ASYMPTOTICS II: LAPLACE'S METHOD FOR MULTIPLE INTEGRALS

W. FULKS AND J. O. SATHER

Laplace's method is a well known and important tool for studying the rate of growth of an integral of the form

$$I(h) = \int_a^b e^{-hf} g dx$$

as $h \to \infty$, where f has a single minimum in [a, b]. It's extension to multiple integrals has been studied by L. C. Hsu in a series of papers starting in 1948, and by P. G. Rooney (see bibliography). These authors establish what amount to a first term of an asymptotic expansion. All but one (see [7]) of these results are under fairly heavy smoothness conditions.

In this paper we examine multiple integrals of the form

$$I(h) = \int_{R} e^{-hf} g dx$$

where f and g are measurable functions defined on a set R in E_p . Without making any smoothness assumptions on f and g, and using only the existence of I(h) and, of course, asymptotic expansions of f and g near the minimum point of f we obtain an asymptotic expansion of I. The special features of our procedure are the lack of smoothness assumptions and the fact that we get a complete expansion.

Without loss of generality we may assume that the essential infimum of f occurs at the origin, and that this minimal value is zero. We introduce polar coordinates: $x = (\rho, \Omega)$ where

$$ho = |\,x\,| = \sqrt{x_1^2 + x_2^2 + \, \cdots \, + \, x_p^2}$$
 ,

and where $\Omega = x/|x|$ is a point on the surface, S_{p-1} , of the unit sphere. Our hypothesis are the following:

(1) The origin is an interior point of R.

(2) For each $\rho_0 > 0$ there is an A > 0 such that $f(\rho, \Omega) \ge A$ if $\rho \ge \rho_0$. (This says that f can be close to zero only at the origin.)

(3) There is an $n \ge 0$ and n+1 continuous functions $f_k(\Omega)$, $k = 0, 1, 2, \dots, n$, defined on S_{p-1} with $f_0 > 0$ for which

$$f(\rho, \Omega) = \rho^{\nu} \sum_{k=0}^{n} f_k(\Omega) \rho^k + o(\rho^{n+\nu}) \text{ as } \rho \to 0$$

Received April 29, 1960. The work on this paper was performed under sponsorship of the Office of Naval Research, Contract Nonr 710 (16), at the University of Minnesota.

where $\nu > 0$. (This is meant in the following sense: for each $\varepsilon > 0$ there is a $\rho_0 > 0$ for which

$$|f(
ho,arOmega)-
ho^{
u}\sum\limits_{k=0}^{n}f_{k}(arOmega)
ho^{k}|$$

whenever $\rho \leq \rho_0$. Besides giving the asymptotic behavior of f near the origin (3) implies that the infimum of f in R is indeed zero.)

(4) There are n + 1 functions $g_k(\Omega), k = 0, 1, \dots, n$, for which

$$g = \rho^{\lambda-p} \sum_{k=0}^{n} g_k(\Omega) \rho^k + o(\rho^{n+\lambda-k})$$
 as $ho \to 0$

where $\lambda > 0$. (Thus g is permitted a mild singularity at the origin. The expansion is meant in the same sense as the one in (3).)

Under these conditions we will prove that if there is a h_0 for which I(h) exists then it exists for all $h \ge h_0$ and

$$I(h) = \sum_{k=0}^{n} c_k h^{-(k+\lambda)/\nu} + o(h^{-(n+\lambda)/\nu})$$

where the c_k 's are constants depending only on the f_j 's and g_j 's for $j \leq k$. Their evaluation will be described in the proof of this result. In particular

$$C_{\scriptscriptstyle 0} = rac{\Gamma((\lambda+1)/
u)}{\lambda} \int_{s_{\mathcal{D}-1}} g_{\scriptscriptstyle 0}(arOmega) / [f_{\scriptscriptstyle 0}(arOmega)]^{\lambda/
u} darOmega$$

where $d\Omega$ is the element of (p-1)-dimensional measure on S_{p-1} .

In the course of the proof we will use the following lemmas, which are given now so as to not interrupt the main thread of the argument.

LEMMA 1. Let f be a measurable function on a set R in E_p , and let $g \in L_1(R)$. Then the function G(z) defined by

$$G(z) = \int_{\{f \leq z\}} g dx$$

has bounded variation on $\{-\infty < z < \infty\}$.

Proof. Let $g = g_1 - g_2$, where

$$g_1(x) = egin{cases} g(x), \ g(x) \geq 0 \ 0, \ g(x) < 0 \end{cases}; \qquad g_2(x) = egin{cases} 0, \ g(x) \geq 0 \ -g(x), \ g(x) < 0, \end{cases}$$

and define G_1 and G_2 by

$$G_1(z) = \int_{\{f \leq z\}} g_1 dx , \qquad G_2(z) = \int_{\{f \leq z\}} g_2 dx .$$

Clearly G_1 and G_2 are increasing and bounded on $\{-\infty < z < \infty\}$, and $G = G_1 - G_2$.

LEMMA 2. Let F(t) be a continuous function defined on a possibly infinite interval $\{a < t < b\}$, and let f be a measurable function on a set R in E_p taking values in the interval $\{a < t < b\}$. If $g \in L_1(R)$, and $F(f)g \in L_1(R)$ and G is defined as in Lemma 1, then

$$\int_{R} F(f)gdx = \int_{a}^{b} F(t)dG(t) \; .$$

Proof. Suppose first that a and b are finite, and that $g \ge 0$. Form a partition: $a = t_0 < t_1 < \cdots < t_n = b$, and set

$$E_{j} = \{ x \, | \, t_{j-1} < f \leqq t_{j} \}$$
 ,

and let $M_j = \sup_{\{t_{j-1} \le t \le t_j\}} F(t)$ and $m_j = \inf_{\{t_{j-1} \le t \le t_j\}} F(t)$.

Then

$$egin{aligned} &\int_{\mathbb{R}} F(f)gdx = \sum\limits_{j=1}^n \int_{\mathbb{F}_j} F(f)gdx &\leq \sum\limits_{j=1}^n M_j \!\!\int_{\mathbb{F}_j} gdx \ &= \sum\limits_{j=1}^n M_j [G(t_j) - G(t_{j-1})] \,\,. \end{aligned}$$

Similarly

$$\int_{\mathbb{R}} F(f)gdx \geq \sum_{j=1}^{n} m_{j}[G(t_{j}) - G(t_{j-1})].$$

If we let $n \to \infty$ so that $\max_{1 \le j \le n} (t_j - t_{j-1}) \to 0$ then both

$$\sum_{j=1}^{n} M_{j}[G(t_{j}) - G(t_{j-1})]$$
 and $\sum_{j=1}^{n} m_{j}[G(t_{j}) - G(t_{j-1})]$

converge to $\int_{a}^{b} F(t) dG(t)$, since F is continuous and G monotone.

If g is not positive we can write $g = g_1 - g_2$ as in Lemma 1, apply the proof just completed to each of g_1 and g_2 , and combine the results to complete the proof for the case where a and b are finite.

Suppose for example b is infinite. Then for any finite b',

$$\begin{split} \int_{\mathbb{R}} F(f)gdx &= \lim_{b' \to \infty} \int_{\{f \leq b'\}} F(f)gdx = \lim_{b' \to \infty} \int_{a}^{b'} F(t)dG(t) \\ &= \int_{a}^{\infty} F(t)dG(t) \ . \end{split}$$

A similar argument applies if $a = -\infty$.

We now return to the proof of the main theorem. First we note that if $h \ge h_0$ then $e^{-h_0 f}g$ forms a dominating function for $e^{-hf}g$, so that

I(h) exists.

For each $\varepsilon > 0$ we define the two functions $f_{+}(\rho, \Omega)$ and $f_{-}(\rho, \Omega)$ by

$$f_{\pm}(
ho, \Omega) =
ho^{
u} \sum_{k=0}^{n} f_{k}(\Omega)
ho^{k} \pm \varepsilon
ho^{n+
u}$$

These functions are defined in all of E_p . Now given an $\varepsilon > 0$ there is a ρ_0 so that

(i) $|f(\rho, \Omega) - \rho^{\nu} \sum_{k=0}^{n} f_{k}(\Omega) \rho^{k}| < \varepsilon \rho^{n+\nu}$

(ii)
$$|g(\rho, \Omega) - \rho^{\lambda-p} \sum_{k=0}^{n} g_k(\Omega) \rho^k| < \varepsilon \rho^{n+\lambda-p}$$
 for $\rho < \rho_0$

and so that

(iii) both the functions $f_{\pm}(\rho, \Omega)$ are increasing in ρ for $\{0 \leq \rho \leq \rho_0\}$ for each $\Omega \in S_{p-1}$. This can easily be achieved since f_0 is positive (and therefore bounded away from zero) and the other f_k 's are bounded.

(iv) the sphere $\{\rho \leq \rho_0\}$ is in R.

We denote $\{\rho \leq \rho_0\}$ by R_0 and write I(h) in the form

$$I(h) = \int_{R_0} e^{-hf} g dx + \int_{R-R_0} e^{-hf} g dx \equiv I_1(h) + I_2(h)$$

respectively. We proceed to estimate I_2 : by hypothesis (2) there is an A > 0 so that $f \ge A$ if $\rho \ge \rho_0$. Thus

$$|I_2(h)| \leq \int_{R-R_0} e^{-hf} |g| dx \leq e^{-(h-h_0)A} \int_{R-R_0} e^{-h_0f} |g| dx$$
$$= Ce^{-hA} \text{ where } C \text{ is a constant.}$$

That is,

$$I_2(h) = O(e^{-hA})$$
 as $h \to \infty$,

so it is clear that the dominant part of I(h) must arise from $I_i(h)$. The remainder of the proof is largely concerned with estimating I_i .

In R_0 we define $r(\rho, \Omega)$ by

$$g(
ho, \Omega) =
ho^{\lambda-p} \sum_{0}^{n} g_k(\Omega)
ho^k + r(
ho, \Omega)
ho^{n+\lambda-p}$$

Let

$$g_{k}^{+}(arOmega)=egin{cases} g_{k}(arOmega), \ g_{k}(arOmega)\geqq 0\ 0, \ g_{k}(arOmega)< 0 \ , \ g_{k}^{-}(arOmega)=egin{cases} 0, \ g_{k}(arOmega)\geqq 0\ -g(arOmega), \ g_{k}(arOmega)> 0 \ \end{pmatrix}$$

 \mathbf{a} nd

$$r^+(
ho,\, arOmega) = egin{cases} r(
ho,\, arOmega), \ r(
ho,\, arOmega) \geqq 0 \ 0, \ r(
ho,\, arOmega) < 0 \end{cases}; \ r^-(
ho,\, arOmega) = egin{cases} 0, \ r(
ho,\, arOmega) \geqq 0 \ -r(
ho,\, arOmega), \ r(
ho,\, arOmega) < 0 \end{cases}.$$

In R_0 we now define $g^+(\rho, \Omega)$ and $g^-(\rho, \Omega)$ by

188

$$g^{\scriptscriptstyle +}(
ho,\,arOmega)=
ho^{\lambda-p}\sum\limits_{k=0}^ng^{\scriptscriptstyle +}_k(arOmega)
ho^k+\,r^{\scriptscriptstyle +}(
ho,\,arOmega)
ho^{n+\lambda-p}$$

and

$$g^{\scriptscriptstyle -}(
ho,\,arOmega)=
ho^{\lambda-p}\sum\limits_{k=0}^ng^{\scriptscriptstyle -}(arOmega)
ho^k+r^{\scriptscriptstyle -}(
ho,\,arOmega)
ho^{n+\lambda-p}$$
 .

Then $g = g^+ - g^-$ and

$$I_1 = \int_{R_0} e^{-hf} g^+ dx - \int_{R_0} e^{-hf} g^- dx \; .$$

Thus we may assume that $g \ge 0$ in R_0 .

We recall the definition of f_+ and f_- and define $I_+(h)$ and $I_-(h)$ by

$$I_{+}(h) = \int_{R_{0}} e^{-hf_{+}}gdx, I_{-}(h) = \int_{R_{0}} e^{-hf_{-}}gdx$$

Since $g \ge 0$ we conclude

$$I_+(h) \leq I_1(h) \leq I_-(h)$$
 .

Next we turn our attention to I_+ : Let $R_t = \{x \mid f_+ \leq t\}$ and choose a so small that $R_a \subset R_0$. Then

respectively. Now f_+ is bounded away from zero in R_0 outside any neighborhood of the origin. Thus by the same argument used on I_2 we get

$$I_+^{\prime\prime} = O(e^{-hA^\prime}) \; .$$

Furthermore e^{-hf_+} is bounded away from zero in R_a , since f_+ is bounded there. Thus $e^{-hf_+}g \in L_1(R_a)$ and by Lemma 2,

$$I'_+ = \int_{\scriptscriptstyle 0}^{\scriptscriptstyle a} e^{-\hbar t} dG(t)$$
 ,

where $G(t) = \int_{R_t} g dx$. Integrating by parts we get

$$egin{aligned} I'_+ &= e^{-\hbar a} G(a) \,+\, h \! \int_{_0}^{_a}\!\!\! e^{-\hbar t} G(t) dt \ &= h \int_{_0}^{_a}\!\!\! e^{-\hbar t} G(t) dt \,+\, O(e^{-\hbar a}) \;. \end{aligned}$$

We next do some preliminary calculations, preparatory to estimating G(t). For each $t, 0 \leq t \leq a$, the equation $t = f_+(\rho, \Omega)$ has a unique solution for ρ which is continuous in Ω , since f_+ is increasing in ρ .

Thus the solution defines a star-shaped curve (or surface) given by $\rho = \rho(t, \Omega)$. We proceed to estimate $\rho(t, \Omega)$. Set $t = U^{\nu}$ then $t = f_{+}(\rho, \Omega)$ can be written in the form

$$U^{
u} =
ho^{
u} \left[\sum_{0}^{n} f_{k}(\Omega)
ho^{k} + arepsilon
ho^{n}
ight]$$

or

$$U = \rho [f_0(\Omega) + f_1(\Omega)\rho + \cdots (f_n(\Omega) + \varepsilon)\rho^n]^{1/\nu}$$

From here on we assume n > 0, for if n = 0, we can solve directly for ρ and the estimates are considerably simpler than those which follow.

Now the right hand side of the last equation is a monotone function of ρ , $0 \leq \rho \leq a$, hence an inverse function exists. Since, for each fixed Ω , U is an (n + 2)-times differentiable (it's even analytic!) function of ρ , $0 \leq \rho \leq a$, then ρ is an (n + 2)-times differentiable function of U, and it can therefore be expanded in a Taylor series with remainder. Thus since $f_0(\Omega) > 0$ we get

$$ho=\psi_{\scriptscriptstyle 1}(arOmega)U+\psi_{\scriptscriptstyle 2}(arOmega)U^{\scriptscriptstyle 2}+\cdots+\psi_{n+1}(arOmega,arepsilon)U^{n+1}+\psi_{n+2}(arOmega,arepsilon,\,U)U^{n+2}$$

where $\psi_1(\Omega) = 1/[f_0(\Omega)]^{1/\nu}$. Since the ψ_k 's are expressible in terms of the f_k 's it is easy to check that ψ_k depends only on f_j 's for $j \leq k$, that ψ_k is independent of ε for $k \leq n$, that ψ_{n+1} depends only linearly on ε and finally that ψ_{n+2} is uniformly bounded for $\Omega \in S_{p-1}$, $0 \leq \varepsilon \leq 1$, and $0 \leq U \leq a^{1/\nu}$.

Since $U = t^{1/\nu}$ we express ρ in terms of t, Ω , and ε by

$$egin{aligned}
ho(t,\,arOmega) &= \psi_1(arOmega)t^{1/
u} + \psi_2(arOmega)t^{2/
u} + \cdots + \psi_{n+1}(arOmega,\,arepsilon)t^{(n+1)/
u} \ &+ \psi_{n+2}(arOmega,\,arepsilon,\,oldsymbol{U})t^{(n+2)/
u} \end{aligned}$$

By definition $G(t) = \int_{R_t} g dx$, which we can write as

$$G(t)=\int_{s_{p-1}}\!\!\int_{0}^{
ho(t,arOmega)}\!\!g(
ho,arOmega)
ho^{p-1}d
ho darOmega$$
 ,

where $d\Omega$ represents the element of measure on the sphere $S_{p-1}: \{\rho = 1\}$. We proceed to compute:

$$\begin{split} G(t) &= \int_{S_{p-1}} \int_{0}^{\rho(t,\mathcal{Q})} \Bigl(\sum_{0}^{n} g_{k}(\mathcal{Q}) \rho^{k+\lambda-1} + o(\rho^{n+\lambda-1}) \Bigr) d\rho d\mathcal{Q} \\ &= \int_{S_{p-1}} \Bigl[\rho^{\lambda}(t,\mathcal{Q}) \Bigl(\sum_{0}^{n} \frac{g_{k}(\mathcal{Q})}{k+\lambda} \rho^{k}(t,\mathcal{Q}) \Bigr) + o(\rho^{n+\lambda}(t,\mathcal{Q})) \Bigr] d\mathcal{Q} \end{split}$$

If we substitute for $\rho(t, \Omega)$ the expression previously computed for it, the preceding integral can be written in the form

$$G(t) = \int_{\mathcal{S}_{p-1}} \left[t^{\lambda/\nu} \sum_{0}^{n-1} \gamma_k(\Omega) t^{k/\nu} + \gamma_n(\Omega, \varepsilon) t^{(n+\lambda)/\nu} + o(t^{(n+\lambda)/\nu}) \right] d\Omega$$

where γ_k is independent of ε for $k = 0, 1, 2, \dots, n-1$, and γ_n is linear in ε . We may also note that each of the g_j 's enter the γ_k 's linearly. In particular

$$\gamma_{\scriptscriptstyle 0} = g_{\scriptscriptstyle 0}(arOmega) / [f_{\scriptscriptstyle 0}(arOmega)]^{\lambda /
u}$$
 .

Now if we write $\gamma_n(\Omega, \varepsilon) = \gamma_n(\Omega) - \varepsilon \gamma'_n(\Omega)$ we have

$$\begin{split} G(t) = & \int_{\mathcal{S}_{p-1}} \left(\sum_{0}^{n} \gamma_{k}(\mathcal{Q}) t^{(k+\lambda)/\nu} - \varepsilon \gamma'_{n}(\mathcal{Q}) t^{(n+\lambda)/\nu} \right) d\mathcal{Q} + o(t^{(n+\lambda)/\nu}) ,\\ & = \sum_{0}^{n} \eta_{k} t^{(k+\lambda)/\nu} - \varepsilon \gamma'_{n}^{(n+\lambda)/\nu} + o(t^{(n+\lambda)/\nu}) \end{split}$$

where $\eta_k = \int_{S_{p-1}} \gamma_k(\Omega) d\Omega$. In particular $\eta_0 = (1/\lambda) \int_{S_{p-1}} [g_0(\Omega)/[f_0(\Omega)]^{\lambda/\nu}] d\Omega$.

Now by Watson's lemma we can multiply this asymptotic formula for G by e^{-ht} and integrate termwise to get

$$I'_{+} = \sum_{0}^{n} c_{k} h^{-(k+\lambda)/\nu} - \varepsilon c'_{n} h^{(n+\lambda)/\nu} + o(h^{-(n+\lambda)/\nu})$$

where $c_k = \eta_k \Gamma((k + \lambda + 1)/\nu)$. In particular $c_0 = \eta_0 \Gamma((\lambda + 1)/\nu)$. Since $I_+ = I'_+ + I''_+ = I'_+ + o(e^{-\hbar A'})$, we have also

$$I_+ = \sum_{0}^{n} c_k h^{-(k+\lambda)/\nu} - \varepsilon c'_n h^{-(n+\lambda)\nu} + o(h^{-(n+\lambda)/\nu})$$
 .

By the same argument, since I_- differs from I_+ only in the sign of ε , we get

$$I_{-}=\sum_{0}^{n}c_{k}h^{-(k+\lambda)/\nu}+\varepsilon c_{n}^{\prime}h^{-(n+\lambda)/\nu}+o(h^{-(n+\lambda)/\nu})$$

Now as we have shown before

$$I_+(h) \leq I_1(h) \leq I_-(h)$$
 .

Thus

$$I_{+} - \sum_{0}^{n} c_{k} h^{-(k+\lambda)/\nu} \leq I_{1}(h) - \sum_{0}^{n} c_{k} h^{-(k+\lambda)/\nu} \leq I_{-} - \sum_{0}^{n} c_{k} h^{-(k+\lambda)/\nu}$$

If we multiply through by $h^{(n+\lambda)/\nu}$ and let $h \to \infty$ we get

$$-\varepsilon c'_n \leq \overline{\lim} \left[(I_1(h) - \sum_{0}^n c_k h^{-(k+\lambda)/\nu}) h^{(n+\lambda)/\nu} \right] \leq \varepsilon c'_n .$$

But $I(h) = I_1(h) + o(e^{-hA})$ so that we have also

$$-\varepsilon c'_n \leq \overline{\lim} \left[\left(I(h) - \sum_{0}^{n} c_k h^{-(k+\lambda)/\nu} \right) h^{(n+\lambda)/\nu} \right] \leq \varepsilon c'_n ,$$

for every $\varepsilon > 0$. Let $\varepsilon \to 0$ to complete the proof for $g \ge 0$.

If g may change sign near the origin we can decompose g with g^+ and g^- as described earlier. The proof just completed applies to each of these. We can then subtract the results to obtain the result for g. Also since g'_j 's enter into the c'_k 's linearly, the same formula for the c's applies whether g is one signed or has a variable sign near the origin.

BIBLIOGRAPHY

1. L. C. Hsu, Approximations to a class of double integrals of functions of large numbers, Amer. J. of Math., **70** (1948).

2. _____, A theorem on the asymptotic behavior of a double integral, Duke Math. J., **15** (1948).

3. ____, An asymptotic expression for an integral involving a parameter, Acad. Sinica Sci. Record, 2 (1949).

4. _____, The asymptotic behavior of an integral involving a parameter, Sci. Rep. Nat. Tsing Hua Univ., 5 (1949).

5. _____, On the asymptotic behavior of a class of multiple integrals involving a parameter, Amer. J. Math., **73** (1951)

6. _____, The asymptotic behavior of a kind of multiple integrals involving a parameter, Quart. J. Math. Ser., 2 (1951).

7. _____, A theorem concerning an asymptotic integration, Chung Kuo L'o Hsueh (Chinese Science), 2 (1951).

8. ____, One kind of asymptotic integrals having absolute maximum at boundary points, Acta Math. Sinica, **4** (1954).

9. ____, On an asymptotic integral, Proc. Edinburgh Math. Soc. (2), 10 (1956).

10. P. G. Rooney, Some remarks on Laplace's method. Trans. Roy. Soc. Canada. III, **47** (1953).

OREGON STATE COLLEGE AND INSTITUTE OF TECHNOLOGY UNIVERSITY OF MINNESOTA

192