ASYMPTOTICS II: LAPLACE'S METHOD FOR MULTIPLE INTEGRALS

W. Fulks and J. O. Sather

Laplace's method is a well known and important tool for studying the rate of growth of an integral of the form

$$
I(h)=\int_{a}^{b} e^{-h f} g d x
$$

as $h \rightarrow \infty$, where f has a single minimum in $[a, b]$. It's extension to multiple integrals has been studied by L. C. Hsu in a series of papers starting in 1948, and by P. G. Rooney (see bibliography). These authors establish what amount to a first term of an asymptotic expansion. All but one (see [7]) of these results are under fairly heavy smoothness conditions.

In this paper we examine multiple integrals of the form

$$
I(h)=\int_{R} e^{-h f} g d x
$$

where f and g are measurable functions defined on a set R in E_{p}. Without making any smoothness assumptions on f and g, and using only the existence of $I(h)$ and, of course, asymptotic expansions of f and g near the minimum point of f we obtain an asymptotic expansion of I. The special features of our procedure are the lack of smoothness assumptions and the fact that we get a complete expansion.

Without loss of generality we may assume that the essential infimum of f occurs at the origin, and that this minimal value is zero. We introduce polar coordinates: $x=(\rho, \Omega)$ where

$$
\rho=|x|=\sqrt{x_{1}^{2}+x_{2}^{2}+\cdots+x_{p}^{2}},
$$

and where $\Omega=x /|x|$ is a point on the surface, S_{p-1}, of the unit sphere.
Our hypothesis are the following:
(1) The origin is an interior point of R.
(2) For each $\rho_{0}>0$ there is an $A>0$ such that $f(\rho, \Omega) \geqq A$ if $\rho \geqq \rho_{0}$. (This says that f can be close to zero only at the origin.)
(3) There is an $n \geqq 0$ and $n+1$ continuous functions $f_{k}(\Omega), k=$ $0,1,2, \cdots, n$, defined on S_{p-1} with $f_{0}>0$ for which

$$
f(\rho, \Omega)=\rho^{\nu} \sum_{k=0}^{n} f_{k}(\Omega) \rho^{k}+o\left(\rho^{n+\nu}\right) \text { as } \rho \rightarrow 0
$$

[^0]where $\nu>0$. (This is meant in the following sense: for each $\varepsilon>0$ there is a $\rho_{0}>0$ for which
$$
\left|f(\rho, \Omega)-\rho^{\nu} \sum_{k=0}^{n} f_{k}(\Omega) \rho^{k}\right|<\varepsilon \rho^{n+\nu}
$$
whenever $\rho \leqq \rho_{0}$. Besides giving the asymptotic behavior of f near the origin (3) implies that the infimum of f in R is indeed zero.)
(4) There are $n+1$ functions $g_{k}(\Omega), k=0,1, \cdots n$, for which
$$
g=\rho^{\lambda-\rho} \sum_{k=0}^{n} g_{k}(\Omega) \rho^{k}+o\left(\rho^{n+\lambda-k}\right) \text { as } \rho \rightarrow 0
$$
where $\lambda>0$. (Thus g is permitted a mild singularity at the origin. The expansion is meant in the same sense as the one in (3).)

Under these conditions we will prove that if there is a h_{0} for which $I(h)$ exists then it exists for all $h \geqq h_{0}$ and

$$
I(h)=\sum_{k=0}^{n} c_{k} h^{-(k+\lambda) / \nu}+o\left(h^{-(n+\lambda) / \nu}\right)
$$

where the c_{k} 's are constants depending only on the f_{j} 's and g_{j} 's for $j \leqq k$. Their evaluation will be described in the proof of this result. In particular

$$
C_{0}=\frac{\Gamma((\lambda+1) / \nu)}{\lambda} \int_{s_{p-1}} g_{0}(\Omega) /\left[f_{0}(\Omega)\right]^{\lambda / \nu} d \Omega
$$

where $d \Omega$ is the element of ($p-1$)-dimensional measure on S_{p-1}.
In the course of the proof we will use the following lemmas, which are given now so as to not interrupt the main thread of the argument.

Lemma 1. Let f be a measurable function on a set R in E_{p}, and let $g \in L_{1}(R)$. Then the function $G(z)$ defined by

$$
G(z)=\int_{(f \leqq z)} g d x
$$

has bounded variation on $\{-\infty<z<\infty\}$.

Proof. Let $g=g_{1}-g_{2}$, where

$$
g_{1}(x)=\left\{\begin{array}{r}
g(x), g(x) \geqq 0 \\
0, g(x)<0
\end{array} ; \quad g_{2}(x)=\left\{\begin{array}{r}
0, g(x) \geqq 0 \\
-g(x), g(x)<0,
\end{array}\right.\right.
$$

and define G_{1} and G_{2} by

$$
G_{1}(z)=\int_{\{\{\leqq z\}} g_{1} d x, \quad G_{2}(z)=\int_{\{f \leqq z\}} g_{2} d x
$$

Clearly G_{1} and G_{2} are increasing and bounded on $\{-\infty<z<\infty\}$, and $G=G_{1}-G_{2}$.

Lemma 2. Let $F(t)$ be a continuous function defined on a possibly infinite interval $\{a<t<b\}$, and let f be a measurable function on a set R in E_{p} taking values in the interval $\{a<t<b\}$. If $g \in L_{1}(R)$, and $F(f) g \in L_{1}(R)$ and G is defined as in Lemma 1, then

$$
\int_{R} F(f) g d x=\int_{a}^{b} F(t) d G(t)
$$

Proof. Suppose first that a and b are finite, and that $g \geqq 0$. Form a partition: $a=t_{0}<t_{1}<\cdots<t_{n}=b$, and set

$$
E_{j}=\left\{x \mid t_{j-1}<f \leqq t_{j}\right\}
$$

and let $M_{j}=\sup _{\left\{t_{j-1} \leqq t \leq t_{j}\right\}} F(t)$ and $m_{j}=\inf _{\left\{t_{j-1} \leqq t \leq t_{j}\right\}} F(t)$.
Then

$$
\begin{aligned}
\int_{R} F(f) g d x & =\sum_{j=1}^{n} \int_{E_{j}} F(f) g d x \leqq \sum_{j=1}^{n} M_{j} \int_{E_{j}} g d x \\
& =\sum_{j=1}^{n} M_{j}\left[G\left(t_{j}\right)-G\left(t_{j-1}\right)\right]
\end{aligned}
$$

Similarly

$$
\int_{R} F(f) g d x \geqq \sum_{j=1}^{n} m_{j}\left[G\left(t_{j}\right)-G\left(t_{j-1}\right)\right]
$$

If we let $n \rightarrow \infty$ so that $\max _{1 \leqq j \leqq n}\left(t_{j}-t_{j-1}\right) \rightarrow 0$ then both

$$
\sum_{j=1}^{n} M_{j}\left[G\left(t_{j}\right)-G\left(t_{j-1}\right)\right] \text { and } \sum_{j=1}^{n} m_{j}\left[G\left(t_{j}\right)-G\left(t_{j-1}\right)\right]
$$

converge to $\int_{a}^{b} F(t) d G(t)$, since F is continuous and G monotone.
If g is not positive we can write $g=g_{1}-g_{2}$ as in Lemma 1, apply the proof just completed to each of g_{1} and g_{2}, and combine the results to complete the proof for the case where a and b are finite.

Suppose for example b is infinite. Then for any finite b^{\prime},

$$
\begin{aligned}
\int_{R} F(f) g d x & =\lim _{b^{\prime} \rightarrow \infty} \int_{\left\{f \leq b^{\prime}\right\}} F(f) g d x=\lim _{b^{\prime} \rightarrow \infty} \int_{a}^{b^{\prime}} F(t) d G(t) \\
& =\int_{a}^{\infty} F(t) d G(t)
\end{aligned}
$$

A similar argument applies if $a=-\infty$.
We now return to the proof of the main theorem. First we note that if $h \geqq h_{0}$ then $e^{-h_{0} f} g$ forms a dominating function for $e^{-h f} g$, so that
$I(h)$ exists.
For each $\varepsilon>0$ we define the two functions $f_{+}(\rho, \Omega)$ and $f_{-}(\rho, \Omega)$ by

$$
f_{ \pm}(\rho, \Omega)=\rho^{\nu} \sum_{k=0}^{n} f_{k}(\Omega) \rho^{k} \pm \varepsilon \rho^{n+\nu}
$$

These functions are defined in all of E_{p}. Now given an $\varepsilon>0$ there is a ρ_{0} so that
(i) $\left|f(\rho, \Omega)-\rho^{\nu} \sum_{k=0}^{n} f_{k}(\Omega) \rho^{k}\right|<\varepsilon \rho^{n+\nu}$
(ii) $\left|g(\rho, \Omega)-\rho^{\lambda-p} \sum_{k=0}^{n} g_{k}(\Omega) \rho^{k}\right|<\varepsilon \rho^{n+\lambda-p}$ for $\rho<\rho_{0}$, and so that
(iii) both the functions $f_{ \pm}(\rho, \Omega)$ are increasing in ρ for $\left\{0 \leqq \rho \leqq \rho_{0}\right\}$ for each $\Omega \in S_{p-1}$. This can easily be achieved since f_{0} is positive (and therefore bounded away from zero) and the other f_{k} 's are bounded.
(iv) the sphere $\left\{\rho \leqq \rho_{0}\right\}$ is in R.

We denote $\left\{\rho \leqq \rho_{0}\right\}$ by R_{0} and write $I(h)$ in the form

$$
I(h)=\int_{R_{0}} e^{-h \rho} g d x+\int_{R-R_{0}} e^{-h f} g d x \equiv I_{1}(h)+I_{2}(h)
$$

respectively. We proceed to estimate I_{2} : by hypothesis (2) there is an $A>0$ so that $f \geqq A$ if $\rho \geqq \rho_{0}$. Thus

$$
\begin{aligned}
\left|I_{2}(h)\right| & \leqq \int_{R-R_{0}} e^{-h f}|g| d x \leqq e^{-\left(h-h_{0}\right) / A} \int_{R-R_{0}} e^{-h_{0} f}|g| d x \\
& =C e^{-h A} \text { where } C \text { is a constant. }
\end{aligned}
$$

That is,

$$
I_{2}(h)=O\left(e^{-h 4}\right) \text { as } h \rightarrow \infty
$$

so it is clear that the dominant part of $I(h)$ must arise from $I_{l}(h)$. The remainder of the proof is largely concerned with estimating I_{1}.

In R_{0} we define $r(\rho, \Omega)$ by

$$
g(\rho, \Omega)=\rho^{\lambda-p} \sum_{0}^{n} g_{k x}(\Omega) \rho^{k}+r(\rho, \Omega) \rho^{n+\lambda-p}
$$

Let

$$
g_{k}^{+}(\Omega)=\left\{\begin{array}{ll}
g_{k}(\Omega), & g_{k}(\Omega) \geqq 0 \\
0, & g_{k}(\Omega)<0
\end{array}, \quad g_{k}^{-}(\Omega)= \begin{cases}0, & g_{k}(\Omega) \geqq 0 \\
-g(\Omega), & g_{k}(\Omega)>0\end{cases}\right.
$$

and

$$
r^{+}(\rho, \Omega)=\left\{\begin{array}{ll}
r(\rho, \Omega), & r(\rho, \Omega) \geqq 0 \\
0, & r(\rho, \Omega)<0
\end{array} ; r^{-}(\rho, \Omega)= \begin{cases}0, & r(\rho, \Omega) \geqq 0 \\
-r(\rho, \Omega), & r(\rho, \Omega)<0\end{cases}\right.
$$

In R_{0} we now define $g^{+}(\rho, \Omega)$ and $g^{-}(\rho, \Omega)$ by

$$
g^{+}(\rho, \Omega)=\rho^{\lambda-p} \sum_{k=0}^{n} g_{k}^{+}(\Omega) \rho^{k}+r^{+}(\rho, \Omega) \rho^{n+\lambda-p}
$$

and

$$
g^{-}(\rho, \Omega)=\rho^{\lambda-p} \sum_{k=0}^{n} g^{-}(\Omega) \rho^{k}+r^{-}(\rho, \Omega) \rho^{n+\lambda-p}
$$

Then $g=g^{+}-g^{-}$and

$$
I_{1}=\int_{R_{0}} e^{-h f} g^{+} d x-\int_{R_{0}} e^{-h f} g^{-} d x
$$

Thus we may assume that $g \geqq 0$ in R_{0}.
We recall the definition of f_{+}and f_{-}and define $I_{+}(h)$ and $I_{-}(h)$ by

$$
I_{+}(h)=\int_{R_{0}} e^{-h f_{+}} g d x, I_{-}(h)=\int_{R_{0}} e^{-h f_{-}} g d x
$$

Since $g \geqq 0$ we conclude

$$
I_{+}(h) \leqq I_{1}(h) \leqq I_{-}(h) .
$$

Next we turn our attention to I_{+}: Let $R_{t}=\left\{x \mid f_{+} \leqq t\right\}$ and choose a so small that $R_{a} \subset R_{0}$. Then

$$
I_{+}(h)=\int_{R_{a}} e^{-h f_{+}} g d x+\int_{R_{0}-R_{a}} e^{-h f_{+}} g d x=I_{+}^{\prime}+I_{+}^{\prime \prime},
$$

respectively. Now f_{+}is bounded away from zero in R_{0} outside any neighborhood of the origin. Thus by the same argument used on I_{2} we get

$$
I_{+}^{\prime \prime}=O\left(e^{-n A^{\prime}}\right)
$$

Furthermore $e^{-h f_{+}}$is bounded away from zero in R_{a}, since f_{+}is bounded there. Thus $e^{-h f}+g \in L_{1}\left(R_{a}\right)$ and by Lemma 2,

$$
I_{+}^{\prime}=\int_{0}^{a} e^{-h t} d G(t)
$$

where $G(t)=\int_{R_{t}} g d x$. Integrating by parts we get

$$
\begin{aligned}
I_{+}^{\prime} & =e^{-h a} G(\alpha)+h \int_{0}^{a} e^{-h t} G(t) d t \\
& =h \int_{0}^{a} e^{-h t} G(t) d t+O\left(e^{-h a}\right)
\end{aligned}
$$

We next do some preliminary calculations, preparatory to estimating $G(t)$. For each $t, 0 \leqq t \leqq a$, the equation $t=f_{+}(\rho, \Omega)$ has a unique solution for ρ which is continuous in Ω, since f_{+}is increasing in ρ..

Thus the solution defines a star-shaped curve (or surface) given by $\rho=$ $\rho(t, \Omega)$. We proceed to estimate $\rho(t, \Omega)$. Set $t=U^{\nu}$ then $t=f_{+}(\rho, \Omega)$ can be written in the form

$$
U^{\nu}=\rho^{\nu}\left[\sum_{0}^{n} f_{k}(\Omega) \rho^{k}+\varepsilon \rho^{n}\right]
$$

or

$$
U=\rho\left[f_{0}(\Omega)+f_{1}(\Omega) \rho+\cdots\left(f_{n}(\Omega)+\varepsilon\right) \rho^{n}\right]^{1 / \nu}
$$

From here on we assume $n>0$, for if $n=0$, we can solve directly for ρ and the estimates are considerably simpler than those which follow.

Now the right hand side of the last equation is a monotone function of $\rho, 0 \leqq \rho \leqq a$, hence an inverse function exists. Since, for each fixed Ω, U is an ($n+2$)-times differentiable (it's even analytic!) function of $\rho, 0 \leqq \rho \leqq \alpha$, then ρ is an $(n+2)$-times differentiable function of U, and it can therefore be expanded in a Taylor series with remainder. Thus since $f_{0}(\Omega)>0$ we get

$$
\rho=\psi_{1}(\Omega) U+\psi_{2}(\Omega) U^{2}+\cdots+\psi_{n+1}(\Omega, \varepsilon) U^{n+1}+\psi_{n+2}(\Omega, \varepsilon, U) U^{n+2}
$$

where $\psi_{1}(\Omega)=1 /\left[f_{0}(\Omega)\right]^{1 / \nu}$. Since the ψ_{k} 's are expressible in terms of the f_{k} 's it is easy to check that ψ_{k} depends only on f_{j} 's for $j \leqq k$, that ψ_{k} is independent of ε for $k \leqq n$, that ψ_{n+1} depends only linearly on ε and finally that ψ_{n+2} is uniformly bounded for $\Omega \in S_{p-1}, 0 \leqq \varepsilon \leqq 1$, and $0 \leqq U \leqq a^{1 / \nu}$.

Since $U=t^{1 / \nu}$ we express ρ in terms of t, Ω, and ε by

$$
\begin{aligned}
\rho(t, \Omega)=\psi_{1}(\Omega) t^{1 / \nu}+\psi_{2}(\Omega) t^{2 / \nu} & +\cdots+\psi_{n+1}(\Omega, \varepsilon) t^{(n+1) / \nu} \\
& +\psi_{n+2}(\Omega, \varepsilon, U) t^{(n+2) / \nu}
\end{aligned}
$$

By definition $G(t)=\int_{R_{t}} g d x$, which we can write as

$$
G(t)=\int_{s_{p-1}} \int_{0}^{\rho(t, \Omega)} g(\rho, \Omega) \rho^{p-1} d \rho d \Omega
$$

where $d \Omega$ represents the element of measure on the sphere $S_{p-1}:\{\rho=1\}$. We proceed to compute:

$$
\begin{aligned}
G(t) & =\int_{S_{p-1}} \int_{0}^{\rho(t, \Omega)}\left(\sum_{0}^{n} g_{k}(\Omega) \rho^{k+\lambda-1}+o\left(\rho^{n+\lambda-1}\right)\right) d \rho d \Omega \\
& =\int_{S_{p-1}}\left[\rho^{\lambda}(t, \Omega)\left(\sum_{0}^{n} \frac{g_{k}(\Omega)}{k+\lambda} \rho^{k}(t, \Omega)\right)+o\left(\rho^{n+\lambda}(t, \Omega)\right)\right] d \Omega
\end{aligned}
$$

If we substitute for $\rho(t, \Omega)$ the expression previously computed for it, the preceding integral can be written in the form

$$
G(t)=\int_{s_{p-1}}\left[t^{\wedge / \nu} \sum_{0}^{n-1} \gamma_{k}(\Omega) t^{k / \nu}+\gamma_{n}(\Omega, \varepsilon) t^{(n+\lambda) / \nu}+o\left(t^{(n+\lambda) / \nu}\right)\right] d \Omega
$$

where γ_{h} is independent of ε for $k=0,1,2, \cdots, n-1$, and γ_{n} is linear in ε. We may also note that each of the g_{j} 's enter the γ_{k} 's linearly. In particular

$$
\gamma_{0}=g_{0}(\Omega) /\left[f_{0}(\Omega)\right]^{\lambda / \nu} .
$$

Now if we write $\gamma_{n}(\Omega, \varepsilon)=\gamma_{n}(\Omega)-\varepsilon \gamma_{n}^{\prime}(\Omega)$ we have

$$
\begin{aligned}
G(t) & =\int_{S_{p-1}}\left(\sum_{0}^{n} \gamma_{k}(\Omega) t^{(k+\lambda) / \nu}-\varepsilon \gamma_{n}^{\prime}(\Omega) t^{(n+\lambda) / \nu}\right) d \Omega+o\left(t^{(n+\lambda) / \nu}\right), \\
& =\sum_{0}^{n} \eta_{k} t^{(k+\lambda) / \nu}-\varepsilon \eta_{n}^{\prime(n+\lambda) / \prime}+o\left(t^{(n+\lambda) / \prime \prime}\right)
\end{aligned}
$$

where $\eta_{k}=\int_{s_{p-1}} \gamma_{k}(\Omega) d \Omega$. In particular $\eta_{0}=(1 / \lambda) \int_{s_{p-1}}\left[g_{0}(\Omega) /\left[f_{0}(\Omega)\right]^{\lambda / \nu}\right] d \Omega$.
Now by Watson's lemma we can multiply this asymptotic formula for G by $e^{-h t}$ and integrate termwise to get

$$
I_{+}^{\prime}=\sum_{0}^{n} c_{k} h^{-(k+\lambda) / \nu}-\varepsilon c_{h}^{\prime} h^{(n+\lambda) / \nu}+o\left(h^{-(n+\lambda) / \nu}\right)
$$

where $c_{k}=\eta_{k} \Gamma((k+\lambda+1) / \nu)$. In particular $c_{0}=\eta_{0} \Gamma((\lambda+1) / \nu)$. Since $I_{+}=I_{+}^{\prime}+I_{+}^{\prime \prime}=I_{+}^{\prime}+o\left(e^{-h A^{\prime}}\right)$, we have also

$$
I_{+}=\sum_{0}^{n} c_{k} h^{-(k+\lambda) / \nu}-\varepsilon c_{n}^{\prime} h^{-(n+\lambda) \nu}+o\left(h^{-(n+\lambda) / \nu}\right) .
$$

By the same argument, since I_{-}differs from I_{+}only in the sign of ε, we get

$$
I_{-}=\sum_{0}^{n} c_{k} h^{-(k+\lambda) / \nu}+\varepsilon c_{n}^{\prime} h^{-(n+\lambda) / \nu}+o\left(h^{-(n+\lambda) / \nu}\right)
$$

Now as we have shown before

$$
I_{+}(h) \leqq I_{1}(h) \leqq I_{-}(h) .
$$

Thus

$$
I_{+}-\sum_{0}^{n} c_{k} h^{-(k+\lambda) / \nu} \leqq I_{1}(h)-\sum_{0}^{n} c_{k} h^{-(k+\lambda) / \nu} \leqq I_{-}-\sum_{0}^{n} c_{k} h^{-(k+\lambda) / \nu}
$$

If we multiply through by $h^{(n+\lambda) / \nu}$ and let $h \rightarrow \infty$ we get

$$
-\varepsilon c_{n}^{\prime} \leqq \preceq<\varlimsup\left[\left(I_{1}(h)-\sum_{0}^{n} c_{k} h^{-(k+\lambda) / \nu}\right) h^{(n+\lambda) / \nu}\right] \leqq \varepsilon c_{n}^{\prime}
$$

But $I(h)=I_{1}(h)+o\left(e^{-h A}\right)$ so that we have also

$$
-\varepsilon c_{n}^{\prime} \leqq \underline{\varlimsup}\left[\left(I(h)-\sum_{0}^{n} c_{k} h^{-(k+\lambda) / \nu}\right) h^{(n+\lambda) / \nu}\right] \leqq \varepsilon c_{n}^{\prime},
$$

for every $\varepsilon>0$. Let $\varepsilon \rightarrow 0$ to complete the proof for $g \geqq 0$.
If g may change sign near the origin we can decompose g with g^{+} and g^{-}as described earlier. The proof just completed applies to each of these. We can then subtract the results to obtain the result for g. Also since $g_{j}^{\prime \prime}$'s enter into the c_{k}^{\prime} 's linearly, the same formula for the c 's applies whether g is one signed or has a variable sign near the origin.

Bibliography

1. L. C. Hsu, Approximations to a class of double integrals of functions of large numbers, Amer. J. of Math., 70 (1948).
2. -, A theorem on the asymptotic behavior of a double integral, Duke Math. J., 15 (1948).
3. \quad An asymptotic expression for an integral involving a parameter, Acad. Sinica Sci. Record, 2 (1949).
4. - The asymptotic behavior of an integral involving a parameter, Sci. Rep. Nat. Tsing Hua Univ., 5 (1949).
5. - On the asymptotic behavior of a class of multiple integrals involving a parameter, Amer. J. Math., 73 (1951)
6. -, The asymptotic behavior of a kind of multiple integrals involving a parameter, Quart. J. Math. Ser., 2 (1951).
7. -, A theorem concerning an asymptotic integration, Chung Kuo L'o Hsueh (Chinese Science), 2 (1951).
8. One kind of asymptotic integrals having absolute maximum at boundary points, Acta Math. Sinica, 4 (1954).
9. ——On an asymptotic integral, Proc. Edinburgh Math. Soc. (2), 10 (1956).
10. P. G. Rooney, Some remarks on Laplace's method. Trans. Roy. Soc. Canada. III, 47 (1953).

Oregon State College
AND
Institute of Technology
University of Minnesota

[^0]: Received April 29, 1960. The work on this paper was performed under sponsorship of the Office of Naval Research, Contract Nonr 710 (16), at the University of Minnesota.

