
ON INVARIANT PROBABILITY MEASURES I

J. R. BLUM1 AND D. L. HANSON2

1* Introduction* Let Ω be a set and let Sf be a σ-algebra of
subsets of Ω. Let T be a one-to-one bimeasurable transformation map-
ping Ω onto itself. T then induces the group of transformations {T\
i = 0, ± 1 , •} defined in the usual way. If A e s/, TιA is defined to
be the set of images of the elements of A under the transformation T\

Let & be the class of probability measures defined on j y for
which T is invariant, i.e. if P is a probability measure defined on s/
then Pe^ if and only if PA = PTA for every i e j / . Let S>/x be
the subclass of s/ which is invariant under T; a set A ε j y belongs
to S/x if and only if A — TA. It is trivial to verify that Ssζ is sub-σ-
algebra of S/. Finally let &{ be the subclass of & for which T is
ergodic, i.e. if Pe^ then Pe &* if and only if PA = 0 or PA = 1 for
every A e J3£

In § 2. several results are proved, concerning the structure of the
class ^? These are not new, although several of them do not seem to
have appeared in the literature. The main theorem of this paper is in
§ 3 where it is shown that each element of & can be represented as
a convex combination of the extreme points of ^ Several consequences
of this theorem are pointed out.

2» Some properties of the class &t

THEOREM 1. Let P and Q be elements of &i Suppose PA = QA
for Aes/X Then P=Q.

Proof. Let μ = P — Q. Then μ is a completely additive set function
defined on s/. If μ is not identically zero, there exists A e jy such
μ(A) > 0 and μ(A) ^ μ(B) for all B e s^ζ This follows from the Hahn
decomposition theorem. Write μ(A) = a + β, where a = μ(A — An TA)
and β = μ(A f] TA). Since μ(A - AΠ TA) = μ(TA - A Π 2ΓA) we have
μ(A U TA) = 2α + β. Now if α < 0, then μ(A Π TA) > //(A) and A is
not maximal, and if β < 0 then μ(A — Af] TA) > //(A) and A is not
maximal. Consequently a ^ 0 and /3 ̂  0. But if A is maximal then
α + β ^ 2α + β. Hence α = 0 and //(AU TA) = //(A). By the same
argument we show that ^(T^AUAU TA) = //(A) and it follows by in-
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duction that μ(Bn)=μ(A) for every positive integer n, where Bn = (J?=-n
TιA. Now Bn is an increasing sequence of sets. Let B = l i m ^ Bn.
Then μ{B) = μ(A) > 0. But clearly B = UΓ=-oo TιA e Ssζ and μ is zero on
Jfcf. Consequently we have a contradiction and the theorem is proved.

Suppose now that Pe ^ and Q e& and suppose also that Q is
absolutely continuous with respect to P. Then if A e jfcf we have
PA = 0 or PA = 1 and hence Q agrees with P on Ĵ f. Thus the theorem
applies and we have

COROLLARY 1. If Pe^,Qe^, and Q is absolutely continuous
with respect to P then Q == P.

Theorem 1 also furnishes an elegant proof of a result which was
proved by Lamperti [3], and in a special situation by Harris [1]. Suppose
P and Q are both ergodic, i.e. P e ^ and Qe^. Then either P and
Q are orthogonal or for each A e s/ for which PA = lwe have Q(A) > 0.
Now suppose A e j % and PA = 1. Then if Q is not orthogonal to P
and since Q e &[ we must have Q(A) = 1 and it follows that P = Q on

We have

COROLLARY 2. If Pe ^t,Qe ^19 then either P=Q or P is orthogonal
to Q.

In § 3, we shall show that this result can be considerably generalized.

THEOREM 2. & is a convex set. Pe^if and only if P is an
extreme point of £P.

Proof. The first statement is obvious. Suppose P e ^ and suppose
we may represent P in the form P = aP1 + (1 — a)P2 where 0 < a < 1
and Pi e &*i = 1,2. Then clearly Px and P2 are absolutely continuous
with respect to P and it follows from Corollary 1 that Pλ = P2 = P-
Thus if P e ĵf it is an extreme point of ^? Conversely if P0 ^ there
exists a set Bes^ζ with 0 < PJ5 < 1. Then we may write P =
aPλ + (1 — α)P2 where a = PB, and for A e j / we have PX{A) =
P(Af]B)IP(B) and Pf(A) = P(AnBC)IP(BC). It is easily verified that
Pi and P2 are invariant probability measures and it follows that P is
not an extreme point of ^?

Theorem 2 strongly suggests that it may be possible to obtain the
elements of & as convex combinations of the extreme points of f̂.
Under a rather mild assumption this is in fact true, as will be shown
in the next section. Examples of the kind of theorem we have in mind
were proved by Hewitt and Savage [2].

3. The representation theorem. Throughout part of this section
we shall assume that if Ae J% and if PA = 0 for every P e ^ then
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PA = 0 for every P e ^ ! Clearly such a condition is necessary for a
convex representation theorem and the condition can actually be verified
in many examples of interest.

Suppose now that Pe 3f. Theorem 1 tells us that P has a unique
invariant extension from J^f to J^f This suggests that if A e s/ we
should be able to determine PA by knowing only the values of P on
J f̂. A proof of this statement follows from the individual ergodic
theorem.

THEOREM 3. Let A e J^Γ For every a with 0 fg a ^ 1 there exists
a set A'Λe s&ί such that if Pe &{ then PA — a if and only if PA'Λ = 1.

Proof. Let fs(x) be the set characteristic function of the set S.
Let A e s$ζ and a be given. For every positive integer n define gn>A(x) =
Vn ΣfΓίΛίΓ'α), and define A'Λ = {x\ l i m ^ flfB(i(a;) = a). Clearly A^ e J*f
and the individual ergodic theorem implies that PA = a if and only if
PA'a — 1, whenever P e ^ .

Using the same technique we can prove

THEOREM 4. Lei A e sf. For every a with 0 ^ α ^ 1 there exists
a set AaeJ^ζ such that if Pe ^ then PA ^ a if and only if PAa = 1.

Let A e J K Define πA by πA = {P e &* \ PA = 1}. Let /7 be the
collection of all such sets πA i.e. 77 = {π^ | A e j*f}. The following facts
are easily verified:

( i ) τrΩ = ^
(ii) [7Γjc-7Γc

(iii) 7Γ U w An = Un ^ »
where A and each Aw is an element of J ^ Since S/x is a σ-algebra it
follows that 77 is a er-algebra. Now let Q e 3?. We define a set function
μQ on 77 by μQ(πA) = Q(A).

We shall show that under the assumption at the beginning of this
section μQ is in fact a probability measure defined on 77. Clearly μQ(πA)^>0
for each πA, and μQ(^) = μQ(τcΩ) = Q(β) = 1. Now suppose {TΓ^J is a
sequence of disjoint elements of π. It is easily verified that this is the
case if and only if PAn Π Am = 0 for every pair of sets Anf Am in Ssζ
with n Φ m and for every P e ^ f . It follows from the assumption that
Q(An n AJ = 0 for rc =£ m. Hence μρ{(Jw πAn} - Q(U» An) - Σ ^ Q(An) =
Σw /^Q{^J

 a n ( i w e have shown that μρ is a probability measure defined
on 77. We summarize in

THEOREM 5. If Π and μQ are defined as above then Π is a σ-algebra
of subsets of ^ . Under the assumption at the beginning of this section
μQ is a probability measure defined on 77,
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THEOREM 6. Let A e S^. Consider the function fA(P) defined on
^ and with values fA(P) — PA. Then fA(P) is measurable with respect
to 77.

Proof. We must show that for every a with 0 ^ a ^ 1 we have
{P e &{ I fA(P) ̂ a} = {Pe^\PA^a}eΠ. But it follows from Theorem
4 that {P e &l I PA ^ α} = π ^ ^ where AaeStζ is the set guaranteed
by Theorem 4, and the theorem follows.

Since fA{P) is bounded and measurable it is clearly integrable with
respect to any probability measure defined on 77. Now let Qe ^ and
μQ be the corresponding probability measure defined on 77. For each
Aessf define Q\A) by

Q\A) = \ fA(P)dμQ = \ PAdμQ .

It follows immediately from this definition that Qf is an invariant prob-
ability measure defined on S/. But if A e Ssζ we have Q'(A) = μQ{πA} =
Q(A). Hence Q' = Q on J ^ and it follows from Theorem 1 that Qf = Q.

Furthermore suppose we know that Q(A) = \ PAdμ, where μ is some

probability measure defined on 77. Then if A e J*f we have Q(A) =

\ PAdμ = μ{πA} = ρ̂{7τ }̂, i.e. μ = //ρ. We state these results in

THEOREM 7. Suppose the assumption at the beginning of the section
holds. Then for every Q e & there exists a unique probability measure
μQ defined on 77 such that

Q(A) = l P(A)dμQ for every

We shall refer to Theorem 7 as the representation theorem, and
the rest of this section is devoted to exploring some consequences of
this theorem. One immediate consequence is a generalization of Corollary
2 to Theorem 1.

THEOREM 8. Let Qt e&*, i = 1, 2. Then Q± and Q2 are orthogonal
if and only if the corresponding measured μQl and μq<λ are orthogonal.

Proof. Suppose Q1 and Q2 are orthogonal. Let B be a set such
that Q^B) = 1 = Q2(BC) and let A = Ur=-~ T*B. Then A e S^ and QX(A) =
1 = Q2(AC) and we obtain 1 = μQl{πA} = μQ2{(πA)

G}. Thus μQl and μQi are
orthogonal. Conversely if μQl and μQ2 are orthogonal there is a set
A 6 JK such that 1 = /^{TΓ^} = Qi(A) and 0 = μQ2{πA} = Q2(A) and the
theorem^isyproved.
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Another interesting consequence of the theorem is the obvious fact
that if A e Stf and if PA = 1 for each P e g* then Q(A) = 1 for each
Q e ^? Thus the individual ergodic theorem for arbitrary invariant
measures is an immediate consequence of that theorem for ergodic
measures. Furthermore Theorem 7 throws some light on the evaluation
of the limiting function in the individual ergodic theorem. Let Q e ^
and let f(x) be defined on Ω and measurable with respect to s& Let
fn(<β) = llnΣιt=of(T*x). Then if feLλ(Q) the ergodic theorem states
that lim^oo fn(x) =/*(#) say, exists on a set of Q-measure one. It is
clear t h a t / * is invariant i.e. f*(Tx)=f*(x) for all x for which / *
exists. If / is also integrable with respect to Pe ^ then / * is constant
on a set of P-measure one, and we have

Q{x\f*(x) ^ u} = \ Px{\f*(x) £ u}dμQ =

In particular we conclude / * is a constant, say c, on a set of Q-measure
one if and only if μP[Pe &> \ P{x\f*(x) = c}] = 1.

Finally, suppose / is again measurable with respect to j^Γ Let

Qe^ and suppose μQP< e ^ | l | / | dP < col = l . Then we can easily

prove

THEOREM 8. If \ \f\dP is an integrable function of P (with respect
JΩ

to μQ) then f e Lλ(Q) and

ί f d Q -
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