
RELATIVE HERMITIAN MATRICES

MAGNUS R. HESTENES

l Introduction* The purpose of the present paper is to develop a
spectral theory for an arbitrary m x n dimensional matrix A, which is
analogous to that given in the hermitian case and which reduces to the
usual spectral theory when A is hermitian. The theory is centered around
the triple product AB*C of matrices of the same dimension. Here B*
is the transpose of B in the field of real numbers and the conjugate
transpose of B in the field of complex numbers. The matrix T will
be said to be elementary in case T = TT*T. Elementary matrices play
the role of units and in case of vectors are unit vectors. Given an element-
ary matrix T and a matrix A of the same dimension the matrix TA* T
can be considered to be the conjugate transpose of A relative to T. If
A~TA*T, then A is hermitian relative to T. The polar decomposition
theorem for matrices implies that to each matrix A there is a unique
elementary matrix R such that A is hermitian relative to R, AR* is non-
negative hermitian in the usual sense, and R has the same null space as
A. Every elementary matrix T relative to which A is hermitian is of the
form T=T0 + Ri — R2, where R, + R2 = R and Γo, R19 R2 are mutually
^-orthogonal. Two matrices A and B are ^-orthogonal in case AB* = 0
and A*B = 0. A matrix B will be called a section of A if B and A — B
are ^-orthogonal.

If A is hermitian relative to an elementary matrix T, it is shown
below that A and T can be written as sums of sections

A = A, + + Aq , T = Tx + + Tq

such that Ai = \Tif where λ̂  is a real number. Moreover these sections
can be chosen so that Xt Φ XJf (i φ j). If in this event the decomposition
is unique. If AT* ^ 0, then λ< ̂  0. If in addition A and T have the
same null space then λ4 > 0. In the event T is the identity, this result
gives the usual spectral representation of hermitian matrices.

A matrix A will be said to be normal relative to an elementary
matrix T in case A = AT*T= TT*A,AA*T= TA*A. In this event
the spectral decomposition theorem described above holds, the coefficients
%ι being complex instead of real.

In the development of the theory the concept of #-commutativity
of two matrices plays a significant role. The matrices A and B will be
said to ^-commute (see § 4 below) in case AB* = BA* and A*B = B*A.
If A and B ^-commute, there is an elementary matrix T relative to
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which they are hermitian. Moreover A, B T can be written as sums of
section At, Bif Tι such that A% = λ4Γ4 and Bt = μtTif where λ, and μt

are real. If Sί is a linear class of m x n dimensional matrices that are
hermitian relative to an elementary matrix T in Sί (including T itself)
and have the property that the product AB*C is invariant under per-
mutations A, B and C, then this class forms an algebra with AT*B as
the product of A and B. The elements A of §ί are all matrices expressi-
ble in the form A = XtTt + + XqTq, where Γlf ., TQ are suitably
chosen sections of T. Throughout the paper the reciprocal A*"1 of A*
plays a role analogous to that of A itself.

The main results obtained in the present paper can be extended to
a closed operator A from a Hubert space 91 to a second Hubert space
sJl\ Whenever it is convenient to do so, the theorems are stated so as to
be valid for operators in Hubert space. The terminology used has been
chosen so as to make this transition as simple as possible. The extension
to Hubert spaces yields a common spectral theory for the gradient of
a function and the divergence of a vector field.

2 Terminology and notations* Throughout the following pages
matrices will be denoted by capital letters A, B, C, P,Q, R, . The
elements can be considered to be real or complex. The conjugate transpose
of A will be denoted by A*. It will be convenient to consider all
matrices to be square, since this can be obtained by the addition of
zero-elements. However, this is not essential. The paper is written so
as to be valid for rectangular matrices, the equality of the dimensions
of two or more matrices being implied by the condition that the opera-
tions used should be well defined.

Occasionally we shall use column vectors and row vectors. A column
vector will be denoted by x,y,z, . Row vectors are conjugate trans-
poses of column vectors. If x*x = 1 then x is a unit vector. Given
two vectors x and y then A = yx* is a matrix of rank 1. Every matrix
of rank 1 is represented in the form A = Xyx*, where λ is a real number
and x, y, are unit vectors. In fact λ can be taken to be positive. The
greek letters, a, β,y, μ, appearing in the text normally denote real
numbers.

A matrix is hermitian if A* = A. A hermitian matrix A is non-
negative, written A ^ 0, if x*Ax ^ 0 for every column vector x. If
A ^ 0, there is a unique matrix B ^ 0 such that B2 = A. The matrix
B will be called the square root of A. A matrix E will be called a pro-

1 E. H. Moore, General Analysis, Part I, Mem. Philos. Soc. (1935), p. 197. See also
Penrose, "A generalized inverse of matrices", Proc. Cambridge Philos. Soc. 5 1 (1953), 406-
413; M. R. Hestenes, ''Inversion of matrices by biorthogonalization and related results," /.
Soc. Ind. Appl. Math. 6 (1958), p. 84; J. von Neumann, On regular rings, Proc. Nat. Acad.
Sci. U. S. A. 22 (1936), 707-713.
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jection if E = E* = E\ The identity matrix will be denoted by I.
The null space of the matrix A will be denoted by $lA.

To each matrix A there is a unique matrix B such that

A = AA*B = AB*A = BA*A , B = BB*A = £A*J3 = A£*J3 .

'The matrix B is the reciprocal of A* in the sense of E. H. Moore1 and
will be called the ^-reciprocal of A. It is also the conjugate transpose
•of the reciprocal A"1 of A. If A is nonsingular, A~τ is the inverse of A.
We shall accordingly use the symbols A*"1, A"1* for the ^-reciprocal of
A. The matrices

<2.1) E = A-1 A = A*A*'1 , E' - AA"1 - A*-1 A*

:are projections and satisfy the relations

(2.2) £"A = AE = A , .tf'A*-1 - A*-1^ - A*"1 .

They will be called the projections associated with A. It should be
noted that the reciprocal of A*A is A"1 A*'1 and that the reciprocal of
AA* is A*"1 A"1. If A is hermitian then A*"1 = A~\ If A is nonsingular
then A"1 is the inverse of A.

A matrix 22 will be said to be an elementary matrix in case RR*R = R.
It is easily seen that R is elementary if and only if R = 22*"1 or equi-
valently if and only if R* = R"1. If R is elementary so also is 22*.
.A projection is an elementary matrix. If 22 is a hermitian elemetary
matrix, then

E+ - i-(222 + 22) , 2?_ =i-(222 - 22)
Δ Δ

.are projections such that

22 = E+- E- , E+E- = E-E+ = 0 , R2 = E+ + E. .

•Conversely, the difference of two projections that are orthogonal is a
hermitian elementary matrix.

A matrix A will be said to be hermitan relative to an elementary
matrix 22 if A = 22A*22. The following result is fundamental.

THEOREM 2.1. Suppose that A is hermitian relative to an element-
ary matrix 22. Then A*"1 is hermitian relative to R and A*^*1 are
hermitian relative to 22*. Moreover, Sϊ̂  c 9^ and %lR* c %lA*. The
matrices A and R satisfy the further relations

(2.3a) A - 2222*A - A22*22 = 22A*22 , 22A*A = AA^R - A22*A

(2.3b) A*22 = 22*A , A22* = 22A* .

.(2.3c) (A*22)2 = A"A , (A22*)2 = AA* .
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(2.3d) A*-'A*R = RA*A*~1 = A12*A*-χ = AA^R = RA~λA = A*~*R*A .

Since A = RA*R we have A* = R*AR* and 9iΛ c 3^, 9^* c 9 V
Moreover

1212*A = RR*RA*R = 12A*12 - A =AR*R

AR*A = RA*RR*RA*R = RA*RA*R = AA*iί - 12A*A .

It follows that (2.3a) holds. The relations (2.3b) and (2.3c) follow from
the computations

A*12 - R*AR*R = 12*A , 12A* - RR*AR* = A12*

(A*12)2 = A*i2i2*A - A*A , (Ai?*)2 = AR*RA* =

It is easily verified that iϋA""1./? is the reciprocal R*AR* = A*. Con-
sequently A*"1 = RA~λR, that is, A*"1 is hermitian relative to R.
Similarly A"1 is hermitian relative to it!*. The relations (2.3d) follow
from (2.3b) and the relations AA~X - A*'1 A*, A~ιA - A*A*-1.

COROLLARY. Suppose A = i2A*iτ!, lϋ = RR*R and set P = A*R, Q =-

(2.4) A = i2P = Qi2 , P =R*QR , Q = RPR* .

The matrix P is nonnegative if and only if Q is nonnegative. More-
over Sftβ = ίϊ^ if and only if

(2.5) R = A*-χi2*A

hence if and only if 9^* = 3lΛ*.
In view of this result we define a matrix A to be nonnegative

hermitian relative to R in case A = i?A*ί2 and A*i? ^ 0.

THEOREM 2.2. Given a matrix A there is a unique elementary
matrix R such that A is nonnegatively hermitian relative to R and
such that R — A*~ιR*A. Moreover

(2.6) R*R = A-1 A = A*A*-1 , RR* - AA~X = A*~'A* .

Let P be the square root of A*A. The matrix R = A*~λP has the prop-
erties described in the theorem. Clearly A*J? = A*A*~τP = P ^ 0..
Moreover

RR*R = A * - ^ ^ - 1 ^ = A * - 1 ^ * ^ - 1 ^ * - 1 ^ = A*-χP = 12 ,

RA*R = RP = A*~Ψ2 - A*-'A*A = A ,

A*-1JB*A = A^ΨA-'A = A*"XP = 12 ,

12*12 = 12*A*-X12*A - A~XA = A*A*-1 ,

1212* = A*"112*A12* = A*"XA* = AA~X .

The uniqueness of 12 follows from the uniqueness of P as the square^
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root of A*A. This proves the theorem.
If R is chosen as described in Theorem 2.2 then the formula (2.4)

for A in terms of P = A*R and R is called the polar decomposition2 of
A.

The matrix R described in Theorem 2.2 will be called the elementary
matrix associated with A.

COROLLARY. Let R be the elementary matrix associated with A and
let S and T he elementary matrices such that

A = SS*A = AT*T

Then V — TR*S is the elementary operator associated with B = TA*S
This follows because

VB*V= TR*SS*AT*TR*S = TR*AR*S = TA*S = B

B*V= S*AT*TR*S = S*(AR*)S^0 .

B*-λV*B = B*~1S*RT*TA*S = B*~1S*RA*S

= TA-1SS*AR*S= TA~1AR*S= TR*S==V.

As a further result we have

THEOREM 2.3. Let R be the elementary matrix associated with A.
If A is normal so also is R. If A is nonnegative hermitian, then R is
a projection. If A is hermitian, then R is hermitian and is the differ-
ence of two orthogonal projections.

If A is normal, its associated projections E, E' coincide. By virtue
of (2.6) we have RR* = R*R and R is normal. If A is nonnegative
hermitian, then R = E. If A is hermitian, let P be the square root of
A2. Then A = RP = PR = PR* = R*P. Consequently R = R*, as was
to be proved.

The following result is of interest.

THEOREM 2.4. Let R be the elementary matrix associated with A.
There exists a unique pair of matrices B, C such that

B + C = R, A = BR^C*-1 = C*-χR*B

and having R as their associated elementary matrix. The matrices B
and C are defined by the formulas

B-1 = A'1 + R* , C-1 = A* + R*

and satisfy the relations

BB*C - BC*B - CB*B , CC*B - CB*C = BC*C
2 See MacDuffee, C. B., "Theory of Matrices", Ergebnisse der Mathematik und ihrer

Grenzgebiete (1933), pp. 77.
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-1 = C-'RB'1 = B-1 + C-1

A*-i = B^R^C = CR*B*-1 , A* = B*RC~1 = C-'RB* ,

A-1 = 5-^0* = C*RB~1 .

Since no direct use of this result will be made, its proof will be?
omitted.

3* ^-orthogonality* Two matricies A and B will be said to be
^-orthogonal in case

(3.1) A*B = £*A - 0 , AS* = JBA* = 0 .

Consider now two matrices A and B and let

(3.2) E = A-XA , £" - AA-1 , F = B~XB , F' = EE" 1

be the associated projections. We have the following

LEMMA 3.1. Two matrices A and B are ^-orthogonal if and only

if
(3.3) EF= FE = 0 E'F' = FΈ' = 0 .

Moreover two matrices A and B are ^-orthogonal if and only if their
associated elementary matrices R and S are ^-orthogonal. Finally A
is ^-orthogonal to B if and only if A"1* is ^-orthogonal to B.

If (3.1) holds, then

= (A~1A)(B*B-1*) = A-^AB^B'1* = 0

E'F' = (A-^A+XBB-1) = 0 .

Hence (3.3) holds. The converse follows from the relations A — AE = EΆr

B = BF — F'B. The last two statements in the lemma follow from the-
first.

LEMMA 3.2. Let A and B be ^-orthogonal matrices and set C =
A + B. Then

(3.4) C* = A* + 5 * , C-1 = A"1 + β-1 , C*-1 = A*"1 + β*-1 .

The rank of C is the sum of the ranks of A and B. The elementary-
matrix associated with C is the sum T = R + S of the elementary
matrices R, S associated with A, B, respectively. The matrix C is-
elementary if and only if A and B are elementary.

By the use of Lemma 3.1 it is seen that

A'XB = B-'A = 0 , AB-1 = BA1 = 0 .

It follows that

(A"1 + B-χ)C = A~XA + B-'B = E+ F



RELATIVE HERMITIAN MATRICES 231

C(A-' + B-1) = AA-1 + BB-1 = E' + F' .

In view of (3.3) the matrices G = E + F and G' = E' + F' are projec-
tions. Moreover, setting C"1 = A"1 + J5"1 we have

The matrix C"1 is therefore reciprocal of C and the relations (3.4) hold.
To show that T — R + S is the elementary matrix associated with C
observe that R*B = S*A - 0, BR* = AS* = 0, by Theorem 3.1. Hence

T*C = R*A + S*5 = A*i2 + β*S - C*Γ ^ 0 , CΓ* = ΓC* ^ 0 .

T * Γ - J?*i2 + S * S - E+ F=G = C'C , TT* = G' = CC"1 ,

as was to be proved. The remaining statements in the lemma are easily
established.

A matrix A will be said to be a section of a matrix C if there is
a matrix B ^-orthogonal to A such that C = A + B. By virtue of the
last lemma the elementary matrix R associated with a section A of C
is a section of the elementary matrix T belonging to C. A section of
an elementary matrix is elementary.

LEMMA 3.3. Let E, Ef be the projections associated with a matrix
A and let F and Ff be projections such that F'A — AF. Then EF — FE,
E'F' = FΈ'. Moreover Ax — AF is a section of A.

Since AE = A it follows that AFE = FΆE = FΆ = AF. Conse-
quently

EFE = A-1 AFE = A~ΆF =

This implies that E'F = i ^ . Similarly E'F' = F'E'. Observe that

FA'1 = FEA"1 = E7FA-1 - A'ΆFA'1 = A-'FΆA"1 = A^F'E' = A^J

= FEF = EF , f i i ^ ί 7 ' = F'E'F' = E"^' .

Consequently ΛΓ1 = FA"1 = A~XF' is the reciprocal of Ax = AF = FΆ.
The projections Eλ = EF, Eo ^ E - Eλ are orthogonal as are El = £"F',
ίί? = E' - F/. Consequently Ao = A#o = A - A, = £ΌΆ is ^-orthogonal
to Alβ Since Λ = AQ + A.x it follows that A1 is a section of A, as was
to be proved.

LEMMA 3.4. A matrix B is a section of A if and only if A*B =
B*B, JBA* = 5 5 * .

Let

F=B-λB, F' = BB-1 .

If A*JB = J5*JS, £A* = 5J5*

A*F' = A*BB-' = B*BB~1 = J5*
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FA* = B~τBA* = B~lBB* = B* .

Consequently B = AF = F ' i and β is a section of A, by Lemma 3.3.
The converse is immediate.

LEMMA 3.5. Let R be an elementary matrix and set E=R*R.
Let S = RF, where F is a projection. Then S is a section of R if
and only if EF = FE. If r is the rank of R then R is expressible
as the sum R = Rλ + ••• + Rr of r ^-orthogonal sections of rank 1.

If S is a section of R then R*S = S*S = EF = EFE. Consequently
EF = FE. Conversely if EF = FE then

S*S = FR*RF = FEF = EF = R*RF = i2*S

= SR* .

It follows from Lemma 3.4 that S is a section of i?.
In order to prove the last statement in the theorem suppose that

R Φ 0 and choose a unit vector x such that Ex = a?. Then Eλ = xx* is
a projection that commutes with £7. Hence Rx = B£7X is a section of JR
of rank 1. Moreover R — Rλ is a section of i2 of rank r — 1 and is
^-orthogonal to JBi If R — Rλ Φ 0 it has a section i?2 of rank 1.
Clearly R2 is ^-orthogonal to Rλ and R — Rx — JB2 is a section of iϋ of
rank r — 2. By a repetition of this argument it is seen that R is ex-
pressible as the sum of r ^-orthogonal sections, as was to be proved.

4. *-commutativity. Given two matrices A and B the products
A*B and AB* can be considered to be two types of ^-products of A
and B. If these ^-products are unaltered upon interchanging A and B,
that is, if

(4.1) A*B = B*A, AB* = BA* ,

then A and B will be said to *-commute. It should be noted that A
and B ^-commute if and only if A*B and AB* are hermitian in the
usual sense. As a first result we have

LEMMA 4.1. If A and B ^-commute and

(4.2) E = A~XA , E' =

then FΆ = AF, E'B = # # αraZ .KF = FE, E'F' = F'E".
For if (4.1) holds then, since F'B = BF = B, we have

= B*-χB*AF = B*~XA*BF = B*~XA*B - B*~λB*A = F Ά

= FΆB*B*-1 = F'B*AB*-χ = B*AB*~X = AB*B*~' = AF.

Consequently AF = FΆ. Similarly E'B = ££7. In view of Lemma 3.3
the relations EF = FF, £"F' = F'£" hold.
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THEOREM 4.1. Two matrices A and B ^-commute if and only if
they are expressible in the form A = Ao + Alf B = BQ + Bly where Ao is
^-orthogonal to A1 and B, BQ is ^-orthogonal to Bλ and A, Aι and Bλ

^-commute and have the same associated projections

(4.3) E, = A Γ ' Λ = Br'B, , E[ = A1Aϊ1 = B.B,1 .

If A and B ^-commute, then, by Lemmas 4.1 and 3.3, the matrices
Aλ = AF, Bλ = BE are sections of A and B respectively and have Ex —
EF, Έ[ = E'Ff as their associated projections. Moreover AQ — A — Ai
has E — EF, Er — E'Ff as its projections and hence is ^-orthogonal to
B and A1 and hence also to Bx and Bo = B — Bx. Similarly Bo is *-
orthogonal to Blf A, AQ and Aλ. The converse is immediate and the
lemma is proved.

COROLLARY. Suppose that A and B ^-commute. Then A and A*"1

^-commute with B and JB*""1. Moreover A*, A'1 ^-commute with B*
and B~x.

We shall see later that their associated matrices R, S ^-commute
with A, B, R, and S.

THEOREM 4.2. Let R be the elementary matrix associated with a
"matrix A and let S be an elementary matrix that ^-commutes with A.
Then S ^-commutes with R. Moreover A, R, S are expressible uniquely
as sums and differences

(4.4) A = Λ + A+ + A_ , R = R0 + R++ R-, S = So + R+- R-

of ^-orthogonal matrices such that the matrices RQ, R+, i?_ are the ele-
mentary matrices associated with A09 A+, A- respectively and such that
So is ^-orthogonal to AQ and Ro. Conversely if A, R, S can be decom-
posed in this manner the A and R ^-commute with S.

By virtue of the last theorem A and S can be expressible uniquely
as the sum of ^-orthogonal sections A = AQ + Aly S = SQ + S1 such that
Aλ and Sλ have the same associated projections, So being ^-orthogonal
to A and Ao being ^-orthogonal to S. The elementary matrix R associ-
ated with A is expressible in the form R = Ro + Rly where Ro and Rλ are
the elementary matrices associated with Ao and A1 respectively. In
view of these remarks we can restrict ourselves to the case in which
Ao = 0, So = 0 and Ro = 0. Then

E = A-1 A = R*R = S*S , E' = AA~γ = RR* = SS* .

Since A*S is self-ad joint, its associated elementary matrix T is the dif-
ference T — E+ — E- of two orthogonal projections E+ and EL whose
sum is E. The matrix A*ST is nonnegative and self-ad joint. It follows
from Theorem 2.1 that R = ST. The matrices R+ = RE+, i2_ = RE-
are ^-orthogonal elementary matrices such that
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R = RE = i?+ + R- , S = RT = R+ — 1?_ .

Since AR* and AS* are hermitian it follows that the matrices

AR* = ^A(R* + S*) , AR* = —A(R* - S*)

are hermitian and orthogonal. Moreover they are nonnegative because
of the relations

0 g AR* = ARΪ + AR* .

The elementary matrices R+ and i?_ are accordingly the elementary
matrices associated with A+ — AE+ and A_ — AE- respectively. It is
clear that A+ and A^ are ^-orthogonal and that A = A+ + A-. The
matrices A, J?, S are therefore expressible in the form (4.4). The con-
verse is immediate and the theorem is established.

COROLLARY 1. Two elementary matrices R and S ^-commute if
and only if there exist mutually matrices RQ, R+, R_, So such that
R = Ro + R+ + R-j S — So + R+ — i?_. Moreover this decomposition is-
unique.

COROLLARY 2. // the matrix S appearing in Theorem 4.2 is of
rank 1 then the decomposition (4.4) of A takes the simpler form

(4.5) A = μS+A0

where μ is a real number and Ao is ^-orthogonal to S.
For in this case two of the matrices So, R+, R- are zero since S has.

rank 1. If S = SQ9 then (4.5) holds with μ = 0. If S = R+, then
R_ = A- = 0 and A+ is of rank 1. Since S*A+ is a nonegative hermitian
matrix of rank 1 it follows that A+ is of the form A+ = μS, where μ > 0.
If S = —i2_, then A_ is of the form A- = μS with μ < 0.

COROLLARY 3. If Sly , Sr are r mutually ^-orthogonal elementary
matrices of rank 1 that ^-commute with A, then A is expressible in
the form

(4.6) A = μ^ + + μrSr + Ao

where μlf , μr are real numbers and Ao is ^-orthogonal to each
St (i — 1, , r) and hence to S1+ + Sr.

This result follows from Corollary 2 by induction. At the A th step
one applies Corollary 2 with A replaced by A — μ^ — . . . — μ ^ S ^
and with S = Sk.

THEOREM 4.3. If a matrix A ^-commutes with every section of an
elementary matrix S than A is expressible in the form

A = μS + Ao
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where μ is a real number and Ao is ^-orthogonal to S.
If S has rank 1, the theorem holds by virtue of Corollary 2 to

Theorem 4.2. If S is of rank r > 1, then, by Lemma 3.5, S is expres-
sible in the form S = Sx + + Sr where S19 , Sr are mutually
^-orthogonal elementary matrices. Consequently A is expressible in the
form (4.6). It remains to show that μ1 = μ2 = = μr. To this end
choose unit vectors x% and yi such that St = xty*. Then for i Φ j the
vector Xi is orthogonal to Xj and yt is orthogonal to yό. Let α and β
be two nonnull real numbers such that a2 + β2 = 1 and set

α = α ^ + /3x, , y = ayt + βyj .

Then Γ = ίĉ /* is a section of S and is ^-orthogonal to Sk if k φ i, k Φ j .
The matrix

is hermitian if and only if μt = μj9 that is T ^-commutes with A if and
only if μι — μj9 This completes the proof of the theorem.

THEOREM 4.4. A matrix A ^-commutes with an elementary matrix
S and has no nonnull section ̂ -orthogonal to S if and only if A — SA*S.

This result is easily established. The condition that A — SA*S,
when S = / is the condition that A be hermitian. Accordingly one can
consider the condition A — SA*S to be an extension of the concept of
a matrix being hermitian.

In the complex domain we have the following:

COROLLARY. If A is a matrix and S is an elementary matrix such
that SS*A = AS*S=A, then B = {1I2)(A+SA*S) and C=(ll2i)(A-SA*S)
^-commute with S. Moreover, A = B + iC.

5. Principal values and principal sections of matrices* Here and
elsewhere the symbol \\y\\ denotes the length or norm of the vector y.
By the norm | |A| | of a matrix A will be meant the least upper bound
of the quantity ||Aa?|| for all unit vectors x. If R is the elementary
matrix associated with A, then [|A|| is equal to the least upper bound
of \\Ax\\ subject to the condition \\Rx\\ = 1. As is well known there
is a unit vector x such that || Ax \\ = \\ A \\. For such a vector x we
have || Rx\\ = l also. It is well known that || A \\ = || A* ||. If A Φ 0
then || A"11| = || A*"11| is equal to the least number m such that
\\Ax\\^(llm)\\Rx\\.

THEOREM 5.1. Let R be the elementary matrix associated with A.
Given a positive number λ there exists a unique decomposition

(5.1) A - A+ + Ao + A_ , R = R+ + Ro + R-
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on A and R into mutually ^-orthogonal sections such that R+, Ro, R-,
R+ — J?_ are the elementary matrices associated with A+9 Ao, A-, A — XR
respectively. Moreover Ao — XR0 and

ίK O\ || A+x || > λ || R+x || whenever R^x Φ 0

11A-X 11 < λ 11 R_x 11 whenever R_x Φ 0 .

// X ^ || A ||, then A+= R+= 0. // 1/λ ^ || A*"11| then A_ = R_ = 0.
In order to prove this result let B = A — XR and let S be the

associated elementary matrix. Since R *-commutes with A and R, it
^-commutes with B and hence also with S. Since S ^-commutes with
B and R it follows that S ^-commutes with A. Applying Theorem 4.2
to A, R, S and to B, R, S it is seen that they are expressible as sums

A = A+ + A + A_ , R = R+ + Ro + R_

B — J?+ + JB0 — J5_ , >S = R+ + So — i?_ .

of ^-orthogonal matrices such that R+ is the elementary matrix associated
with A+ and B+, jβ_ is the elementary matrix associated with A_ and
B-, Ro is the elementary matrix associated with Ao. It is clear that
Bo = So = 0 since every matrix that is ^-orthogonal to A and R is also
^-orthogonal to B and S. From the relation A = B + XR it follows that

A = λi20, A+ = B+ + XR+ , A_ = E_

Consequently

Since these matrices are nonnegative and hermitian, it is seen that (5.2)
holds. The last statement in the theorem follows from the relations
(5.2).

THEOREM 5.2. A nonull matrix A and its associated elementary
matrix R have unique decompositions of the form

(5.3) A = \B, + + XkBk , B - B1 + + R*

into ^-orthogonal sections, where X19 , Xk are distinct positive numbers.
In order to prove this result let λx = || A | | . By virtue of the last

theorem the matrices A and R are expressible as sums

(5.4) A = XLR, + B , R= R, + S

of ^-orthogonal sections with H J B I ^ λ i . If B Φ 0, choose λ 2 = | | 2 ? | |

and, by Theorem 5.1, again, B and S are sums

B - X2R2 + C , S= R2+ T

of sections. Proceeding in this manner one obtains the representation
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described in the theorem.
The numbers \, , λfc appearing in the last theorem will be called

the principal values of A and the matrices Ax = X&, , Ak = λfci?fc

will be called the principal sections of A. The rank of At will be
called the multiplicity of Xt as a principal value of A. It is easily seen
that a number λ > 0 is a principal value of A of multiplicity m if and
only if it is an eigenvalue of R*A (or AR*) of multiplicity m. Similarly
a number λ > 0 is a principal value of A if and only if λ2 is an eigen-
value of A*A (or of AA*) and the multiplicities are the same. It is
easily seen that a number λ is a principal value if and only if the
equation Ax = XRx has a solution x with Rx Φ 0.

It follows from the last theorem that the principal values of A are
the norms of the nonnull sections of A and in particular the norms of
the principal sections of A. A section B of rank 1 of the principal
section At — \Rt of A is expressible in the form B = \yx*, where x
and y are unit vectors. A vector of the form ax (a Φ 0) will be called
a principal vector of A and a vector of the form βy (β Φ 0) will be
called a reciprocal principal vector of A corresponding to the principal
value λ*. It is easily seen that x is an eigenvector of A* A and that y
is an eigenvector of AA*.

THEOREM 5.3. A matrix A is normal if and only if its principal
sections are normal, A matrix A is hermitian if and only if its princi-
pal sections are hermitian. A matrix A is hermitian and nonnegative
if and only if its principal sections are hermitian and nonnegative.

In order to prove this result let A and R be represented in the
form (5.3) with XL > λ2 > > Xk. Let

B = A — XkR = (λj. — XjcjRi + + (λft_2 — λ A )i4-i .

If A is normal so also are R and B. It follows that S = Rλ + R2-\ hi4-i>
the elementary matrix belonging to Bf is also normal. This implies that
iϋfc — R — S a n d .̂* — λ Λ-fiίft are normal. The same argument applied to
B shows that Rk^ and Ak^ = X ^ i ? ^ are normal. It follows that each
princiqal section At = XtRi (1 ^ i ^ k) of A is normal whenever A is
normal. Conversely if Alf •••, Ak are normal so also is A. This proves
the first statement in the theorem. The second statement can be proved
similarly. The third statement is an easy consequence of the second
and the concept of nonnegativeness.

THEOREM 5.4. Let X and Y be elementary matrices such that the
relation

YY*A = AXX* - A

holds for a given matrix A. Then B = Y*AX has the same principal
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values as those of A and have the same multiplicities. If R is the
associated elementary matrix for A, then S = Y*RX is the associated
elementary matrix for B. There exist elementary matrices X and Y
such that B is a nonnegative diagonal matrix and R == YX*.

Setting S, - Y*RiX, S=Sλ+ - + Sfc it is found that B =
\S1 + + XkSk. The ranks of St and Rt coincide and St ^-commutes
with Sj (i Φ j). The last statement can be obtained by selecting a maxi-
mal set of mutually orthogonal principal vectors $u '"9xr of A of unit
length and setting yh = Rxh (h = 1, , r). Let X be the matrix whose
first r column vectors are xlf , xr and the remaining vectors are null
vectors. The matrix Y = RXhas ylf •• ,yr as its first r column vectors.
It is easily seen that X and Y are elementary matrices of rank r having
the properties described in the theorem. In fact the nonzero elements
of B = Y*AX are the principal values of A. One could restrict X to
have only r columns if one so desires. One could modify X and Y so
as to be nonsingular. In this event we would have R = YEX*, where
E = R*R. In either event the column vectors of C = AX are mutually
orthogonal and the lengths of the nonnull column vectors of C are the
principal values of A. This fact can be used to devise a modified Jacobi
method for finding the principal values of A. A discussion of a method
of this type will be given by the author in a forthcoming paper.

6 Further properties of *-commutativity* Throughout the present
section let A denote a given matrix and let R be its associated elementary
matrix. Let

(6.1) A = λ ^ + + λ*i4 , R = Rλ + + RJC

be its decomposition into principal sections, given in Theorem 5.2. As
before we set

(6.2) A, = X.R, , Et - BtRi t El - R.R* , E = R*R , E' -

The first result to be established is given in the following.

THEOREM 6.1. If a matrix B ^-commutes with A, then it ^-commutes
with every matrix of the form

(6.3) 0 = 1 ^ + . . . + vkRk

where vlf * ,vft are real numbers. In particular B ^-commutes with
R and with each principal section A3 (j = 1, , k). The matrix B is
expressible uniquely as the sum

(6.4) B = Bo + Bx + + Bh

of ^-orthogonal sections such that Bt is ^-orthogonal to A3 (j Φ i) and
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B% (i > 0) ^-commutes with A%.
In order to prove this result we may suppose that the principal

sections of A have been ordered so that \λ < λ2 < < λft. Recall that,
by virture of the corollary to Theorem 4.1, the matrix B not only
^-commutes with A but also with

A*-1 =

I t follows that B ^-commutes with

Ca = A - λ^A*-1 = λ22i22 + + λfc2#fc

•where Xi2 — λ, — \(\l\) > 0 (i = 2, - , ft). Moreover λi2 < λ j2 (ΐ < j),
as one readily verifies. Using the recursion formula

one obtains matrices of the form

C, - XJJRJ + + λwi2Λ (i = 2, , fc)

that ^-commute with B. Moreover each Rt is a linear combination of
Cj — A, C2, •• ,C Λ . It follows that J5 ^-commutes with each of the
sections R19 , R^ of R. Consequently B ^-commutes with any matrix
C of the form (6.3).

In order to prove that B is of the form (6.4) it follows from
Theorem 4.1 with A replaced At that B is expressible in the form
B — Ci + Bt where Ct is ^-orthogonal to A< and Bo = B — (BL + +i?fc)
is ^-orthogonal to each Bό and A5 (j = 1, , fc) and hence also to A.
This completes the proof of the theorem.

THEOREM 6.2. If a matrix B ^-commutes with every section of A,
then B is expressible in the form

(6.5) B = Bo + μ,R, + + μkRh

where μlf « «, μk are real numbers and Bo is ^-orthogonal to A.
Let Bo, Bif , Bk be the sections of B given in (6.4). Since every

section of At and hence every section of Rt ^-commutes with B and
Tience with Bi it follows from Theorem 4.3 that Bt is of the form
jj. = μ.R. + Bi0, where μt is a real number and BίQ is ^-orthogonal to
Rt. It is clear from the definition of Bt that BiQ must be zero. This
proves the theorem.

THEOREM 6.3. A matrix B ^-commutes with A if and only if it
^-commutes with R and AR*B = BR*A.

If B *-commutes with A, then B ^-commutes with R and

AR*B - AB*R = BA*R = BR*A .
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Conversely, suppose that B ^-commutes with R and that AR*B = BR*A.
Then A*i2B* = B*RA* and

A*B = R*RA*B = R*AR*B = R*BR*A = B*RR*A = B*A

AB* = RR*AB* = RA*RB* = RB*RA* = BR*RA* = BA* ,

as was to be proved.

COROLLARY. If A is a positive definite hermitian matrix, then B
^-commutes with A if and only if B is hermitian and AB = BA.

This result is immediate since R — I for a positive definite matrix.
It should be observed that if A is hermitian but not definite, then

there are nonhermitian matrices that #-commute with A. For example
the matrices

^-commute even though B is not hermitian. However A is elementary
and B = AB*A, that is, B is hermitian relative to A.

THEOREM 6.4. Let A be a matrix and let T be an elementary
matrix such that TA* T = A. Let B be a matrix that ^-commutes with
T. Then B *-commutes with A if and only if AT*B = BT*A.

The proof is similar to that of the last theorem and will be omitted.

THEOREM 6.5. Given a matrix B that ^-commutes with A there
exists a set of mutually ^-orthogonal elementary matrices T19 •••, Tq

with the property that A and B are expressible in the form

(6.6) A = axTλ + + aqTq , B = β 1 T 1 + •-- + βqTq

where a19 * , α g are equal numbers, β19 •• ,AZ are equal numbers and

a% = ajy βt = βj holds only in case i = j . If at Φ 0, then \ax\ is a

principal value of A. Similarly if βt Φ 0 then \ βt \ is a principal

value.

It is clear that Tt may be replaced by —Tt in the theorem. The
matrices T19 , Tq will be uniquely determined if, for example, one
requires that βt ^ 0 and that a% > 0 if βi = 0.

Let

(6.7) A = X,Rλ + + λ J 4 , B = μβ, + . . . + μmSm

be the decompositions of A and B respectively into principal sections.
Recall that by virtue of Corollary 1 to Theorem 4.2 the matrices Rt

and Sj are expressible as sums

•R« — Rao + Rij+ + Hij- 9 Sj = Sij0 + Rij+ — Rij- .

Let T19 , Tp be all non-null elementary matrices Rίj+ and i?^_ obtained
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in this manner. Adjoin to these the maximal nonnull section of each
Ri that is ^-orthogonal to S and the maximal nonnull section of each
Sj that is ^-orthogonal to R. The elementary matrices T19 , Tq obtained
in this manner are ^-orthogonal and have the property that each Rt and
S3 is expressible uniquely in the form

Ά + + piaTq , Sj = a51Tx + + σjqT
Q

where pik = 0 if Tk is ^-orthogonal to Rίf ptn = 1 if Th is a section of
Rίf ρih = —1 if — Th is a section of Ri9 σjh = 0 if Th is ^-orthogonal to
Sjt σjh = 1 if Th is a section of S3 and <τJft = —1 if —Th if a section of
Sό. Combining this result with (6.7) one obtains (6.6). The last state-
ment of the theorem follows from the construction just made.

As a consequence of this result we have

THEOREM 6.6. Let T be an elementary matrix and let A be a
matrix satisfying the condition A — TA*T. Then A and T can be
represented uniquely as the sum

(6.7) A = a,Tx + + aqTq , T = 2\ + • + Tq

of mutually ^-orthogonal matrices such that at Φ a5 (i Φ j).
This result follows from the last theorem with B = T and the

condition that βt ^ 0. Since no nonnull section of A is ^-orthogonal to
T we have βt = 1, and the theorem follows.

If T is the identity then A is hermitian and alf

 # ,^ α are the
eigenvalues of A. The rank of Tt is the multiplicity of at as an eigen-
value of A. This result suggests that we call a19 , aq the principal
values or eigenvalues of A relative to T, the rank of Tt being the
multiplicity of at.

As an extension of the last theorem we have

THEOREM 6.7. Let T be an elementary matrix and let A and B be
^-commutative matrices such that A= TA*T and B= TB*T. There
is a unique decomposition

τ = τx+ ... + τq

into sections such that A and B are representable in the form

A = a1T1+ ... + aqTq , B = β1T1+ --- +βqTq

where at = aj9 βt — β5 holds only in case i = j .
The proof of this result can be made by a simple modification of

the proof of the last two theorems and will be omitted.
In the complex domain we have the following

COROLLARY 1. Let T be an elementary matrix and let C be a
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matrix such that TT*C = CT*T= C and TC*C = CC*T. Then C and
T have unique decompositions

C = 71T1 + + %Tq , Γ = 2\ + + Γβ

m sections, where y19

 % ,7 g are (Zistmct complex numbers.
For, by the corollary to Theorem 4.4, the matrix C is expressible

in the form C = A + iB, where A and B ^-commute with T. From
the relation TC*C = CC*T it is found that AT*B = JSΓ*A and hence
that A and 5 ^-commute. The corollary follows from the last theorem
with 7j = aό + iβj (j = l,..., q).

If T = /, the result described in the corollary yields the spectral
decomposition for normal matrices.

By the use of an argument like that given in the proof of Theorem
5.4 one obtains the further result described in the following

COROLLARY 2. Let A and B be ^--commutative matrices and let T
be an elementary matrix such that A = TA*T and B = TB*T. There
exist elementary matrices X and Y such that

γγ*T=z Tχχ* == τ

and such that Y*AX, Y*BX are diagonal matrices. I/C — A + iBy

then Y*CX is also a diagonal matrix.

7 Certain classes of matrices. Let £*(A) be the class of matrices
B that ^-commute with A and have no non-null section that is ^orthogo-
nal to A. Let <^(A) be all matrices B such that £f(A) is a subclass
of Sf{B). It is clear that A is in ^(A). We have the following

THEOREM 7.1. Let R be the elementary matrix associated with A
and let

A = λijRi + + XkRk , R= Rι+ +Rκ

be the decomposition of A into principal sections. The class ^(A)
consists of all matrices B that are expressible in the form

(7.1) B = /x1fi1.+ ••• + μ A

where μ19 •• ,μti are real numbers. If B is in ^(A) so also is I?*""1

and its associated elementary matrix S.
This result follows from Theorems 6.1 and 6.2.

COROLLARY. // B is in <&{A) then if (5) c if (A) Moreover

<^{A) if and only if B has the same number of distinct

principal values as A.
As a further result we have

THEOREM 7.2. If B, C, D are matrices in < (̂A) so also isM= BCD.
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In fact

(7.2) BCD - BD*C = CB*D = CD*B = DB*C = DC*B .

The relations (6.2) follow from the fact that B, C, D ^-commute
with each other. Observe that M* = B*CD*. If N is a matrix in
£f (A) then

D = B*NC*D = B*CN*D = B*CD*N = M*2NΓ.

Similarly JYM* = MN*. This proves the theorem.

In view of the formula (7.1) one obtains the following

THEOREM 7.3. Lei

(7.3) B = μλRλ + + μfc#fc , C = ^Λ, + + vkRk

be two matrices in <g%A). ΓΛe^

aB + βC = (aμ, + βvι)Rι + + (aμk + βvk)Rk

is in C^{A) for every pair of real numbers a and β. If we define
the product of B and C by the formula B C = J?i2*C, then

B-C = M f t + + μkvkRk

is in C^{A) and the usual laws of algebra hold. In particular B R =
R B = B. Given a polynomial

reαi coefficients set

pm(A, R) = a0A
{0) + axA^ + . . + α^ A(w) ,

where Am = Λ, A(1) = A, A(Λ) = A A1*-". Then the polynomial

pm{A, R) =

m A relative to R is in ^ ( A ) . Conversely every matrix B in
is expressible as a real polynominal in A relative to R of degree g f c - 1 .
There is a unique polynomial pk(X) with leading coefficient ah = 1 such
that pk(A, R) = 0.

The first three statements in the lemma are immediate. The matrix
B is given by the relative polynomial pk-λ{A, R) whose coefficients
ao,a19 •• ,ak-L are given by the solutions of the equations

ί + a^ + + ak^Xh

k = μh (h = 0,1, , k - 1) .

Finally the polynomial pk(X) described in the last statement in the theo-
rem is the polynomial of degree k whose roots are X19 λ2, •• 9XΛ.

COROLLARY. On the class ^ ( A ) the norm \\B\\ satisfies the rela-
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tion ||fi.C||^||J8
As a final property of the classes ^(A) we have

THEOREM 7.4. If B is in ^(A) there is a matrix C such that A
and B are in <ĝ (C).

This result follows from Theorem 6.5 with

Let T be a given elementary matrix and let A be a matrix in £f(T).
Let S^(A, T) be all matrices in 6^{T) that ^-commute with A. Let
^(A, T) be all matrices B in ^ ( A , T) such that ^ ( A , T) c £S(B, T).
If T is the elementary matrix R associated with A then <^(A, Γ) = <^(A).
Let

A = α ^ + + aqTq , Γ = Tx + Tq

be the decomposition of A and Γ given in Theorem 6.6. Then, as is
easily seen, the class ^(A, T) consists of all matrices of the form

B=β1T1+ - + βaTq

where βlf , βq are real numbers. If we set

— i i -t z i 2 -t- -r qiq

then the class ^(A, T) coincides with the class %\C). Consequently
the results stated above are applicable to the class ^(A). If T is the
identity, then A is hermitian and ^(A, Γ) consists of all hermitian
matrices that commute with every hermitian matrix that commutes
with A.

Consider now an elementary matrix T and let 9ΐ(T) be the class of
all matrices A such that TT*A = AT*T= A and AA*Γ=27A*A.
Given a matrix A in 5R(Γ) let 9Jί(A, Γ) be the class of all matrices B
in 3Ϊ(T) such that AT*B=BT*A and AB*T = ΓB*A. If 5 is in
2Ji(A, Γ) then BA*T= TA*B also. Moreover, TB*T is in 2)ΐ(A, Γ).
Let ^ ( A , Γ) be the class of all matrices £ such that 9Jl(JB, T)z)3Jί(A, Γ).
In view of Corollary 1 to Theorem 6.7 the matrices A and T are ex-
pressible uniquely in the form

A = axTx + + aqTa , T = Γ + - + Γβ ,

where αx, α2, , aq are distinct complex numbers. It is not difficult to
show a matrix B is in ^ ( A , T) if and only if it is expressible in the
form

B = βxTx + + /3gTα ,

where βίf •• ,/5α are complex numbers. If Band Care in ^ ( A , Γ) so
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also are aB + βC, where a and β are complex numbers. Moreover, the
product B-C = BT*C is in ^(A, T). If polynomials of A relative to T
are defined as before, but with complex coefficients, it is seen that the
class &(A, T) is made up of all polynomials of A relative to T of
degree < q - 1. Again we have the relation || B-C\\ ^\\B|| || C | |. These
results generalize the corresponding theory for normal matrices.
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