the previous three sections to the
classification of Riemann surfaces. It considers regular covering surfaces
of a closed Riemann surface F of genus p. We refer to the covering
surface of F which corresponds to Nc c T(F) as the commutator covering
surface F*. It is shown that the results obtained in [8] for homology
covering surfaces F£ with respect to OAD, OG and OAB may be applied
to any regular covering surface Ft which is weaker than F*. In the
case of OAB this yields for F* a criterion in terms of the generators of
quotient groups of T(F) and H(F). A generalization of Painleve's
problem for an open Riemann surface is proved, and there is also ob-
tained a criterion based on vanishing linear measure of a plane point
set which determines that a Schottky covering surface is in OAB.

1. Regular Covering Surfaces*

1.1. DEFINITIONS. A surface is a connected Hausdorff space on
which there exists an open covering by sets which are homeomorphic
with open sets of the 2-dimensional Euclidean space.

A surface F* is a smooth covering surface of a base surface F if
there exists a mapping / : F* —> F such that for every p* e F* a neigh-
borhood F* of p* is mapped topologically onto a neighborhood V of
p = f(p*) e F.

F* is a regular covering surface of F if it is smooth and if every
arc γ on F can be continued along γ from any point over the initial
point of γ. [2] (The term "unramified and unbounded" also appears in
the literature instead of the term "regular" used here.)
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1.2. FUNDAMENTAL GROUP. The results in this subsection are
needed for the later treatment and may be found or are implied in the
literature; and the development closely parallels that of Ahlfors and
Sario [2]. The following result is well-known.

LEMMA 1. Let {7} be the homotopic classes of those curves from 0
on F which have a closed continuation {γ*} from 0* € F*. Then D = {γ}
is a subgroup of the fundamental group T(F) with origin at 0.

Let the notation (F*,f) and F represent a regular covering surface
F* of F with topological mapping / : F * —* F and homotopic classes
originating at 0* where /(0*) = 0. We will identify (F^/i) and (F*,f2)
if there exists a topological mapping φ : F* —+ F* such that fλ= f2° Φ
and φ(0*) = 0*. It is clear that this identification is defined by means of
an equivalence relation.

The proofs of the following proposition and of the subsequent
Lemmas 2 through 4 may be obtained from reference [2] or [9].

PROPOSITION 1. The mapping φ in the identification of(F*,f) and
{F*, /2) with Φ(0*) — 0* is uniquely determined.

With the foregoing identification, we obtain

LEMMA 2. There exists a one to one correspondence between identi-
fied pairs (F*,f) and the subgroups D of T(F). Two pairs can be
represented by means of the same (F*,f) if and only if the corre-
sponding subgroups are conjugate.

LEMMA 3. The fundamental group T{F*) of (F*,f) is isomorphic
with the corresponding subgroup D of T(F).

If {F*,f) covers F* and {F*,f^ covers F, then it is clear that
(F2*,/i°/) covers F where fx o/(02*) = 0. If two pairs (F2*,f2) and
{F*,fd cover F, we say that the former is stronger than the latter if
and only if there exists an / such that (F2*,f) covers F* and/2 = fx°f.
This relation is clearly transitive.

Let A and D2 be the subgroups of T(F) which correspond respec-
tively to (-Fi*,/i) and (F2*,f2), then we have

LEMMA 4. The pair (F*,f2) is stronger than (F*,f) if and only
if A c A.

1.3. COMPLETE LATTICE THEOREM. By means of Lemmas 2 and 4,
we obtain an ordering of the regular covering surfaces according to
relative strength which is isomorphic with the ordering of the corre-
sponding subgroups of T(F) by inclusion.

Let {Da} with a in the index set A be a finite or infinite subset of
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a lattice L. Then L is complete if for all {Da} c L, there exists in L
a least upper bound Uαê -Dα and a greatest lower bound Γ\aeADa.

THEOREM 1. The system of regular covering surfaces of F is a
complete lattice.

Proof. The system of subgroups {Da} of T(F) with a e A is
partially ordered by inclusion. Also the union of any number of sub-
groups {Da.} for ai e A is a subgroup Uα4e J9 α | which is the least upper
bound for {-Dα.} Similarly, the intersection of any number of subgroups
{Da.} is a subgroup \JaieADa. which is the greatest lower bound for {Da.}.
Consequently the system of subgroups {Da} is a complete lattice. Be-
cause of the isomorphy obtained from Lemmas 2 and 4, the correspond-
ing regular covering surfaces form a complete lattice.

It can be shown that any complete lattice has a zero and a universal
element. The weakest covering surface of F corresponds to T(F) and
is F itself or (F*, e), where e is the identity; the strongest covering
surface corresponds to the unit element of T(F) and is the universal
covering surface of F.

1.4. RELATIONS BETWEEN FUNDAMENTAL AND HOMOLOGY GROUPS.

The commutator subgroup of T(F) will be denoted by Nc. The covering
surface F* which corresponds to Nc will be referred to as the com-
mutator covering surface. (Uberlagerungsflache der Integralflunktionen,
Weyl [17])

LEMMA 5. (Nevanlinna [9; 61-63]) There exists a homomorphism
from the elements of T(F) onto the elements of H(F) for which the
kernel is the commutator subgroup.

If θ is a homomorphism from T to H with kernel K, the fundamental
theorem for group homomorphisms yields the isomorphism TjK = H.
A second fundamental theorem for group homomorphisms may be stated
in the following form (Kurosh [6]).

LEMMA 6. Let θ : F—+H be a homomorphism with kernel K. Then
( i ) There is a one to one correspondence between subgroups Nt of

T such that T 3 Nt 3 K and all subgroups Hi of H. In this corre-
spondence Hi consists of all images of elements of Nt and Nt consists
of all inverse images of elements of Ht.

(ii) // Nt is normal in T then Hi is normal in H and conversely.
(iii) If Ni and K are normal in T then T/iV, =

THEOREM 2. Let {N^ be the set of all subgroups such that T(F) 3
Nt 3 Nc and let {Ht} be the set of all subgroups Ht c H(F). Then
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(i) There exists a one to one correspondence between {iVJ and
{Hi}. In this correspondence Ή% consists of all images of elements of
Nt and Nt consists of all inverse images of elements of Ht.

(ii)

Proof. To prove the first part, we use the homomorphism of Lemma 5
θ : T(F) -* H(F) with kernal Nc. Part (i) of the theorem is then an
immediate consequence of Lemma 6 (i).

To obtain the isomorphism (ii) we note that Nc is normal in Nt and
that the restricted homomorphism θ :, Nt —*Ht is onto. We apply the
fundamental theorem for group homomorphisms which yields the required
isomorphism.

If in Theorem 2 we set Nt = T(F), we obtain T(F)INC = H(F) as
a special case.

1.5. RELATIONS BETWEEN THE FUNDAMENTAL GROUP AND THE GROUP

OF COVER TRANSFORMATIONS.

DEFINITION. A cover transformation of a regular covering surface
(JF7*, /) is a topological self-mapping φ such that, for every p* e F*,
Φ(P*) a n ( i P* have the same projection.

The totality of cover transformations on F * clearly form a group.
We will denote this group by Γ(F*).

In the sequel, unless otherwise indicated, D or Dt will refer to the
subgroup of T(F) which corresponds to the covering surface F * or Ft
respectively, according to the specifications of Lemma 2. We note that
Γ(F*) and the normalizer of D are unaffected by the choice of 0 and 0*.

LEMMA 7. [9; 83] Let M be the normalizer of D in T{F). Then
there exists a homomorphism φ: M—> Γ(F*) with the kernel D.

THEOREM 3. Let {Z)J be the set of all subgroups Dt such that
Mz) DtZ) D and let {ΓJ be the set of all subgroups of Γ(F*). Then

( i) There exists a one to one correspondence between {Z>J and
{Γi\. In this correspondence Γt consists of all images of elements of
Dίf and Dέ consists of all inverse images of elements of Γ%.

(ii) Γ^DJD.

Proof. We use the homomorphism φ of Lemma 7 with kernel D»
Part (i) of the theorem is then an immediate consequence of Lemma 6
(i). To obtain the isomorphism (ii), we note that D is the kernel of φ
and D is normal in M and, therefore, normal in Dt c M. By (i), φ map&
Dt onto Γt. The restriction of φ to Όi in conjunction with the funda-
mental theorem for group homomorphisms yields the required isomorphism.
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If in Theorem 3 we set Dt = M, we find from part (i) of the theo-
rem that M is mapped onto Γ(F*). Consequently, we obtain from (ii),

(1) Γ(F*) = MID ,

as a special case.

COROLLARY. If D is normal in T(F), then the one to one corre-
spondence and isomorphism specified in Theorem 3 holds for all sub-
groups Diy such that T(F) 3 DtZ) D.

Proof. If D is normal in T(F), then the normalizer of D is T(F).
We replace M in Theorem 3 by T(F) and obtain the required result.

A special case of the corollary is obtained if in Theorem 3 (ii) we
set A = T(F). We then find that

( 2 ) Γ(F*) = T{F)jD .

2 Homology Covering Surfaces.

2.1. DEFINITIONS AND BASIC RESULT. Δ regular covering surface
of F is normal if it corresponds to a normal subgroup of T(F) [2].
(The term "unramified, unbounded and regular" also appears in the
literature instead of the single term "normal" used here.)

PROPOSITION 2. (Seifert-Threlfall [16; 196]) If (F*, f) is a normal
covering surface of F, then there exists a unique cover transformation
which carries any given point p* e (ί7*, /) into a prescribed point pj*
with the same projection.

A regular covering surface is referred to as a commutative covering
surface if its group of cover transformations is Abelian.

A homology covering surface is a covering surface which is simul-
taneously normal and commutative.

2.2. CRITERION THEOREM.

THEOREM 4. A regular covering surface Ft is a homology covering
surface of F if and only if it is weaker than the commutator covering
surface F*, or equivalently, if and only if Nt D NC, where Ft and
Ft correspond respectively to the subgroups Nt and Nc of T(F).

Proof. To prove the sufficiency of the condition, we first consider
Ft which corresponds to Nc which is clearly normal in T{F). By the
isomorphism (2), we obtain Γ(F*) = T(F)jNc. The latter quotient group
is Abelian; for if α, b e T(F), abφa)-1 = aba~ιb~x e Nc; hence Ncab = Ncba.
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By hypothesis, F* is weaker than Ft; consequently by Lemma 4,
Nt z> Nc. From the fact that T(F)/NC is Abelian and Nt z) Nc in con-
junction with Lemma 6 (ii), it follows that any subgroup Nt which
contains Nc is normal. We conclude from Lemma 6 (iii) that T{F)jNi
is Abelian. The latter quotient group is isomorphic to Γ(F*) by the
special case (2). We conclude that Ft is simultaneously a normal and
commutative covering surface and therefore a homology covering surface.

Conversely, we suppose that Ft is a homology covering surface.
From the special case (2), we obtain Γ(Ft) = T(F)/Nt. By hypothesis,
the left member of the isomorphism is Abelian; consequently T(F)jNi

is Abelian. Because of the commutativity of T{F)jNi and the normality
of Nif we obtain for α, b e T(F)9 N.aba-'b'1 = Nt; therefore, Nt 3 NG.
We conclude, by Lemma 4, that Ft is weaker than F*.

The last statement of the theorem is an immediate consequence of
Lemma 4.

2.3. ISOMORPHISM AND CORRESPONDENCE THEOREM.

THEOREM 5. Let {F*t} be the set of all homology covering surfaces
of F under the identification of Lemma 2, and let {Nhi} be the set of
all corresponding subgroups of T(F) under the isomorphy of Lemma
3; such that T(JFΛ*) = Nhi. Let {Ht} be the set of all subgroups of
H(F) under the correspondence indicated in Theorem 2, such that
NJNe = Ht. Then

( i ) Γ(F£) = H(F)IHt ~ T{F)INht = [T(F)/NC]I(NJNC).
(ii) There exists a one-to-one correspondence between the identified

sets {FM} and the sets {Nhί} and {Hi}.

Proof. To derive the first and second isomorphisms of (i), we note
that because of the commutativity of the homology groups, Ht is normal
in H(F). We consider the composite mapping φ o θ,

φ o Θ[T(F)] = φ[H(F)] = ff(F)/JΪ4 ,

Φ o θ[a e T(F)] = Φ(a') = Hid' .

This mapping is composed of the homomorphism θ of Lemma 5 and
the natural homomorphism φ; consequently the composition is a homo-
morphism. The kernel of φ o θ consists of all a e T(F) such that
ίζα/ = Ή%. We note that by Theorem 4, NM ZD NC) hence Theorem 2 (i)
is applicable. From the specifications in Theorem 2 (i) for Θ:NM-+Hif

we find that the kernel of φ o θ is precisely NM. The fundamental
theorem of group homomorphism, together with the special case (2), now
yield

Γ(Ft) = T(F)INM = H(F)/Ht .
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To derive the third isomorphism of (i), we note that NM and Nc

are normal in T(F). Hence an application of the fundamental theorem
for group homomorphisms yields the result.

For the proof of (ii), we note that by Theorem 4, any homology
covering surface F*i satisfies NM D Nc. Hence Theorem 2 is applicable.
We apply Theorem 2 (i) to obtain a one-to-one correspondence between
{NM} and {H"J. The one-to-one correspondence obtained is carried
through {NM} to {ί7^}, under the postulated identification, by means of
Lemma 2. This completes the proof of the theorem.

2.4. COMPLETE AND MODULAR LATTICE THEOREM. A lattice is called
modular (Dedekind structure) if it satisfies the following weak form of
the distributive law:

If α D 6, then a Π (b U c) = (a Π 6) U (α Π c).

LEMMA 8. (Kurosh [7]). The lattice of normal subgroups of any
group is modular.

THEOREM 6. The system of homology covering surfaces {FΛ*} of F
is a complete and modular lattice.

Proof. Let {NM} correspond to the collection {F*t}. In the course
of the proof of Theorem 1, it was shown that the system af subgroups
{JDJ of T(F) is a complete lattice. {NM} is therefore a subset of a
complete lattice. From the definition of a homology covering surface
and from Theorem 4 every NM is normal in T(F) and NM ZD Nc. The
union or intersection of any number of normal subgroups of {NM} is a
normal subgroup containing Nc. Consequently, {NM} is a sublattice and
a complete lattice. By the normality of Nhί and Lemma 8, {NM} is also
a modular lattice. We conclude from Theorem 5 (ii) and Lemma 4 that
{F*i} is a complete and modular lattice.

2.5. RANK OF THE GROUP OF COVER TRANSFORMATIONS. We consider
the rank of the group of cover transformations for homology covering
surfaces for which the base surface F is closed. In this case, T(F)
and H(F) are finitely generated. We have

LEMMA 9. (Seifert-Threlfall [16; 145]). Let F be a closed surface
of genus p. If F is orientable, H(F) is a free Abelian group of 2p
generators; if F is nonorientable, H(F) is the direct product of a free
Abelian group ofp — 1 generators and a group of order 2.

Because the homology group of a closed surface is finitely generated,
it always has a finite rank.

The following lemma is fundamental in the theory of Abelian groups.
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LEMMA 10. Let H be an Abelian group of finite rank r, and let
Ht be a subgroup of H. Then Ht and H\Hi are also of finite rank and
r(H) = r(fli) +

THEOREM 7. Let F be a closed surface of genus p, and let {F^
be the class of homology covering surfaces of F such that

T(Fh*) s NM c T(F) , NJNe sHta H{F) .

If F is orientable, then

r[Γ(F&)] = 2p- r(Ht)

and

0 S r[Γ{Fm ^ 2p .

If F is nonorientable f then

r[Γ(F&)] = p - l - r{Ht)

and

0 :S r[Γ(F&)] ^p-1.

In either case, τ[Γ(F*i)] assumes all integral values in the indicated
ranges.

Proof. We note that the rank of a free Abelian group is equal to
the number of its generators, that the rank of an Abelian group in
which all elements have finite order is zero, and that the rank of an
Abelian group equals the sum of the ranks of the factors in the direct
product decomposition of the group. Consequently, it follows from Lemma
9, that if F is orientable, r[H(F)] — 2p, and that if F i s nonorientable,
r[H(F)] = p — 1. By use of Theorem 5 (i) and Lemma 10, and by sub-
stituting for r[H(F)] the values just deduced we find that if F is
orientable

] = 2p- r(Ht) ,

and that if F is nonorientable,

r[Γ(F£j\ = p - 1 - r(fli) .

Because H% is a subgroup of H(F)

0 £ r{H,) £ r[H(F)] .

For each integer n such that 0 ^ n ^ r[H(F)], there exists a sub-
group Ht which is generated by n linearly independent elements; therefore
r(Hi) = n. We conclude that if F is orientable,
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0 rg r[Γ(F£)] ^ r[H(F)] = 2p ,

and that if F is nonorientable,

0 ^ r[Γ(Fft)] ^ r[H(F)] = p - l .

In both cases r[(F*i)] assumes all integral values in the indicated ranges.
In connection with Theorem 7 it is of interest to note that the

quantities 2p and p — 1 are the 1-dimensional Betti numbers for a closed
orientable and a closed nonorientable surface respectively.

3* Schottky Covering Surface of a Riemann. Surface*

3.1. DEFINITIONS FOR RIEMANN SURFACES. We shall define a Rie-
mann surface topologically as a Hausdorff space with certain restrictive
properties.

DEFINITION. A Riemann surface F is a surface together with a
collection of local homeomorphisms {h} from open sets of F onto open
sets of the complex plane which satisfy the following conditions.

( i ) The totality of domains of {h} form a covering of F.
(ii) The images of every nonnull common domain of ht and h5 e {h}

are directly conformally equivalent in the complex plane through the
composite homeomorphism ht o hj1.

We denote the domain of ht e {h} by At. If p e Δif then z = h^p)
is uniquely determined. Because of condition (ii), the conformally in-
variant properties of F are independent of the choice of Λ4 e {h}. Con-
sequently in considering such properties we may regard z in the complex
plane as a local variable instead of p e F. In this paper we shall be
concerned exclusively with conformally invariant properties of F; there-
fore we will resort to the local variable notation z whenever it is
convenient.

DEFINITION. A complex-valued function / is analytic on F if and
only if / o hi1 is analytic on ht (4t) for every ht e {h} with domain Ait

DEFINITION. A real-valued function u is harmonic on F if u o hi1 is
harmonic on ht (Δ^ for every h% e {h} with domain Δt.

The Riemann surface as defined here is an orientable surface because
the composite mapping ht © hy1 is directly conformal and consequently
sense-preserving. It can be shown that the Riemann surface is topologi-
cally a countable space.

3.2. BASIC CONSIDERATIONS. In this section the base surface F is
assumed to be a closed Riemann surface of finite genus p. By suitably
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cutting F, we can obtain a planar region FQ'S, such that an infinite
number of copies of F0's, when put together under special identi-
fications of their boundaries, will generate the Schottky covering surface
Fs of F. The surface F£ is a planar, open Riemann surface. We will
study the boundary of the conformal equivalent of F$ in the complex
plane by means of a Schottky group.

3.3. GENERATORS OF SCHOTTKY GROUP. The conformal equivalent
of the initial copy Fis is an infinite region i?0, where RQ is bounded by
2p disjoint circles Qi9 Q[ (i = 1, 2, , p), lying in the finite plane. We
will refer to this set of circles which bound Ro as {Qo}. The p pairs of
circles {Qo} correspond to a system of p hyperbolic or loxodromic linear
transformations which generate a group of linear transformations G
called the Schottky group (Schottky [15]). The group G can be shown
to be denumerably infinite and is properly discontinuous up to a set of
discrete points Es, called the singular set of the Schottky group. The
transforms of Ro converge for p > 1 to a nondenumerable discrete set
of points Es which is the boundary of the conformal image of F£ in
the plane.

A set has zero linear measure if it can be covered by a sequence
of disks {Kf} with radii {rj such that Σ ri is arbitrarily small. We
will denote the linear measure of the singular set of the Schottky group
by m(Es).

We consider a configuration of the bounding circles {Qo} correspond-
ing to a Schottky group G, in order to obtain a criterion for the vanishing
of m(Es).

Let the 2p> circles {Qo} be paired in such a manner that a set of p
hyperbolic or loxodromic linear transformations Slf , Sp operate on the
extended complex plane and yield

( 3 ) £ & = & ' , S2QΛ = Q'2, •-., SPQP = Q'P,

with the exterior of each Qt mapped into the interior of Q . The set
of such generators will be designated as {So}. A general form for the
transformation St is

( 4 ) St=
az + b

cz + d

St and other linear transformations in the sequel will be normalized by
the condition ad — be — 1. The circles {Qo} have the general equations

( 5 ) Q * : | s - ? , l = r < ; Q\:\z-q't\ = r't.

A general normalized transformation of {So} corresponding to the
circles (5) may be written as
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in which qt + rφiQ transforms into q\ — r\emπ~θ).
The set {So} corresponding to the form (6) will generate a Schottky

group.
Let ξ± and ξ2 denote the fixed points of a generator St, where ξλ

and | 2 are finite. Then

/ 7 v £ fc _ α - d ± i/(q + eg)2 - 4
( 7 ) f l f & .

Since St(oo) = g , S4(2;) = «' may be expressed in terms of a cross-ratio
as

where if is a multiplier such that

jr — &
a' —

By simplification, this reduces to

We note that K is independent of z and that the fixed points are
independent of the power of z. Consequently, S?(z) — z{n) may be ex-
pressed as

This yields

To normalize SiM)(z) we divide through by

and obtain

_

g 2 - g - g ,
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3.4. ISOMETRIC CIRCLES. Because of the mappings StQt = Q[ in the
generation of the Schottky group, there is a particular convenience in
utilizing the concept of isometric circle under a linear transformation
(e.g., Ford [4]).

Let S be a linear transformation expressed in the general form (4).
Then length and area are unaltered in magnitude in the neighborhood
of a point z if and only if | cz + d | = 1. The locus of such points for
c φ 0 may be written as the circle | z + djc \ = 1/| c |, with center — djc
and radius l/|c |.

DEFINITION. Let S be the linear transformation

S(z) = (az + b)l(cz + d) .

Then the circle

I:\cz + d\ = 1 , c φ 0 ,

which is the complete locus of points in the neighborhood of which
length and area are unaltered in magnitude by S is called the isometric
circle of S.

LEMMA 11. Let the linear transformations S have I as its iso-
metric circle, and let S(I) = /'. Then S"1 has Γ as its isometric circle.

Proof. By definition S carries / into a circle T without alteration
of lengths in the neighborhood of any point of I. Consequently S"1

carries Γ — S(I) back to /without alteration of lengths. By the unique-
ness of /', we conclude that /' is the isometric circle of S~\

LEMMA 12. (Ford [4]). Let I and Γ be the isometric circles of S
and S"1 respectively and let L be the perpendicular bisector of the line
joining the centers of I and V. If S is a hyperbolic, elliptic or para-
bolic linear transformation, S is equivalent to the composition of an
inversion in I followed by a reflection in the line L; if S is loxodromic,
there is in addition a rotation about the center of V through the angle
—2arg(α + d).

THEOREM 8. Let S be a linear transformation. Suppose that S
and S'1 have the isometric circles I and Γ respectively. Then for
every n

( i) The circles S~n(I) and Sn(Γ) are equal in magnitude and
S-n(I)czI, Sn(Γ)aΓ.

(ii) S~n(I) is the isometric circle of S2n+1.
(iii) The radii of the circles S~n(I) and Sn(Γ) are each equal to
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1/1 c I, where c is the coefficient in the general expression for a linear
transformation corresponding to S2n+1.

Proof. Because S and S"1 have the respective isometric circles /
and /', we conclude from Lemma 11 that S(I) = /'. Let L be the
perpendicular bisector of the line joining the centers of I and /'. We
first consider the case where S is nonloxodromic. Then by Lemma 12,
S~n(I) is obtained by successive compositions of an inversion in /' fol-
lowed by a reflection in L, and Sn(I') is obtained by successive com-
positions of an inversion in / followed by a reflection in L. We note
that for all linear transformations the size of the circle is influenced
only by the inversion. The circles S~k(I) and Sk(I') are symmetrical
with respect to L for all k < n. Because of the symmetry of the
inversion with respect to the equal circles Γ and /, we conclude that
S~n(I) and Sn(I') are equal. Further, from the geometrical interpretation
of Sn and S~n as expressed by Lemma 12, it follows that S~n(I) c I
and Sn(I') c Γ.

If S is loxodromic, there is in addition, in the foregoing com-
positions a rotation. For S~k(I) and k < n the required rotation is
— 2k arg [ — (a + d)] = —2kπ — 2k arg (a + d) about the center of 7, and
for Sk(Γ) the required rotation is — 2&arg (a+d) about the center of/'.
The circles S~k(I) and Sk(Γ) are therefore symmetrical with respect to
the intersection of L and the line joining the centers of Γ and I. This
symmetry yields equal circles in the successive inversions with respect
to the circles Γ and /. We conclude again that S~n(I) and Sn(I) are equal
and that S~w(/)c/and Sn(Γ)aΓ. This completes the proof of part (i).

To prove part (ii) we consider S2n+1 o S~n(I). The first n operations
by S transform S~n(I) to /. The inversions associated with these
transformation are all in I and are of the type S~{n~j)(I) inverts to
Sn'J-\If)9 where j = 0,1, , n — 1. The n + 1st operation transforms
/ to V and involves the identity inversion, i.e., I inverts to /. The last
n operations by S transform V to Sn(Γ). The inversions associated with
these transformations are all in / and are of the type Sn""J"1(J') inverts
to S~{n~3)(I). The latter n inversions are thus inverses of the afore-
mentioned n inversions. Hence the resulting inversions associated with
S2n+1 preserve infinitesimal lengths on S~n(I). The reflection and rota-
tion components of S2n+1 clearly preserve infinitesimal lengths. Therefore
S~n(I) is the isometric circle of S2n+\

Part (iii) of the theorem is a consequence of the fact that an iso-
metric circle may be written in the form \z + d\c\ = l/ |c | .

We collect here some results on the inversion of one circle into
another circle which will be needed subsequently. In the sequel, the
circles Qλ and Q2 are always disjoint. If a circle Qx is inverted into a
circle Q2, we will designate the image circle by Q12 and a corresponding
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subscript notation will be used for the radii r and centers q of the
respective circles.

Let Qx and Q2 be given by

Qi: I z - qλ I = n ,

Q2: I z - q2 | = r2 .

We denote by Z the line which passes through the centers of Ql9 Q2

and we take the points α, β e Qi Π i. Suppose that Qx is inverted into
Q2 with α, /3 transforming into au βt respectively. Then

- q21 I at - q2 | = r2 ,

We denote the distance between q± and q2 by e and obtain

(11) r i a =
- tf21 I /5 - q21 β2 - r2

(12) ki2 - ft I = 2 ^ 2 ,

LEMMA 13. Le£ Qx, Q2 6e disjoint circles with centers q19 q2 and
radii r19 r2 respectively. Then

( i ) r12 increases with increasing rλ and fixed e and also with
decreasing e and fixed rλ.

(ii) If Qx is enlarged to Qv in such a manner that Q± c Qv and
Qv is disjoint from Q2, then rV2 > r12 and r2V > r21.

(iii) qu lies on the line joining q1 and q2, and \ q2 — q12 \ decreases
with increasing e.

Proof. To prove (i) we note that because Qx and Q2 are disjoint,
e > rx. The result then follows from equation (11).

For the proof of (ii), we denote the line passing through q1 and q2

by I. It is sufficient to consider the case in which the center qv lies on
I and one of the two points in Qλ Π I is fixed during the enlargement
of Qλ. We use the first equation in (11) to find the total derivative
with respect to rv. We obtain the result that if Qv is inverted into
Q2, άrV2ldrv > 0; and if Q2 is inverted into Qv, dr2V\drv > 0. Because
rv is steadily nondecreasing, we conclude that rV2 > r12 and r21, > r21.

The first part of (iii) follows from elementary geometrical consider-
ations of inversions. The second part of (iii) is obtained by differentiat-
ing, in equation (12), | q2 — q12 \ with respect to e and noting that the
derivative is negative.

3.5. CRITERION FOR VANISHING LINEAR MEASURE. In the sequence
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of circles which bound the successive generations of mapped regions in
the conformal mapping of F$, the size of the circles is influenced only
by the inversions associated with the elements of G in the Schottky
group. Suppose we enlarge any circle θt e {Qo} to Qv in such a manner
that Qi (zQif and Qv are disjoint from all other circles in {Qo}. Then
by repeated applications of Lemma 13 (i) and (ii) it follows that in the
limit m(E's) for the new configuration will be greater than m{Es). Con-
sequently, for establishing a criterion for the vanishing of m(Es), we
may modify the configuration {Qo} to one in which all circles Q* are of
equal unit size, subject to the conditions just mentioned. We will refer
to this modified configuration of {Qo} as {Q0}A.

We consider the configuration {QQ}A. Let et be the distance between
the centers of the pair Qt and Q[ (i = 1, 2, •••,#), and let ιdj be the
distance between the centers of two arbitrary circles Qt and Q3 e {Q0}A.
We denote by e the minimum et and by d the minimum i d j . If

(B) d^e,

we will say that {Q0}A satisfies condition (B) and denote the configuration
by {QO}AB- The modified configuration {Q0}ΛB will have a corresponding
group of hyperbolic or loxodromic linear transformations G' which is as-
sociated with the Schottky group G corresponding to {Qo}. In the
sequel, we will use the same notation for the circles in {QQ}AB and for
the generators of G' as used previously for those in {Qo} and in {So}
respectively.

THEOREM 9. Let G be a Schottky group with p generators. Suppose
that there exists a configuration {Q0}AB which is associated with G.
Then the linear measure of the singular set of G vanishes if

(C) p < Ue + V^T) .
4

Proof. Because of equations (3) and (6) in subsection 3.3 and because
Qt and Qif are equal for all i, Qt and Qt, are the isometric circles of the
hyperbolic or loxodromic linear transformations St and S^1 respectively.
Consequently, an arbitrary element of the group generated by {So} is
by Lemma 12 equivalent to a succession of compositions. Each of these
compositions is an inversion in one of the circles {Q0}AB followed by a
reflection in the perpendicular bisector of the line joining the center of
this circle to the center of its paired circle and a rotation about the
center of some Qt. We note that in the compositions, the size of the
image circles is influenced only by the inversions.

Let Qλ and Q[ with centers at qx and q[ respectively be that pair
of circles in {Q0}AB which has the minimum distance e between their
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centers, and let S1 be the corresponding generator. We may take qλ at
the origin and q[ to be positive and real. Thus

(13) Q1: I z I = 1 Qί:\z-qi\ =

With this choice, we find from equation (6) that a + d is real and
I a + d I > 2; hence Sλ is hyperbolic.

By hypothesis, the distance between q1 and q[ is smallest for the
circles Q1 and Q[ in comparison with any other two circles in {Qo} ;̂
also, all of the circles in {QQ}AB are equal. Consequently, we conclude
from Lemma 13 (i) that the circle S^Ql) c Q[ has the maximal radius
for all circles of the first generation. We denote by qSχ the center of
Si(QJ). By noting that Sx is hyperbolic, it follows from Lemma 13 (iii)
together with simple geometrical considerations that the distance between
qSl and q1 is minimal in comparison with the distance between the center
of any other circles S^Qj) c Q[ of the first generation and the center
of any circle in {Q0}AB exterior to Q . Consequently, if we apply Lemma
13 (i) again, we find that SftQl) c Q[ has the maximal radius for all
circles of the second generation.

Another application of Lemma 13 (iii) shows that the distance be-
tween qs2 and qλ is minimal in comparison with the distance between
the center of any other circle Sλ o S^Qj) c Q[ of the second generation
and the center of any circle in {Q0}ΛB exterior to Q[. Similarly we ob-
tain a corresponding result for the wth generation. We conclude by
induction that the circle SΓ(Qί) c Q[ has the maximal radius for all
circles of the nϊh generation for all n.

Let rn denote the radius of Sf(Q[) c Q[. We note that Sλ and Sr1

have the isometric circles Qx and Q[ respectively. Consequently Theorem
8 (iii) is applicable and we obtain

where c refers to the coefficient of the linear transformation correspond-
ing to Sίw+1. By utilizing this equation and equations (9), (13), (6), (7)
and (8) and replacing q[ by β, we obtain

W-4
f-e-1
V

rV
2

e 2 - 4 y»+

Ve%

ι-(
\

- 4

- e J
h i /

2
e2 - 4

)

, l/V - 4
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The total number of circles in the nth generation is 2p(2p — l)n.
We denote the total length of these circles by Ln. Then

Aπp(2p - l ) V e 2 - 4

-e + τ / β 2 - 4 Y w + 1

 + (e + Ve2

9 /

We find that

lim. Ln = 0
n—»oo

if

2>< (e + τ/e2 - 4)2 + 4 _
8 4

Because m(E8) S limn_»ooLn, this is the required criterion.

COROLLARY. Suppose that the Schottky covering surface F$ corre-
sponds to a Schottky group G with p generators. Let G be associated
with a configuration {Q0}ΛB which satisfies Condition C of Theorem 9.
Then the boundary of the conformal equivalent of F$ in the plane has
zero linear measure.

Proof. By definition the boundary of the conformal equivalent of
Fs in the plane is the singular set of G. The conclusion then follows
immediately from Theorem "9.

4 Classification of Riemann Surfaces*

4.1. EXHAUSTIONS AND HARMONIC MODULI. An arc is analytic if
it is the conformal image of a closed interval in the complex plane.

By virtue of the countability of a Riemann surface there always
exists on such a surface an exhaustion which may be described as follows.

DEFINITION. A nested sequence {wn} of compact regions is an ex-
haustion of an open Riemann surface W if

( i ) Wn is interior to Wn+1.
(ii) The boundary βn of Wn consists of a finite number of closed

disjoint piecewise analytic curves.
(iii) Each complement Wn — Wn_λ consists of a finite number of

disjoint noncompact regions.
(IV) \Jn^Wn= W.
For every n (n — 0, 1, •), the complement Wn — Wn-i consists of

a finite number k(n) of disjoint subregions Enί (i = l,2, •• ,/c(^)) of
finite genus. The boundary of Eni consists of two or more closed disjoint
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piece wise analytic curves which are subsets of βn_λ and βn. We denote
the intersections of the boundary of Eni with βn_λ and βn, by βni and
β'm respectively. There exists on Eni a unique harmonic function uni

which is continuous on the closure of Eni, vanishes on βni and is con-
stantly equal to unity on β'ni. The function unl is called the harmonic
measure of β'nt with respect to Eni.

If Eni is planar and βni and β'nt each consist of one component, then
Eni is doubly connected. In this case, the function U = eUni+ίu*ni maps
Eni conformally onto an annulus, where ult represents the conjugate
harmonic function of uni.

Let Eni (i = 1, 2, , k(n) < oo, n = 0,1, •) be a collection of
doubly-connected subregions of the open Riemann surface W, which may
be represented as annuli and which satisfy the following conditions:

( i ) Each annulus Eni is bounded by two closed, disjoint and piece-
wise analytic curves βni and β'nt.

(ii) Any two of the annuli have no points in common.
(iii) The complementary set of \JίLnιEni with respect to W has

precisely one compact component Wn.
(iv) Wn is bounded by the k(n) curves and contains the annuli Enli

with n' < n.
We define the harmonic modulus μni of Eni as

μnt = 2π

4.2. GENERAL CONCEPT. The classification problem will be studied
from the viewpoint of Sario [13] which classifies open Riemann surfaces
according to their possession or nonpossession of a given property P
shared by all closed Riemann surfaces. If W has the property P, we
say that W has a removable boundary with respect to P. Thus the
behavior of the open surface with respect to P is the same as if it were
closed, that is, had no boundary. We will consider three properties
shared by all closed Riemann surfaces, namely, they possess no G, AD
or AB functions.

4.3. THE CLASS 0G. The Green's function g(z, ξ) of a relatively
compact Jordan region R is defined as the unique harmonic function on
R which possesses the singularity — \og\z — ξ\ at a point ξ e R and
which vanishes continuously on the boundary β of R.

In order to generalize this definition to an arbitrary open Riemann
surface, we will require the well-known Harnack's Principle which we
state in the following form [2].

LEMMA 14. Suppose that a family <%/ of harmonic functions on a
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Rίemann surface W satisfies the following condition.
To any ui9Uj e ^ there exists a uk e <%s with % >̂ max (ul9 u3) on W.
Then the function

U(z) = sup ut(z)

is either harmonic or constantly equal to oo.
We consider an open Riemann surface W and an exhaustion of the

type described in subsection 4.1. If Wn is one of the compact elements
of the sequence {Wn} in the exhaustion, its Green's function gn(z, ξ)
has the usual interpretation. By the maximum principle gn(z, ξ) is a
monotone increasing sequence of harmonic functions on W. Consequently
by Harnack's principle, the sequence has a limiting function g(z, ξ) on
W which is either harmonic with the exclusion of the pole —\og\z — ξ\
or else is identically infinite. In the first case we define g(z, ξ) to be
Green's function for W with a pole at ζ. It can be shown that if the
Green's function g exists it is the smallest positive harmonic func-
tion with the singularity —\og\z — ζ\. Also it satisfies the equality
inf g = 0. If a harmonic function with the same singularity as g tends
to 0 as z approaches the boundary of W, then it is identical with g.
We conclude that the Green's function is independent of the exhaustion.

LEMMA 15. Mori [8]. Let F* be a homology covering surf ace of a
closed Rίemann surface F and let r[Γ(F£)] be the rank of the group of
cover transformations of F*. Then F£ e 0G if and only if r[Γ(Ff)] ^ 2.

THEOREM 10. Let Ft be a regular covering surface of a closed
Riemann surface F such that Ft is weaker than the commutator cover-
ing surface of F, or equivalently

T{Ft) = Ntcz T(F) , Nt^NCf NJNC = Ht c H(F) .

Then Ft e 0G if and only if

or equivalently

(ii) 2p - 2 S r(ίζ) ^ 2p .

Proof. To prove (i) we note that by Theorem 4, Ft is a homology
covering surface. The conclusion then follows from Lemma 15 and
Theorem 5 (i).

To prove (ii), we note that Ft is a homology covering surface and
F is orientable. Consequently, Theorem 7 for the orientable case is
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applicable. We obtain

r[Γ(Ft*)] = 2p - r(Ht) ,

in which

0 ^ r(Ht) ^ r[H(F)] .

If Ft* satisfies (i),

r[Γ(Ft*)] ^ 2 .

Therefore,

2p - 2 ^ r(fζ) ^ r[ff(F)] .

Conversely, we suppose that F* satisfies (ii). Then

r[Γ(Ft*)] = 2p- r(Ht) ^ 2p - (2p - 2) - 2 .

Hence, (i) and (ii) are equivalent.

4.4. THE CLASS 0^. If f(z) is an analytic function on a Riemann
surface W, the Euclidean area of the image W is given by the Dirichlet
integral

where z = x + ίy is the local variable. It follows that the existence
on W of an AD function implies the existence of a conformal equiva-
lent of W with finite Euclidean area. For simply-connected regions, the
possibility of conformal equivalence with a finite or infinite disk is pre-
cisely the classical type problem. Hence the classification according to
®AD is a generalization to arbitrary Riemann surfaces of this classical
problem.

LEMMA 16. Mori [8]. If F* is a homology covering surface of a
closed Riemann surface, then F* e 0AD.

THEOREM 11. // F* is a regular covering surface of a closed
Riemann surface F such that F* is weaker than the commutator
covering surface of F, or equivalently

= N,c: T(F) , Nt D NG

then

F* e 0AΌ .
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Proof By Theorem 4, F* is a homology covering surface. The
result is then a consequence of Lemma 16.

4.5. THE CLASS 0^. If we consider an AB function f(z) defined
in a region W, of the extended complex plane, which is complementary
to a finite set of isolated points {pj, it is well known from the classi-
cal theory that the singularities {p^ can be removed by appropriately
defining f(z) at the points pt. Painleve [10] generalized this concept by
investigating the analytic continuation of AB functions across arbitrary
point set boundaries of regions in the extended complex plane. This is
the classical Painleve's problem.

The connection of the classification according to 0AB with Painleve's
problem is shown by the following lemma.

LEMMA 17. [10], [1]. Suppose E is a compact set in the extended
plane and W is its complement. Let G be a relatively compact region
in the plane with analytic boundary a and JScG. If Go = G — E,
then every AB function, defined in Go, possesses an analytic continuation
to all of G, if and only if W e 0AB.

Proof. Suppose that W e 0AB. Let F(z) e AB be defined in GQ.
By the compactness of E we can enclose the points of E in a finite
number of piecewise analytic closed curves {CJ. We apply Cauchy's
integral formula to the region contained in G but exterior to {CJ.
Then we can write

f(z)=Λ(z)+A(z),

where fx(z) is analytic in G, and f2(z) is analytic in the region exterior
to {Q. We have for /2(z),

where M is the supremum of f(z), I is a finite length and p > 0. Con-
sequently f2(z) is an AB function in W. Because W e 0AB, f2(z) is
constant. Consequently fx{z) + constant is an analytic continuation of
f(z) across E.

Conversely, we suppose that the analytical continuation across E is
possible for every AB function defined in Go. If f(z) is an AB function
on W, then the analytic continuation of f(z) across E is an AB function
in the extended plane. Therefore/(#) must reduce to a constant. Hence
we conclude that W e 0AB.

The lemma just proved shows that Painleve's problem is the special
case of the classification according to 0AB, where the surface is restricted
to plane regions.
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The following lemma is implicit in the works of Painleve [10].

LEMMA 18. Let E be a compact set in the extended plane and let
W be the complement of E. If the linear measure of E is zero, then
WeOAB.

The following is a generalization of Lemma 18.

THEOREM 12. Let W be an open Riemann surface with boundary
β. Suppose that there exists a planar neighborhood N of β such that
the relative boundary of N is a single contour a. If the boundary of
the conformal equivalent of N in the plane has zero linear measure,
then W e 0AB.

Proof. N is planar by hypothesis; therefore it can be mapped con-
formally onto a region Nf of a disk K: \z\ < 1. In this mapping β
appears as a closed point set E interior to K. The linear measure of
E vanishes by hypothesis; therefore by Lemma 18, We 0AB.

If W is of finite genus p with boundary β, then the postulated
planar neighborhood of β in Theorem 12 is assured. For in this case,
we can find a compact region Wo c W, with genus p, bounded by a
single contour a, with a lying entirely in W. The complement N =
W — WQ is then a planar neighborhood of β and has a single contour a
as its relative boundary. The following corollary is then an immediate
consequence of Theorem 12.

COROLLARY. // W is of finite genus and if the linear measure of
β vanishes under the conformal mapping of N in the plane, then
WeOAB.

THEOREM 13. Let F be a closed Riemann surface of finite genus
p. Suppose that there exists for the Schottky covering surface F$ of
F a modified configuration {Q0}ABJ in the sense of subsection 3.5 such
that p < (e/4)(e + Ve2 - 4). Then F£ e 0AB.

Proof. By the corollary to Theorem 9, the boundary of the con-
formal equivalent of Fs in the plane has zero linear measure. We note
that Fs is an open Riemann surface of zero genus. The conclusion
then follows from the corollary to Theorem 12.

We consider an open Riemann surface W on which the domains of
the homeomorphism ht e {h} are denoted by Δt. Let X(z) be a continuous
and positive (except for isolated points) function on each domain Δi of
W. If two domains Δ3 and Δk overlap, let λ(z) satisfy the covariance
relation
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dz
Zj) = X(zk)

at corresponding points Zj and zk in Δj Π Δk. We further require that
all points in W have an infinite distance from the ideal boundary of W.
We say that the differential

ds = X(z) I dz I

defines a conformal metric on ΫF, if it satisfies all the conditions just
indicated.

Suppose that a conformal metric is defined on W. We fix a point
0 in W and let Dp be the domain formed by those points whose distance
from 0 is less than p, where 0 < p < oo. For p < oo, we assume that
the domains are compact and that they generate W as p —* oo. Each
domain Dp is bounded by βp, where βp consists of a finite number k(p)
of closed disjoint piece wise analytic curves, βpl, βp2, , /5p[fc(p)]. Let

li=\ ds, i = l ,2 , •• ,fc(/o),

./!(/>) = max \ cίs ,

ίΓ(iV) - max k{p') .

Then we have

LEMMA 19. (Pfluger [11]). If

Πϊn Γ 4 π Γ - ^ - - logK(N)] = ™
iv̂ -oo L Jo A(p) J

on W, then W e 0AB.
In [8], Mori states without proof a modification of Lemma 19 which

does not involve the assumption of a conformal metric on the surface.
For the modified version of the lemma, we assume an exhaustion of W
and obtain as in subsection 4.1 the corresponding collection of annuli
{Enί}. We set

μn = minμw i = 2πl\ du*t ,

K(N) = max k(n) .

Then we prove

LEMMA 20. / /
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then

WeOAB

Proof. We consider the postulated exhaustion of W and the corre-
sponding annuli {Enί}. Let Enί be one such annulus which is bounded
by βni and β*t and let uni(z) be the harmonic measure of β*% with re-
spect to Eni. By the maximum principle, 0 < uni(z) < 1 in Enί. We
define the function uni(z) to be the distance of the point z from βni.
Then the function | grad uni(z) | defines a conformal metric on the annulus
Ent, for which

ds = I g r a d u n i ( z ) \ \ d z \ .

Let βPi denote the set of points on Eni which have the distance p
from βni. Then

lt = ί ds = ( ^ 2 i I dz I ( d <
μn

where dn is normal to ds.
The result then follows from Lemma 19.
In [8], Mori utilized Lemma 20 to prove

LEMMA 21. Let F* be a homology covering surface of a closed
Riemann surface F. Suppose that the group of cover transformation
Γ(F*) has the system of 2p generators C2t-lf C2ί (i = 1, 2, •••,#>). If
there exists for each i a relation of the form

^i-lCu-l + ΓΪ2iC2i = 0

where r/2i-1 and γ2i are integers and do not vanish simultaneously, then
F: e 0AB.

Let F be a closed Riemann surface of genus p. Suppose that F is
cut along p disjoint nondividing cycles to produce a planar surface Fj.
Following Royden [12], we shall refer to a regular covering surface F*
of F as a covering surface of type S, if it consists of a finite or infinite
number of copies of Fo\

COROLLARY. [8]. A homology covering surface F* of type S of a
closed Riemann surface F is in 0AB.

Proof. Let the 2p nondividing cycles C2i-19 C2i (i = 1, 2, , p) cor-
respond to the 2p generators of Γ(F*). If we cut F along the non-
dividing cycles Cu-X (i = 1, 2, , p), then the cycles C2ί_i correspond to
the identity element in Γ(F*). Hence we may take j 2 i ^ x — 1 and y2i = 0
and obtain
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72ι-iC2 <-i + Ύ2iC2t = 0 , (i = 1, 2, , p) .

The conclusion then follows from Lemma 21.

THEOREM 14. Let Ft be a regular covering surface of a closed
Rίemann surface F of genus p such that Ft is weaker than the com-
mutator covering surface of F, or equivalently,

T{F?) -N.cz T{F) , N, =) Nc , (NJNC) ~ Ht c H(F) .

Suppose that
( i ) Γ(Ft*) has the 2p generators C2i-i, C2i (i = 1, 2, , p) such

that C2ί_i, C2i correspond respectively to a2i-19 a2i under the isomorphisms
of Theorem 5 (i). // there exists for each i = 1,2, , p a relation of
the form

Ύ2t-1^2i-l + Ύϊi^i = 0

where γ2i_! and y2i are integers and do not vanish simultaneously, and
α2ί_i, a2i (i = 1, 2, , p) refer to the 2p generators of the Abelian
groups

H(F) T(F) d T(F)INC

or
(ii) Ff is of type S,

then Ft e 0AB.

Proof. By Theorem 4, Ft is a homology covering surface. The
conclusion then follows from Lemma 21 and its corollary in conjunction
with Theorem 5 (i).
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