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R. C. BUCK

l Introduction* The prototype for partially ordered linear spaces
is C[X], the space of all real valued continuous functions on a topological
space Xy with the natural ordering defined by: / Ξ> 0 if and only if
f(x)}>0 for all x e X. If V is a real linear space with a partial order
defined by a suitable positive cone P, then V has a canonical embedding
in a function space C[X],

The containing space C[X] has a more elaborate structure than did
the original space V; in particular, C[X] is an algebra. If we take any
aspect of C[X], we may ask how it appears when transferred back to
V. This paper deals with one aspect of this.

Among the linear operators on C[X], an interesting class that arises
in many contexts is the class of multiplication operators. These are
defined by:

T(f) = g where g(x) = φ(x)f(x) x e X ,

and where φ is a specific member of C[X],
The central result in this paper is a simple characterization, in terms

of order, of the linear operators on V which become multiplication
•operators when V is represented in a function space C[X]. This in
turn yields a new and more transparent proof of the Stone-Krein theorem
on ordered algebras.

2 A simpler case* Let V be a real linear space. We assume that
there is a convex cone P with vertex at 0 which defines an order rela-
tion S. in V by x ^ y if and only if y — x e P. On P, we impose three
conditions:

( l ) P n - P = { 0 }
{ 2) P is generating

( 3 ) P is linearly closed in V.

The second condition implies that every element x e V is the differ-
ence of positive elements; the third condition requires that every line
meet P in a (possibly unbounded) closed interval. Note that we do not
impose any further lattice properties on V, nor do we assume that there
is an order unit. If V denotes the dual space of V, consisting of all
linear functional on V, then V has a natural partial ordering derived
from that of V. A functional L is said to be positive if L(x) Ξ> 0 for
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all x ^ 0; the positive cone in V is P\ The space V will not in
general obey all the properties (1), (2), (3).

Let Jΐf(V) denote the algebra of all linear transformations on F.
We single out a subclass § I c ^ ( F ) consisting of the order-bounded
transformations:

DEFINITION 1. An operator T e jSf(F) is order bounded if there is
a constant r such that

(4) -rx ^Tx^rx for all x ^ 0 in F

We observe that SI is a subalgebra of J S ^ ( F ) containing the identity
operator 7; for, if Tλ and T2 are in 21, with associated constants rx and
r2, then it follows readily from (4) that TλT2 obeys (4) with r = 37VV
We wish to show that V has function space representations in which
the algebra 21 becomes multiplication operators. We will prove this first
under the strong restriction that V has an "order unit", and then re-
move this restriction.

Let us suppose that there is an element e e V such that e ^ 0 and

(5) for every x ^ 0, there is λ > 0 such that x g λe.

This restriction can be described geometrically: the point e is a radially
interior point of P, so that every line thru e meets P in a line segment
containing e as interior point.

THEOREM 1. Let Vbea partially ordered linear space obeying (1),
(2), (3) and (5). Let 21 be the order bounded operators on F. Then
there is a compact set Γ and an order preserving representation θ: x—>x
of V onto a subspace of C[Γ], and an isomorphism θ: T—> f of 21 into
the multiplication operators on C[Γ] such that

θ{Tx) = fx

for all xeV,T e 2ί.
Otherwise described, the diagram

, 1*
V >C[Γ]

commutes. Corresponding to Γ, there is a function φ e C[Γ] such that
if Tx = y, then y(p) = Φ(p)x(p), for all p e Γ.

COROLLARY 1. 21 is a commutative subalgebra of
The method we use will be to construct certain appropriate real

homomorphisms of 21. Recall first the important notion of a minimal posi-
tive element (See Brelot [3] for background.)
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DEFINITION 2. An element u Ξ> 0 in V is said to be minimal if
0 ^ x ^ u implies that x = Xu for some real λ.

This can be described geometrically: u is minimal if the ray p
generated by u is extremal in P, and this is so if u cannot be expressed
as the midpoint of two points in P that are not on p. In contrast with
the situation for finite dimensional spaces, a cone P in a general linear
space will usually have no extremal rays (or minimal elements). This
is the case for C[X] when X is the line, but is not the case if X
is discrete. The dual cone P' of positive linear functional on V can
be better behaved; however, if V is the space !/[(), 1], neither P nor
P' have extremal rays.

LEMMA 1. If P is the positive cone in a space V and P contains
a radially interior point, then Pr has a separating family of extremal
rays.

This is more or less familiar. (See Bonsall [2], Kadison [8], Kelly
[9].) One defines a norm in V by

|| a? || = inf {all r with —re ^ x ^ re} .

Let D be the functional L on V such that | | L | | g 1 and L(e) = 1.
This is then a w* compact convex set in the dual space of ζV, \\ \\).
Invoking the Krein-Milman theorem, D has extreme points Lo whose
convex hull is dense in D. These are in fact minimal positive elements
in V, generating extremal rays in P'. Moreover, if L0(x) = 0 for all
Lo, then x = 0.

The key to the proof of Theorem 1 is the observation that minimal
elements of P will yield homomorphism of 2ί onto the reals. If T e SI,
then by (4) there is a number r such that

(6) 0 ^ rx + Tx ^ 2rx all x ^ 0 .

Let x = u, a minimal element of P. Then, we see at once that n is an
eigenvector for T. Denoting the corresponding eigenvalue by λ(T), we
have Tu = X(T)u, holding for all T e 2ί. But, it then follows that
T—>λ(Γ) is a homomorphism of 21 onto the real field k; for, given 2\
and JΓ2, we have

\)u = T^lu)

Unfortunately, except in unusual cases, P will not have any minimal
elements. Let us go over to the adjoint algebra §1* c £f{Vf) consisting
of all operators T* for T e 51. T* is defined on V, the dual space of
V, by:
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( 7 ) T*(L)(x) = L(Tx) a l l r ^ F

and the mapping Γ—* Γ* is an anti-isomorphism of Sί onto Sί*. From
(7) and (5), we see that if T obeys (4), then

(8) -rL g Γ*(L) ^rL all L ^ 0 .

Thus, Sί* is an algebra of order-bounded operators on the partially ordered
space V\ By Lemma 1, since P was assumed to have an order unit β,
there are many minimal elements Lo in P \

Let D be the convex cross-section of Pf consisting of all L ^ 0 with
L(e) = 1. Each extreme point of D is a minimal positive element in Pf

and generates an extremal ray; let Γ be the closure of the set of ex-
treme points in D, in the w* topology arising from the natural norm
topology on V. By the simple argument given above, each Lo e Γ yields
a real homomorphism XLQ of Sί*, defined by the equation

Γ*(L0) = λZo(Γ*)Lo .

Since Sί* is (anti) isomorphic to Sΐ*, λ£o in turn defines a real homomor-
phism hlQ of Sί; using (7), this takes the explicit form:

all x e V
(10) LQ(Tx) = hL(T)L0(x) all T e Sί .

all LoeΓ

By Lemma 1, the functional LQ separate V so that the collection of
homomorphisms hLQ separate Sί. We may conclude that Sΐ is isomorphic
to a product of fields k, and is therefore commutative; this proves the
corollary.

To complete the proof of Theorem 1, we examine (10). We first
represent V in C[Γ], mapping x onto Θ(x) = x where x(L0) = L0(x) for
all Lo e Γ. Since LQ(e) — 1 for all Lo, e is the constant function 1; in
fact, the mapping θ is one-to-one and order preserving. For fixed
TeSΐ, define a function φ on Γ by

(11) Φ(LQ) = hLQ(T) .

Let Tx — y; then, (10) can be rewritten as:

(12) y(LQ) = Φ(L0)x(LQ) .

The representation θ is such that every order-bounded operator T is
carried into a multiplication operator on C[Γ], and the correspondence
is an isomorphism of Sί with a subalgebra of Jίf(C[Γ]), and in fact,
with a subalgebra of C[Γ] itself.

3. The Krein-Stone theorem. Before removing the assumption
that V possesses an order unit e, we insert an immediate application
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of our results. (See Stone [14], Krein [10], Kadison [8]).

THEOREM 2. Let A be a real algebra with unit e and having a
partial order such that if x ^ 0, y ^ 0, then α? + V ^ 0 and xy ^ 0.
Assume further that, as a linear space, A obeys restrictions (1), (2),
(3) and (5). Then, A is commutative and can be represented as a sub-
algebra of a function algebra C[X].

Proof. Consider the left regular representation of A. This sends
a e A into the operator Ua e ^f(A) where Ua(x) = ax for all x e A.
Since A has a unit, this is an isomorphism of A onto a subalgebra
A c £f(A). By virture of (5), we can choose r depending upon a so
that —re ^ a ^ re. If x ^ 0, then —rx g ax ^ rx so that_?7α is an
order bounded operator on the linear space <A, +>. Hence, A c SI, and
since this is a commutative algebra, so is A.

As a matter of fact, it is not necessary in this proof to assume
that A is even associative, since this too can be deduced from the rep-
resentation. Since UaUυ = UbUay it follows that aφx) = b(ax) for all
x e A) with α; — e, we find that A is commutative. Then, a(bc) — a(cb)
while b(ac) — (ac)b and A is associative.

Conversely, we note that Corollary 1 follows from Theorem 2, since
91 itself is an ordered algebra, with I as unit.

Other proofs which have been given for this result rely upon the
construction of appropriate real homomorphisms hoi A. These are linear
functionals on <̂ A, +y which are multiplicative and obey h(e) = 1. It is
natural to look for these among the extreme points of an appropriate
convex set D in the dual space of <A, +>. Since any finite set of dis-
tinct real homomorphisms of A are linearly independent, the collection
of h are precisely the extreme points of the convex set Do which they
generate. Unfortunately, we cannot obtain Do directly. Instead, one
selects a D ID Do, easily described, and then proves D = DQ. For example,
the method adopted in Tate [15], Kadison [8] and Kelley [9] is to select
D as all functionals L on <A, +> such that L(e) = 1 and L(x2) ^ 0 for
all x e A. We note that the proof of D = Do depends strongly upon
the hypotheses on A; one can construct a finite dimensional algebra B
for which D is a closed disc, having a circle for its extreme points, but
such that B has no proper real homomorphisms.

4 Reduction of the general case. Suppose now that V is not as-
sumed to satisfy (5). This is true for example, of the space C0[R] of
functions with compact support, continuous on the real line R. We
reduce this case to the previous one. Let e be an element in P and
form

(13) V(e) = {all x e V such that for some λ, — λe g x g Xe} .
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This is a linear subspace of V; it inherits a partial order from V, and
in its positive cone Pf] V(e), the element e is an order unit. Suppose
that T e 2ί. Then, from (4), if x e V(e), then for the appropriate λ,
we have

-3λre ^ Tx ^

Thus, F(e) is left invariant under all operators T e 21. Accordingly, if
we restrict 21 to V(e), we obtain a representation of 2t in £?(V{e)).
Applying Theorem 1 to the resulting algebra, we find that 2ί is com-
mutative in its action on V(e), and also obtain a representation (homo-
morphic) of 2t as multiplication operators on an appropriate function
space C[Γe], Finally, as e ranges over P, the subspaces V(e) cover V,
and we have proved the following result:

THEOREM 3. Let V be a partially ordered linear space obeying (1),
(2) and (3), but not necessarily (5). Let 21 be its algebra of order bounded
operators. Then, 21 is commutative, and corresponding to any positive
element e in V, there is a compact set Γe, an order preserving linear
representation θ of V(e) into C[Γe] and a homomorphism θ of 2ί into
the multiplication operators on C\Γe] such that θ(Tx) = θ{T)θ{x) for all
x e V(e) and T e 21.

A footnote to this is in order. Although we have shown that the
algebra 21 is commutative, we have not shown that it need contain
more than the multiples of the identity operator I. This can in fact,
happen, although it does not in most of the interesting cases discussed
in the next section. A glance at the finite dimensional case will be
helpful. Let P be a polyhedral cone in %-space, and let u19u2, uN

generate its extremal rays. Each us is an eigenvector for all the order
bounded operators T e 21, and in turn generates real homomorphisms hy

of 21, with

T(uj) = hό{T)u3 .

Suppose that the {u3)ι are such that N > n and every set of n is in-
dependent. Then, it follows that all the hό coincide on 21. Since to-
gether they define a faithful representation of 2t, we conclude that 2ί
consists exactly of the scalar multiples of I. In contrast, if N = n, and
the Uj form a basis, then 2t becomes the algebra of diagonal matrices;;
these, of course, are the multiplication operators in this representation

5. Examples* In this section, we give a number of interesting
illuastrations of Theorem 3, together with a counterexample to show the
necessity of the assumption that P is a linearly closed cone.

First, choose V as the space C0[X] of all real valued continuous
functions on the locally compact space X which vanish at infinity. With
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the usual ordering (/ Ξ> 0 means f(p) ^ 0 for all p e X) this is a partially
ordered linear space satisfying the hypotheses of Theorem 3. Note in
particular that C0[X] does not have an order unit. What are the order
hounded operators on C0[X]Ί Applying Theorem 3, we choose any e ^ 0
in CC[X] and form the subspace V(e). By (13), / e V(e) if and only if
fie is a bounded function on X. Thus, V(e) is isomorphic to the space
of bounded continuous functions on the open support Oe of e. The set
Γe is the Cech compactification of Oe, which contains Oe densely. Any
point p e Oe defines a minimal functional Lp on V(e) so that by (10)
and (12),

(14) L,(Tf) = (Γ/)(p) = Φ(p)f(p)

for all p e 0e and any T e St. If X is σ-compact, we can take e so that
Oe = X, and we find that the only order bounded transformations on
C0[X] are those defined as point-wise multiplication by bounded continu-
ous functions φ on X. If X is not tf-compact, we arrive at the same
conclusion by varying e.

We note that if V is C[X] itself, a simple and direct characteriza-
tion of the order bounded operators is available. Using the fact that
if f(pQ) = 0, then we may write / = f± — f2 where f% ^ 0 and fi(p0) = 0,
it readily follows from the characteristic property of Γthat (Tf)(p0) = 0.
Applying this to / = g — g(p0), we have Tg = φg where φ = Γ(l).

Another interesting special case is obtained by taking V as the
space H of all bounded harmonic functions on an open domain Ω. The
constant function is an order unit for H so that we do not need the
full machinery of Theorem 3. The extremal rays in P are generated
by the R. S. Martin minimal functions (see Brelot [3]) and H is repre-
sented as a subspace of the space of continuous functions on the ideal
boundary Γ of Ω. The order bounded transformations are represented
in turn as C[Γ] itself; for any T e 31, Tf is the harmonic function g ε H
which is described by the (abstract) Dirichlet problem g \ Γ = φf | Γ where
φ is the function in C[Γ] corresponding to T. Note that T is not a
multiplication on Ω itself. With Ω chosen as the unit disc and φ(x, y) = x,
we have Γ(l) = x, T(y) = xy, but T(x) = (l/2){^2 - f + 1}, and T(xy) =
(1/4){3Λ/ - t + y}.

A somewhat more complicated illustration is provided by the space
C[X: E] of all bounded functions / on a locally compact space X with
values in a fixed partially ordered linear space E. We order this by saying
/ ^ g when f(p) ^ g(p) for all p e l We shall also assume that E has
an order unit e and require that each / be continuous when E is given
the norm topology associated with e. If v e E, denote by v the constant
function on X with value v. Note that e is then an order unit for
C[X:E], To apply Theorem 3, we must determine minimal functionals
in the dual space of V. We can find one associated with each point
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pQeX and any minimal functional θ on E; define Lo on C[X: E] by
L0(f) = θ(f(Po))> The following argument proves that Lo is indeed
minimal. Suppose 0 ^ L ^ Lo. Then, for any v ^ 0 in E, 0 ^ I/(i7) =
#(iθ. Thus, v —> L(^) is a positive linear functional on E which is
dominated by θ. Since θ is minimal on E, there is a constant /> such
that L{v) = ρθ(v) = pL0(v) for all v ^ 0 in E (and thus for all v e JE7).
Suppose now that / € C[X: E] with f(p) g /(p0) for all p e X; we shall
say that such a function / takes a maximum value at p0 and that / e <βζQ.
Setting v = f(p0), we have v - f ^ 0 so that 0 ^ L(v - /) ^ L0(v - / ) .
But, L0(τJ - /) - φ - f(Po)) - 0 so that L(/) - L(v) - /oL0(l;) - pL0(f).
Thus, L = ^LQ on the linear span of the special class ^ 0 . Consider
now a general function Fe C[X: E]; since F is bounded, ||-P(p)|| ^ M
for all p 2 X. Define g, gu and g2 on X by:

= F(p) - F(pϋ)

^ peX.

One sees that ^ ^ 0 and gt(p0) = 0, with \\g%(p) \\ ^ 3ilf for all p e l
Moreover,

g(p) - {4M - r̂2(p)} - {4M - Λ(p)}

for all p e X, so that 0 e J^ o - J^o. We conclude that L(F) = ρL0(F)r

so that Lo is indeed a minimal positive functional on C[X: E],
Let Γ be the set of extreme points in the set D of functionals a

on E with α Ξ=> 0 and a(e) = 1. Applying Theorem 3, we find that any
order bounded operator T has the property that

(15) a(T(f)(p0)) - a(T(e)(po))a(f(po))

for all / e C[X: £ ] , p o e l and a e Γ. If we represent the functions /
in C[X: E] as functions / on X x Γ, then

for all (p, a).
The original space C[X: E] is not an algebra, but is a module over

the algebra C[X]. Formula (9) shows immediately that any order bounded
transformation on C[X: E] is in fact algebraic. If ψ e C[X] and
/ e C[X: El then Γ(ψ/) - ψT(f). For,

, a)a(f(p))

= ψ(p)a(T(f)(p))

= cc(ψ(p)T(f)(p))
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for each p e X and a e Γ.
Finally, we use a familiar example to show that the most crucial

hypothesis on the partially ordered linear space V in Theorem 1 and 3
is that P be linearly closed. Take for V the space of all polynomials,
with the ordering: α0 + axx + + amxm > 0 if am > 0. P satisfies the
first and second requirements, but is not linearly closed; in fact

X{%2) + (1 - λ)(-a;) e P only if λ > 0 .

There is no order unit. We can still introduce the algebra SI of or del-
bounded transformations on V. It is easy to see, however, that 31 is
not commutative. Let T be defined on V by T(xn) — qn where qn is a
polynominal of degree less than n. Then, I ± T ^ 0 so that T e SI. In
particular, ϊ\ = x(d2/dx2) and T2 = d/dx are in SI; however, TτT2 Φ T2TX.
In this example, the reason for this can be traced to the fact that P
is so large that there are too many positive linear operators on V, (and
no non-degenerate positive linear functionals).
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