
POSITIVE OPERATORS COMPACT IN

AN AUXILIARY TOPOLOGY

F . F . BONSALL

Of the several generalizations to infinite dimensional spaces of the
Perron-Frobenius theorem on matrices with non-negative elements, two
are outstanding for their freedom from ad hoc conditions.

THEOREM A (Krein and Rutman [3] Theorem 6.1). If the positive
cone K in a partially ordered Banach space E is closed and funda-
mental, and if T is a compact linear operator in E that is positive
(i.e., TK c K) and has non-zero spectral radius p, then p is an eigen-
value corresponding to positive eigenvectors of T and of T*.

THEOREM B ([4] p. 749 [1] p. 134). // the positive cone K in a partial-
ly ordered normed space E is normal1 and has interior points, and if
T is a positive linear operator in E, then the spectral radius is an
eigenvalue of T* corresponding to a positive eigenvector.

In [2], we have proved the following generalization of Theorem A.

THEOREM C. Let the positive cone K in a normed and partially
ordered space E be complete, and let T be a positive linear operator
in E that is continuous and compact in K. If the partial spectral
radius μof T is non-zero, then μ is an eigenvalue of T corresponding
to a positive eigenvector.

Also in [2], we have developed a single method of proof of Theo-
rems A, B, C which exploits the fact that the resolvent operator is a
geometric series, and thus avoids the use of complex analysis or any
other deep method.

In [5] (Theorems (10.4), (10.5)), Schaefer has further extended these
results by showing that (A) and (C) remain valid for operators in locally
convex spaces, with suitable definitions of spectral radius and partial
spectral radius.

Our aim in the present article is to unify these theorems still fur-
ther. We prove a single theorem (Theorem 1) that contains Theorem C
(and hence A), and also contains Theorem B except in the case p = 0,
for which an extra gloss is needed (Theorem 2). The central idea is
that instead of being compact in K in the norm topology, T maps the
part of the unit ball in K into a set that is compact with respect to a
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1 K is said to be a normal cone if there exists a positive constant K such that

lla + lίll ^ * | | a | | (x,V β K) .
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second linear topology, this topology being related to the norm topology
in a certain way. This idea is, in essence, derived from the recent
paper [6] of Schaefer, though his conditions are too restrictive for our
purpose. Again we use only elementary real analysis of the kind used
in [2]. After proving our two main theorems, we exhibit a number of
examples of situations in which these theorems are applicable.

NOTATION. We suppose that E is a normed and partially ordered
real linear space with norm || ||, norm topology τN9 and positive cone
K) i.e., JKΓ is a non-empty set satisfying the axiom:

( i ) x, y e K, a >̂ 0 imply x + y, ax e K,
(ii) x, —x e K imply x = 0.

We write x rg y or y ^ x to denote that y — x e K.
We suppose that K is complete with respect to the norm. How-

ever, we do not require that E be complete, so that there is no real
loss of generality in supposing that E = K — K, and we shall therefore
suppose that this is the case. We exclude the trivial case in which
K=(0).

We denote by B the intersection of K with the closed unit ball in
E, i.e., B = {x : x e K and || x \\ <Ξ 1}, and suppose that T is a linear
operator in E that is positive (TK c K) and partially bounded (i.e.,
|| Tx\\ is bounded on B). We denote the partial bound of T by p(T)
i.e.,

p(T) =sup{ | | Tx\\ :x e B} ,

and by μ the partial spectral radius

μ = lim{p(Tn)Y'n .

We are indebted to H. H Schaefer for several helpful suggestions,
and in particular for pointing out that substantial simplification can be
obtained by introducing a second norm q into E defined as follows. Let
BQ denote the convex symmetric hull of B, i.e.,

Bo = {ax + βy: x, y e B, \ a \ + | β \ = 1} ,

and let q be the gauge functional of Bo,

q(x) = inf {λ: λ > 0 and λ"1^ e Bo} .

It is easily verified that q is a norm in E, that q(x) ^ | | # | | (x e E),
and that q(x) = || x || (x e K). Also the completeness of K with respect
to the given norm implies that E and K are complete with respect to q.

Given a positive operator T, the partial bound and the partial
spectral radius are the usual operator norm and spectral radius for the
operator T in the Banach space {E, q). For λ > μ, the resolvent operator
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Rλ = (XI — T)1 is given by t h e series

R I + hτ+hTi +

which converges in the operator norm for (E, q), and is a partially
bounded positive operator.

We suppose that we are given a second linear topology τ in E,
such that K is (r)-closed and T is (τ)-continuous in K.

DEFINITION. Given a subset A of K, we say that τ is sequentially
stronger than τN at 0 relative to A if 0 is a (r^)-cluster point of each
sequence of points of A of which it is a (τ)-cluster point.

THEOREM 1. // TB is contained in a (τ)-compact set, τ is sequential-
ly stronger than τN at 0 relative to TB, and μ > 0, then there exists
a non-zero vector u in K with Tu = μu.

THEOREM 2. // B is contained in a (τ)-compact set, and τ is
sequentially stronger than τN at 0 relative to B, then there exists a
non-zero vector u in K with Tu = μu.

Since TB c p(T)B, Theorem 2 is contained in Theorem 1 except
when μ = 0.

The proofs of these theorems will depend on the following two
lemmas. Lemma 1, which is needed in the proof of Lemma 2, is repeated
from [2] in order to make the present paper self-contained.

LEMMA 1. Let {an} be an unbounded sequence of non-negative real
numbers. Then there exists a subsequence {anjc} such that

( i ) anh>k (fc = l , 2 , • • • ) ,

( i i ) a>nk>a,3 U < nk, k = 1, 2, •).

Proof. By induction. With n19 , wfc_x chosen to satisfy (i) and
(ii), let nh be the smallest positive integer r with ar > ank_λ + k.

LEMMA 2. If TB is contained in a (τ)-compact set, and τ is
sequentially stronger than τN at 0 relative to TB, then

lim p{Rλ) — co .
λ->μ-j-0

Proof. Suppose that the conditions of the lemma are satisfied, but
that p(Rλ) does not tend to infinity as λ decreases to μ. Then there
exists a positive constant M such that p(Rv) ̂  M for some v greater
than and arbitrarily close to μ.
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The case μ — 0 is easily settled. For if μ = 0, then

XRλx ^x (X > 0, x e K),

and letting λ tend to zero through values for which p(Rλ) ^ M, we
obtain — x e K, K = (0). This is the trivial case that we have excluded.

Suppose now that μ > 0. Then we may choose λ, v with

0 <X < μ <v <X + M'1

and with p(i?v) ^ M. With this choice of λ, v the series

R^ + {v - X)Rl + (v - X)2Rl + . . •

converges in operator norm for the Banach space (E, q) to a partially
bounded positive operator S with

Sx = X~xx + χ-τTSx (x 6 K).

Thus

Sx ^ X-*TSx {x e K),

and therefore

(1) Sx ^ X~{n+1)Tnx (x e K, n = 1, 2, •).

Since lim^^piX'^^ Tn) = oo, and since the partial bound of a positive
operator coincides with its operator norm in (E, q), the principle of
uniform boundedness implies that there exists a point x e E with
q(χ-{n+1)Tnx) unbounded. Since E = K — K, it follows that there exists
w e Kfor which the sequence (\\X~{n+1)Tnw ||) is unbounded. Therefore,
by Lemma 1, there exists a subsequence such that

( 2 ) l im | | X-{nk+1)Tnicw | | = oo ,

( 3 ) || X-{n^Tn^w || ^ Ilλ-^Γ^-1^ || .

Since

we also have

(4) limllλ-^T^wH = oo .
fc->oo

Let yt = || Γ - wH^Γ"*-^. Then, by (1), there exists zft € K with

(5) || λ - ' Γ *-1^ H^Sw = \-χTyk + zk (k = 1, 2,

By (4) and (5), we have

(6) λ- ϊty*+ **-»<> (τ) .
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Since yk e B and TB is contained in a (τ)-compact set, the sequence
(X^Tyx) has a (τ)-cluster point y in K. By (6), — y is a (τ)-cluster point
of (zk), and since zk e K and K is (τ)-closed, —j/ e K. Thus # = 0, and
0 is a (τ)-cluster point of (Tyk). But τ is sequentially stronger than τN

at 0 relative to TB, and so 0 is a (τJV)-cluster point of (Tyk). But this
is absurd, for, by (3),

Proofs of Theorems 1 and 2. Since TB c p(T)B, Lemma 2 is
available under the conditions of each theorem, and gives

lim p(Rλ) = oo .
λ->μ,+0

Then, applying the principle of uniform boundedness as in the proof of
Lemma 2, we see that there exists a sequence (λn) converging decreas-
ingly to μ, and a point w in K with | |w | | = 1 and

\\m\\Rλw\\ = oo ,

and we may suppose that Rχnw Φ 0 (n = 1, 2, •). Let α n = || i2 λ w ^ H"1,
and un = anRλnw. Then

( 8 ) μun- Tun = (μ- Xn)un + anw .

Under the conditions of Theorem 2, the proof is easily completed.
For, since un e B and B is contained in a (τ)-compact set, it follows
from (8) that

μun - Tun -> 0 (τ) .

Also (un) has a (τ)-cluster point u in K, and since T is (τ)-continuous
in K, we have

/m - Tu = 0 .

We have % =£ 0, for otherwise 0 is a (zv)-cluster point of (un), which
is absurd, since \\un\\ = 1.

Finally, suppose that the conditions of Theorem 1 are satisfied.
Then, by (8),

(μl- T)Tun = T(μl- T)un = (μ - Xn)Tun + anTw .

Since TB is contained in a (τ)-compact set, it follows that

(μI-T)Tun-+0 (τ),

and (Tun) has a (τ)-cluster point v in K. Therefore, by the (τ)-continuity

of T,
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(μl - T)v = 0 .

If v = 0, then 0 is a (τ^)-cluster point of (Tun). But, by (8),

μun - Tun — 0 (τN) ,

and so 0 is a (τ^)-cluster point of (μun). Since μφO and \\un\\ = 1,
this is absurd. Hence v φ 0, and the proof is complete.

It will be noticed that the preceding theorems and lemmas remain
true if compactness is replaced by countable compactness, no change in
the proofs being required. It may be of interest to remark that under
the conditions of Theorem 2, if is a normal cone. However, since this
fact is not needed for our main purpose, we omit its proof.

EXAMPLE 1. Taking τ = τN in Theorem 1, we obtain Theorem C,
and hence, as we have seen in [2], Theorem A also.

EXAMPLE 2. Suppose that there exists a subset A oί K with the
following properties:

( i ) Given x e E with \\x\\ ^ 1, there exists a e A with — a ^ x ^ a.
(ii) TA is contained in a (τv)-compact set.2

Let E* denote the usual dual space of continuous linear functional
on the normed space E, and let if* denote the dual cone of all elements
of E* that are non-negative on if. Then if* is a norm complete positive
cone in E*, and we denote by B* the intersection of if* with the
closed unit ball in E*.

For each φ in E*, let T*φ be defined as usual by

(T*φ)(x) = φ(Tx) (x e E).

Since T is not necessarily a bounded operator in E, T*φ may fail to
belong to E*. However, Γ * ^ * c K*, and T * is a partially bounded
operator in K * — K*. For, given ψ e B* and xeE with | | α ? | | ^ l ,
there exists a e A with — a ^ x ^ α, and therefore

-φ(Ta) ^ φ(Tx) ^ φ(Ta) .

Since 7M. is contained in a (τv)-compact set, the set { | | T α | | : α e A }
has a finite upper bound M and so \φ(Tx)\^M,\\ T*φ \\ ̂  M, T * £ * c
MB*, T* is partially bounded. It is easily seen that T* is weak*-
continuous in if* and that if* is weak*-closed.

We shall show that if the partial spectral radius μ* of Γ* is not
zero, then Theorem 1 is applicable to the operator T* in the space
K* — K* with the weak* topology as the auxiliary topology τ. This
will prove the existence of a non-zero element ψ of if * with

2 In Examples 2, 3 no auxiliary topology is needed in E, but an auxiliary topology will
appear in the dual space.
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Since Γ* maps B* into the weak*-compact set MB*, we need only
prove that the weak* topology is sequentially stronger than the norm
topology at 0 relative to T*B*. To prove this, let φn e JB* (n = 1, 2, •),
and suppose that 0 is a weak*-cluster point of the sequence (T*φn).
Since TA is contained in a (τ^)-compact set, given ε > 0, there exist
alf , ar in A such that for each point a in A there is some k (1 fg
k ^ r) with

(9) | | Γ α - Γ α Λ | | < e / 2 .

Since 0 is a weak*-cluster point of (T*φn), there exists an infinite set
/i of positive integers such that

(10)
i.e.,

By (9)

(11)

and (10),

\(T*φn)(alc) | <

<P»(Tat) | <

we have

\Ψn(Ta)\<

:ε/2
:ε/2

ε

= 1
= i

y

y

(a

,r;
,r;

n
n

n

e
e

e

A),
A).

A).

Given x e E with \\x\\ <Ξ 1, there exists a e A with —α g x ^ α, and
so, by (11),

I (T*φn)(x) I - I φn(Tx) I ̂  φn(Ta) <S (n β A),

\\T*φn\\^e (neA).

Therefore 0 is a norm-cluster point of (T*φn), and we have proved that
Theorem 1 is applicable.

EXAMPLE 3. Suppose that there exists a subset A of if with the
following properties:

( i ) Given x e E with \\x\\ ̂  1, there exists a e A with — a ^ x ^ a.
(ii) A is contained in a (r^)-compact set.
Let K*, J5*, T* be defined as in Example 2. Given φ e J5* and

x e E with || a; || ^ 1, there exists a e A with —α ̂  a; ̂  α, and therefore

Since A is contained in a (τv)-compact set, | | α | | is bounded on A, and
T* is a partially bounded mapping of K* into itself.

We show that Theorem 2 is applicable to the operator Γ*. Since
K* is weak*-closed, B* is weak*-compact, and Γ* is weak*-continuous
in K*, we need only prove that the weak* topology is sequentially
stronger than the norm topology at 0 relative to B*. This is proved
by an argument similar to that in Example 2, but using A in place of
TA.
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It follows that there exists a non-zero element f of ίΓ* with
T*ψ = μ*ψ, where μ* is the partial spectral radius of T*.

In particular, the conditions of this example are satisfied with A
consisting of a single point if K contains an interior point in the normed
space E. Thus Theorem B is contained in this example, and hence in
Theorem 2.

EXAMPLE 4. Theorem 1 of Schaefer [6] is a case of our Theorem
2. In this case the topology τ is given, and Schaefer constructs a norm
in K — K in such a way that

IMI=/(aO (xeK),

where / is a certain (τ)-continuous linear functional. Since / is (τ)-
continuous, it is easily verified that r is sequentially stronger than τN

at 0 relative to B.
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