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l Introduction* Let (Ω, Σ, P) be a probability space and xt{o)) a
Markov process defined on it. For every Borel set on the real line
Pt(o), A) is the conditional probability that xte A given x0. The purpose
of this paper is to study the limiting behavior, of the family of functions,
pt{ω, A), for t —> oo and A fixed.

In § 3 we investigate conditions for the weak convergence, in the
sense of L2(Ω, Σ, P), of pt{o), A). The classical result on Markov processes,
as presented in [2] p. 353, is generalized to functions xt(ω) with nondis-
crete ranges. Under the additional assumption of existence of finite
stationary measures.

It should be noted that

v(n) = (Pn(ft>, {j}), XXQ = ί)

P(x0 = i)

where the parenthesis stand for scalar product and χXQ = i is the charac-
teristic function of the set xo(ω) = ί. Thus weak convergence of pn(ω, {j})
implies ordinary convergence of p$\

In § 4 the strong convergence in L2(Ω, Σ, P) is studied. Our results
are similiar to Theorem 11 of [4] though the exact relation between the
two theories is not clear to us.

The paper deals with real processes and L2 is the real Hubert space.
Throughout the paper a weak form of the definition of Markov pro-

cesses is used. We do not assume any of the regularity properties which
are usually imposed.

2. Notation and general background. Let xt(ω) be a set of mea-
surable functions, defined on Ω, where t runs over [0, oo) or the positive
integers. This set of functions, will be called a Markov process if when-
ever *! < ί2 < t3 then conditional probability that xH e A given xh and
xh, is equal to the conditional probability that xh e A given xh.

In order to simplify this condition let us observe the following:
If Σ1 is a sub σ algebra of Σ and fe L2(Ωf Σ, P) then the conditional

expectation of f with respect to Σx is equal a.e. to Eλ f where Ex is the
self adjoint projection on the subspace of L2 generated by characteristic
functions of sets in Σλ.

With the Markov process, xt(ω), associate a collection of subspaces,
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Bt of L2{Ω, Σ, P), where Bt is the closed subspace spanned by characte-
ristic functions of sets of the form %τ\A), A a Borel set on the line.
Let Et be the self adjoint projection on Bt.

THEOREM 2.1. If the set of functions xt(ω) is a Markov process,
then

(2.1) EhEtEH = EhEH for tx < t2 < t3 .

Proof. Let tx < t2 < t3. If g e Bh then g — EHg is orthogonal to
Bh. Thus

DEFINITION. A Collection of spaces Bt c L2(Ω), is a Markov class
if equation 2.1 holds.

From the above definition follows:

THEOREM 2.2. Let Bt be a Markov class. IffeBhf]Bh and t±<t<t2

then feBt.

Proof. Iΐf = Ehf - EHf then

= (Etf,f) = {EtEHf, Ehf) = (EhEtEhf,f)

Thus f = EJeBt.

DEFINITION. A Markov process is called stationary if

(2.2) P(xh+« eA1Π Xt2+« e A2) = P(xh e A, Π xh e A2) .

In particular for a stationary Markov process

(2.3) P(xteA) = P(xQeA) .

Let Tt be the transformation from Bo to Bt defined for characteris-
tic functions in Bo by

(2.4)

LEMMA 2.4. Let xt(ω) be a stationary Markov process. The trans-
formation Tt can be extended in a unique way to all of BQ such that

(a) || Ttx\\ = || a? || if xeB0

(b) TtB0 = Bt

(c) (Th+ax, Th+ay) = (Thx, Thy)



WEAK AND STRONG CONVERGENCE FOR MARKOV PROCESSES 1223

for every xeBQ,yeBQ and a > 0.

Proof. In order to consider Tt as a transformation in Bo we have
to show that:

If A1 and A2 are two Borel sets and %x-iUl), χx-i Ua> differ by a set
of measure zero, then

XxΓι(ω)Ul) = Xx-t\A2){ω) a.e.

Now by assumption

But by 2.3

II Xχ~ιUx) II =

which means

Let us extend JΓC to linear combinations of characteristic functions
by additivity. If conditions a and c are satisfied for this dense set, we
will be able to extend Tt by continuity to all of Bo and Tt will satisfy
α, b and c. It is enough to show that the extension of Tt to linear com-
binations is unique. For then c follows from 2.2, and a holds because
every linear combination of characteristic functions in BQ, can be writ-
ten with disjoint characteristic functions. Let us assume, then, that
there exists numbers ai and Borel sets At such that

ΣaiXx-hAj = 0 but ΣaJC^Λo Φ 0 .

Thus there are k integers ί19 , ίk with

Xx^iBnA^ — 0 a .e . , % Φ ij

where

and

ΣfH Φ o .

But then, by 2.3,

Z —i — 0 5} P

X (BΓ\A.) — " c* v!5

if i ^ ^ and for ω e x^\
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Σaiχx-hΛl)(o)) = ΣAh^0.

This contradicts our assumption for

P(χΛB)) = P{χΛB)) Φ 0 .

REMARK. From a follows that Tt preserves inner products.

DEFINITION. A Markov class is called stationary if there exist
transformations Tt from Bo to Bt satisfying α, b and c of Lemma 2.4.

In the rest of the paper we will use the notation

Xt,A = jίχ~λ{A)

3. Weak convergence* The main tool in this section is:

LEMMA 3.1. Let Bt be a stationary Markov class. If Γ\ζ=0Bn = 0
then

weak lim Tnx0 = 0

for every xoeBQ.
For the proof we need the following.

LEMMA 3.2. Let Bt be a stationary Markow class, and Γ\n=oBn=O'
If for some subsequence nt, of the integers,

weak lim Tn.x0 = x Φ 0

then

and the terms of the sum are mutually orthogonal.

Proof. Let n < m then

(*) EnEmx = weak lim EnEmTnxQ = weak lim EnTnx0 = Enx

by Equation 2.1 Thus

(**) En(Emx - Em_xx) - Enx - Enx - 0 .

Now

Σ
n=i

= || Eox + Σ.(En- E^x | |2 = || Eox
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hence the sum converges. Let

If z = Enz e Bn then by (**)

(y, z) = (Eny, z) = (Enx, z) = (x, z) .

Also if z is orthogonal to all the spaces Bn then

(Vr z) = (&, 2) = 0 .

Thus y = x.

LEMMA 3.3. Under the same conditions, there exists a subsequence
n'i, of nt, such that if zn e Bo is defined by

(***\ rp _ rp in ιι

weak lim ŵ/ = 0 .

Proof. Let snj converges weakly to z. Such subsequence exists be-
cause a Hubert space is weakly sequentially compact. Now zeB0, we
shall prove that zeBk, for all k, and thus z — 0. Now, by equations
(***) and 2.2

( Γ A + * , 2 . ) = (Tn+kzn+k, Tnzn) = ( 2 W / I I & II. JS7»«/II » II) i ^ r !

H e n c e

|| TA+k - zn ||2 ^ 2 - 2(Tkzn+k, zn) - 0 .

If u 6 L2(β) then

( Γ Λ [ + * ^ ) = ((2\.3n/+Jfc - «„/), %) + (znfifu) -> (z, u)

or

weak lim Tkzn'i+k — z

and by Hahn Banach Theorem zeBk.

Proof of Lemma 3.1. It is enough to show that for any subsequence
nt, there exists a subsequence n'i9 of nif such that

weak lim Tn>.x0 = 0 .
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We may assume that Tn.x0 converges weakly to x. Let n\ be chosen by
Lemma 4.3. Then

0 = lim (zψ x0) = lim (Tn/sn/, Tn'.x0)
£->oo ί—>oo

= lim(Enlxl\\x\\, Tnίx0) = \\x\\

For En%x tends strongly to x, by Lemma 3.2, and by assumption
Tnix0 converges weakly to x.

COROLLARY. Let xt be a stationary Markov process. If ΓίZ=0Bn=
{1} then

i m χ , , ^ - \\X0,A\\21 .

Proof. The Markov class Bt — {1} satisfies the conditions of Lemma
3.1, hence

In the rest of this section let xt be a given stationary Markov pro-
cess. Let

C0 = f \ B n .

By Theorem 2.2

Co = ή BH
ί=0 *

wherever ί0 = 0 and ίβ —> oo. Let

Cm = f\Bn and Dm = Bm-Cm.
n=τn

REMARK. {1} stands for the space of constants. Also if B and C
are subspaces B — C is the orthogonal complement of C in B.

LEMMA 3.4. For every integer n

TnC0 = Cn , TnD0 = Dn

and

Cn c Cw+1 .

Proof. Let a? = ΓTOfl50. The vector x belongs to Cm, if and only if,
for every integer k there exists a vector xk e Bo such that

x = lm+Jcxk .
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But then

II x | | 2 = (Tm+kxk, Tmx0) = (Tkxk,x0)

and || xQ | | = || x \\ = \\ Tkxk | | . Hence xQ = Tkxk and x0 e Bk for all k: xQ e Co.

Now yeDm if and only if y = Tmy0 and

(y,x) = 0 if xeCm.

This is equivalent to

(Tmy0, Tmx0) = 0 if xoeCo, or (y0, x0) •= 0 .

Thus yeDm if and only if yoeDQ.

LEMMA 3.5. Both Cm and Dm are stationary Markov classes.

Proof. The class Cm is Markov because Cm c Cm+1. Now let Fm be
the projection on Cm and Gm the projection on Dm. Then

Gm — Em(I — Fm)

If n ^ m then -E^i^ = Fm hence ^ and / — Fm commute. Let
m1 < m2 < m3 then

GmiGmpm^ — Emi(I — Fmi)Em2(I — Fm2)Em3(I — Fm)

= EmEmβm{J — Fmi) (I — Fm2) (I — F m 3 )

= EmiEm3(I — Fm){I—Fm) = GmiGm3 .

We used Equation 2.1 and the fact that I — Fm decreases with m.

THEOREM 3.6. If xe Do then Tnx tends weakly to zero.

Proof. The Markov class Dm satisfies the conditions of Theorem 3.1
for

n Dm c A, n ή Bn - o.

It remains to study the monotone stationary Markov class Cm.
Define

REMARK. If Co is finite dimensional then Co c Cm and both have same
dimension:

C0 = Cm and H=C0.

THEOREM 3.7. If xeC0 is orthogonal to H then
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weak lim Tnx = 0
W->oo

Proof. If m > k then C^mdC^k: if x e C_TO then Tmx e Co. Let
y0 e Co and Tm-ky0 = Tmx then

II Tmx | | 2 - ( 7 > , Γ , . ι ϊ o ) = (Ttx, y0)

Thus ί/0 = TkxeC0.
Now if ί7-^ is the projection of Co on C_m then for each xeC0 F_mx

converges to the projection of x on H (See [3] p. 266). Thus

x =

or x is the limit of vectors orthogonal to C_TO.
Let us prove that

weak lim Tnx = 0

if x is orthogonal to C_m, and because this is a dense set the theorem
will follow.

The vector x is orthogonal to C_m, and hence to C_m_p for all p.
Now

( T r m + Λ 7 » = {Trmx, x)

but x e Co and for some yoeCo, x = Trmy0 thus

(Trm+dx, Tdx) = (Trmx, Trmy0) - (x, yQ) - 0

for y0 e C_rm. Thus the m sequences

consist of mutually orthogonal elements and thus converge weakly to
zero.

It remains to study T on H.

THEOREM 3.8. On the space H, T is a unitary operator and Tn= Tn.

Proof. If xeH then TnxeCo for all n and it is possible to take
Tm(Tnx). But then

(Tn+mx, Tn(Tmx)) = \\Tmx\\>

thus Tn+mx = Tn(Tmx), or Tnx = Tnx. Thus if y = TxeC0 then Tny =
Tn+1x e Co and y e H.

In order to show that T is unitary we have to show that it is onto.

Let x 6 H then for some x0 e Co Tx0 = x. But then Tnx0 = Γn_iθ? 6 Co and
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In general the powers of a unitary operator do not converge. How-
ever the operator T has some special properties.

LEMMA 3.9. // feL2{Ω) and feH then χf-i{A) eH for every Borel
set A.

Proof. In order to prove this we have to go back to the definitions
of H and T. Now, if feBn and A is a Borel set, then f-\A) = χ-\An)
for some An and thus χf-ι{A)eBn. Thus feC0 implies that χ Γ i U ) 6 C 0 .
But feH so TnfeH. The Lemma will be proved if we show that

If M ίg / g N then M rg Tnf ̂  N, thus it is enough to prove the above
equation under the assumption that A is a bounded set and / a bounded
function. If / is bounded (hence Tnf is bounded also) it defines a self
adjoint operator on L2(β),: the multiplication operator. Thus as an ope-
rator

== γτnf)-l{dλ)

Now Ύn transforms characteristic functions to characteristic functions
and Tnχf-i(A),χ{τ,nf)-iu) are both the spectral measure of Tnf. Thus

This lemma shows that H is generated by characteristic functions.
Let us study the limits of Tnx when x is a characteristic function.

LEMMA 3.10. Let H be generated by a countable number of disjoint
characteristic functions χt. For a given χ4 there is an integer m:
TmXi = Xι and then

•* rm+dXi = •*• dXί

Proof. For every n Tnχt is a characteristic function, hence either

TnXi = Xι or

If (TnXi, χt) = 0 for all n then (Tnχt, Tnχt) = (T^χ^χ,) = 0 thus
there exist infinitely many disjoint sets of equal measure which is im-
possible.

Now if for some m, Tmχt = χl9 let m be the smallest integer that
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this happens. Then

rm+dLi — 1 -L Li ~ L Li ~ λ dJίί

THEOREM 3.11. Let xt be a stationary Markov process. If H is
generated by a countable collection of disjoint characteristic functions
{it} then for every y eB0 such that {y, χ^ Φ 0 for finitely many i's (y
has a "finite" support), there exists an integer m such that the m se-
quences

{Tkm+dy} d = l , 2 . . , m

converge weakly.

Proof. From Theorems 3.6 and 3.7 it follows that

weaklim Tn(y - Σ(y, χ,) | | χ4 {{-%) = 0 .

Let Xh, χh, , χίn be those functions for which (y, χ j Φ 0. Now

Tm*χi3 = χtj. Choose m to be the product of this m5. Thus

km+dJCij — -L JCίj

Hence

(3.1) weaklim Tkm+ay = weaklim Tkm+dΣ(y, χ,) \\ χt \\~%

— <zκy> Li) II Li II L Li'

COROLLARY 1. Equation 3.1 holds if the function xQ has countable
range.

This is a classical theorem see [2] p. 353.

COROLLARY 2. // there exists a finite measure φ, on the line, such
that, for some e > 0, <p(A) ^ ε implies that

oXn.A Φ Xn,A

for some n, then the space H is generated by a finite number of dis-
joint characteristic functions. Thus an integer m exists, such that
Equation 3.1 holds for all yeB0.

Proof. Let k be an integer greater or equal to φ(Ω)e. If χ0, Aι e H
i = 1, , k where the At are disjoint then

φ(Ω) ^ Σφ(At) ^ min (φ(At))k

or φ(AlQ) ^ φ{Ω)jk ^ ε for some i0. But then, for some n, χn>Ai $ H hence
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Thus there are at most k — 1 disjoint characteristic functions that
generate H.

REMARK. This last corollary is similiar to Doeblin's condition as
given in [1] page 192.

4 Strong convergence. Throughout this section we assume:
4.1. There exists a real number t0 > 0 such that the space Bo Π Bt

o

is finite dimensional and there is a positive angle between BtQ — Bo Π BtQ

and BQ - Bo Π Bto.
Two subspaces, Z?* and Z?**, are said to have a positive angle be-

tween them if
sup {(6*, &**) 11| &* || = || &** || = 1 and &* e £ * , &** e B**} < 1 .

CONDITION 4.1. Is equivalent to each of the following.
(a) The point 1 is not in the essential spectrum of E0EtQE0(ox EtQE0EtQ).
(b) The operator EoEtoEo(or EtQEQEt) is quasi compact.
(c) The operator E0EtQE0(or EtQE0Et) is a sum of a compact opera-

tor and an operator of norm less than 1.
(d) The norm of Eo restricted to Bh — Bo Π Bh is less than one.

LEMMA 4.1. If t > t0 then Condition 4.1 is satisfied when BtQ is
replaced by Bt.

Proof. Let us use the form given in c for 4.1. Now

EtE0Et = Et(EtQE0EtQ)Et

by Equation 2.1, hence it is a sum of a compact and an operator of norm
less than 1.

Now from Theorem 2.2 it follows that Bo Π Bt decreases with t. Let
tλ be such that

dim (Bo fΊ Bei) ^ dimCBoΠJBί) f o r a 1 1 *•

It is easy to see that B0Γ\Bh is generated by a finite number of
disjoint characteristic functions. Let them be %!,•••,%&, thus

h = Bof]Bt = span{χ1,. ,χfc}

because by Theorem 2.2

Bof]BhZ)Bof]Bt

and they have the same dimension.
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LEMMA 4.2. Ift>0 then

and

Tt(B0 - B0ΠBh) = Bt- B0ΠBtl = Bt - BQf]Bt .

Proof. A vector x e Bo Π Bh, if and only if, x e Bo and x = Ttiy for
some yeB0. But then

( 7 > , Γ ί + ί l y) - (x, Γ t l») = || x | | 2 - || > ||

or

Ttx=Tι+hy: TtxeBtΓ\Bt+tl.

Thus

r((B, n B ( I ) = Btn Bt+ιpB0 n B t+(1 = B0 n s ( l

by Theorem 2.2 and the remark above. This shows that

Let xe Bo be orthogonal to l?0 Π Bh. If 1/ e Bo Π -Btl, then y = Ttz where
z e B o n 5 v Thus

(Ttx,y) = (Ttx, Ttz) = (x, z) = 0 .

THEOREM 4.3. Let xeBo and let c = norm of Eo restricted to
Bti-B0Γ\Bh.

Then c < 1 and

(4.2) II E0Ttx - Σ(x, χt) II χ 4 1 | ->TtXt || ^ c» || x ||

where n is an integer such that ntλ < £.

Proo/. The vector x'- Σ£=i(x, id II X* II~2X* is orthogonal to
and hence so is

y

Thus

II Eoy II - II E 0 E t y \\ = H l i

Now the norm 2 ^ restricted to Bij+1)ti — BoπBh is,equal to c hence

It becomes now interesting to study Ttχt.
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THEOREM 4.4. For each given t there is a permutation of the in-
teger 1,2, , k, πt, such that

Also there exists an integer m such that

TmtXi = Z(*t*>w = %i f o r a 1 1 i '

Proof. Let us use induction on k. Let χh, %Ϊ2, , χi) be a subset
of Z«, i = 1, , k, with minimum norm: || χίr || g || χi ||. Then jΓtχv is a
characteristic function in l?0 Π Bh with norm smaller or equal to the norm

of χi ,χ a , ••-,%*: Γ tχ* re(χ4 l > •• ,χ, J ) .
This shows that Γf maps the set (χ ί χ, , χί}c) into, therefore onto,

itself. If Xi is not in this set then T^ will be also, orthogonal to χ v

In the remaining set there are less than k functions and by induction
the first part of the theorem is proved. The second part is an easy re-
sult on permutations.

The last two theorems include the classical result on Markov pro-
cesses with a finite number of states. There might be a connection to
Theorem 11 of [4].

If dim .Bo Π B t l = 1 then

II T T (Ύ Λ\Λ II < on II r II| | ltX — \Jϋj L)L | | ^ 6 | | X | |

where ntx < t and 1 is χΩ. This is a similiar to the case of independent
functions. Let us conclude this section by studying this case. Thus let
Bx and ί?2 be two subspaces of L2(Ω) generated by characteristic func-
tions χA and χA,, where A and A! belong to some σ subalgebras of Σ.
The cosine of the angle between Bλ — {1} and B2 — {1}, c, is given by

(*) c = supίCSα^, Σa[χA[) \ 1 = ΣalPiA,) = Ia\P(A\)

and

ΣatP(At) = Σaf

tP(Al) - 0} .

THEOREM 4.5. The number c is smaller than

1. sup I (P(A n A') - P{A)P{A'))P{A n A')-1 \ = cx .

2. sup I (P(AΠ A') - P{A)P{Af){P{A)P{Af)Y11 = c, .

Where A and A' belong to the σ subalgebras generating Bx and B2

respectively.

Proof. Let us show that c ^ cί9 the other inequality is proved in
a similiar way. Now let ai9 α , At and A[ satisfy the conditions of equa-
tion (*). Then
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Σ..jiAj) 2 > 4 J ( ( t J ) ( Λ ) ( ^ ) ) Σ

The second term is equal to zero. Thus

j Π A'}) \ ̂  c, g I αtαj | P( A n AJ)

Σ

A more convenient form of the conditions of Lemma 3.2 is

1. cx is the largest number for which

(1 + c,)-1 ^ P(An Ar)(P(A)P(Af))-1 ^ (1 - c,)-1 .

2. c2 is the largest number for which

1 - c2 ^ P(Af]Af)(P(A)P(Ar))-1 ^ 1 + c2 .
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