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1* Introduction. In the second author's previous paper [10] a two-
sided H*-algebra was defined as a complex Banach algebra which is a
Hilbert space, and which possesses two conjugate-linear bounded map-
pings x —> xl and x —»xr with the property that for any x, y, and z
in the algebra, (xy, z) = (#, xlz) = (a?, zj/7"). This concept generalized the
original definition of an il*-algebra given by Ambrose [1]. It may
readily be seen that in a two-sided H * -algebra the orthogonal com-
plement of a right (left) ideal is again an ideal of the same kind.
It is shown in [10], moreover, that this "right (left) complementation"
property is sufficient to characterize a two-sided il*-algebra A without
the assumption of the mappings x —» xl and x —> xr, provided that A is
an annihilator algebra in the sense of Bonsall and Goldie [5], that is,
provided that every proper right (left) ideal of A has a nonzero left
(right) annihilator.

The present paper will carry out a study that bears somewhat the
same relationship to the Hilbert algebras of Nakano [7] as does the
above-mentioned investigation in [10] to Ambrose's H*-algebras. The
results here, however, will be more restricted, since Hilbert algebras
(and the systems similar to them: see the papers of Ambrose [2], Segal
[12], Godement [6], and Pallu de la Barriere [8]) are much more general
and less manageable than il*-algebras. In particular, we shall have
neither joint continuity of multiplication in the algebra nor completeness
of the metric space formed by its elements under the scalar-product
norm. These strong properties are lacking for Hilbert algebras in gener-
al; in addition, however, we shall replace the standard assumption of
the existence of a conjugate-linear isometry and the adjoint character
of this mapping by the requirement that in our algebras the orthogonal
complement of a right ideal shall be a right ideal. To compensate
somewhat for this loss, our considerations will be restricted to a class
of algebras that may be described as symmetric, maximal, and topologi-
cally semi-simple. We shall define these terms in the following section,
in which we discuss some matters corresponding for our case to the
theory of regular ideals fundamental in the study of Banach algebras.

2. Preliminary theory• We shall deal with algebras possessing some
of the properties of Hilbert algebras, apart from the ^-mapping.
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DEFINITION 2.1. Let A be a complex associative algebra that is a
pre-Hilbert space under a given scalar-product. Denote by H the Hilbert
space completion of A. A will be called a scalar-product algebra (SP-
algebra) if the following postulates hold:

(1) The operators L'a: b-*ab (R'a: b —» 6a) are bounded for all a and
6 in A. We denote their extensions to H by La (Ra).

(2) Each operator L'x: b-^>Rbx (R'x: b—>Lbx), where be A, xe H,
has a closed linear extension Lx (Rx) which is the closure of the graph
of Li (12J).

(3) A is symmetric: for each x in H, Lx and Rx are both bounded,
or both unbounded.

(4) A is maximal: if Lx (or Rx) is bounded, then xe A.

(5) If a? in H is such that Lxa = 0 or Rxa = 0 for all a in A, then
x = 0.

A Hilbert algebra has all these properties, or may readily be taken
to have them. Property 2 follows from the nature of the ^-operation,
along with a standard theorem [9, p. 305] which states that a linear
transformation T with domain dense in a Hilbert space H has a closed
linear extension if and only if the domain of its adjoint T* is dense in
H. The maximality property is not automatically verified in a Hilbert
algebra, but a given Hilbert algebra may be extended to a maximal
one, as is shown by Takenouchi [14, Theorems 1 and 2] and by Segal
[12, Theorem 16]. The remaining properties are easily seen to hold in
Hilbert algebras.

The appropriate definition of an ideal in the present context must
be more general than the ordinary algebraic concept, because of the
interplay of the algebraic properties of A and the topological properties
of its completion H.

DEFINITION 2.2. A right ideal J? of A is a subspace of H such that
Ra(R) c R for every a in A. A similar definition holds for left and two-
sided ideals. An ideal I is proper if I ^ (0) and I ^ H.

It should be noted that we do not require an ideal of A to be in
A, nor is it asserted at the outset that an ideal of A need even inter-
sect A. Moreover, an ideal is not in general required to be closed. (In
our discussion, closure will always mean closure in H.)

The following concepts are generalizations of standard ones.

DEFINITION 2.3. Let / be an ideal of A. The left annihilator of
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I is the set 1(1) = {x e H\Lxy = 0 for all y in / } . The right annihilator
r(I) is similarly defined.

DEFINITION 2.4. A right ideal R is regular if there exists an ele-
ment u in H such that Lua — a e R for every a in A. In this case u
is said to be a relative identity for R.

DEFINITION 2.5. An element x in H is algebraically right quasi-
regular if there exists an element a in A such that x + a — Rax = 0;
x in if is topologically right quasi-regular if there exists a sequence
{an}, where an e A, such that x + an — i?a?ix —> 0. (In a Banach algebra,
algebraic and topological quasi-regularity coincide.)

DEFINITION 2.6. A is topologically semi-simple if (0) is the only
right ideal of A that consists entirely of topologically right quasi-regular
elements.

The following example will illustrate the notion of topological semi-
simplicity, which we shall hereafter assume for the SP-algebras with
which we deal.

EXAMPLE 2.1. Let A be the complex matrix algebra consisting of
all finite linear combinations of unit matrices {ei5), where i and j belong
to an arbitrary index set J. Let a scalar-product be defined as (X, Y) =
tr XTY* = ^jijt}3xuyijy where T — (ti5)y a positive definite diagonal
matrix. Take R to be a nonzero right ideal, and X a matrix in R with
the component xtj =£ 0. Then right multiplication of X by llxi5(eji)
yields a matrix Y = (y^) in R with a single non-zero column, the ith.
Moreover, yn = 1. It is easy to see that F is not algebraically right
quasi-regular. Furthermore, since all matrices of the form YA — A
have a zero ith row, it is clear that Y cannot be a limit of such matri-
ces, for denoting the (i,j) component of YA — A — Y by uij9 we have
|| YA - A - r| |2 = 'Ztjjj I utJ |

2 ^ «M > 0. Thus Y is not topologically
right quasi-regular.

A trivial H*-algebra of W. Ambrose [1] can be considered as an
example of an SP-algebra which is not topologically semi-simple.

3* Left projections in right complemented &P*algebras» The re-
mainder of this paper will be concerned with algebras of the following
type.

DEFINITION 3.1. A is right complemented if the orthogonal comple-
ment Rp of every right ideal R is a right ideal.
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It should be noted that if P is a projection operator whose range
is a right ideal of A, then by the right complementation property the
range subspaces of P and I — P reduce Ra for every a in A; or equiva-
lently, PRa = RaP. We may thus arrive at the following result.

LEMMA 3.1. If P is a projection operator whose range is a right
ideal, and a e A, then Pa e A.

Proof. The lemma is an application of a more general result of
Segal [12, Corollary 16.3] and Godement [6, Lemma 4], which tells us
that LPa is bounded. By the maximality of A, Pa e A.

LEMMA 3.2. Let R be a closed right ideal. Then Af] R is dense
in R.

Proof. If x is arbitrary in R and {an} is a sequence in A that con-
verges to x, then letting P be the projection operator with range R,
we have Pan —* x, Pan e R. By the preceding lemma, Pan e A.

DEFINITION 3.2. An element a? in if is left self-adjoint if for any
a, b in A we have (Lxa, b) = (a, Lxb). If e is a nonzero left self-ad joint
idempotent in A, e will be called a left projection.

THEOREM 3.1. Every topologically semi-simple right complemented
SP-algebra A contains a left projection. In fact, if u is any element
of H that is not topologically right quasi-regular, then a left pro-
jection is obtained by projecting u upon Rp, where R = {Lua — a \ a e A}.

Proof. Details not given here may be found in Lemma 2 of [10].
Taking R as in the statement of the theorem, we see that R is a closed
regular right ideal of A, with relative identity u. Moreover, u $ R.
Now let u = v + e, where v e Rt ee Rp, e =£ 0. We shall show that
the operator Ue with domain A is bounded; it will then follow from the
symmetry and maximality of an SP-algebra that e e A. Since Lea — ae R
for all a in A, we see that Le(R n i ) = 0 and Leb = b for b in Rp n A,
using the fact that Rp is a right ideal. From this it follows, if we
write a = ax + a2, where ax e Rp n A, a2 e R n A, that L'ea = alf so that
|| L[a || ^ || a ||, e € Af and e2 = e. Finally, for arbitrary c, d in A, we
have (ecy d) — (cu dx) = (c, ed), where ^ and dx are the orthogonal pro-
jections of c and d on Rp.

Our next theorem will show that it is even possible to assert that
certain left ideals of A contain left projections.

THEOREM 3.2. If L is a nonzero left ideal such that La A, then
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L contains a left projection.

Proof. We first note that for any a, 6 in A, a6 is topologically
(algebraically) right quasi-regular if and only if ba has the same proper-
ty, since if ab + un — abun —* 0, where un e A, then ba + vn — bavn —> 0,
where vn = — ba + buna e A. Hence there exists in L a nonzero element
a that is not topologically right quasi-regular; otherwise, for any non-
zero b in L, the right ideal bA would consist only of topologically right
quasi-regular elements, contradicting the topological semi-simplicity of
A, since bA =£ (0) by Property 5 of SP-algebras. According to the
preceding theorem we obtain a left projection e by letting a = u + e,
where ue R, ee Rp, R = {ab — b J b e A}. Since eu — 0, e =^ eae L.

COROLLARY. If L is a left ideal such that L n A =t (0), then L
contains a left projection.

With the existence of left projections assured, we may proceed to
introduce a relation of partial order among them.

DEFINITION 3.3. Let e and / be left projections. Then e g / if
Le ^ Lf in the standard ordering of projection operators. If for every
left projection f,ft^e only when f = e, then e will be called a minimal
left projection.

It is clear that if e g / , then Lef = LeLf = Le = LrLe = L/e, so that
ef — fe = e, and conversely. This follows from Property 5 of SP-alge-
bras.

LEMMA 3.3. If e is a minimal left projection, then Ae and eA
are minimal left and right idealsy respectively.

Proof. Suppose that L c Ae, where L is a left ideal. By Theorem
3.2 L contains a left projection / , and fe = / , so that / ^ e. Since e
is minimal, / = e and Ae c L. To show that eA is minimal, we note
that if R is a nonzero right ideal such that RaeA, then by the topo-
logical semi-simplicity of A there exists an element u ~ eu in R that is
not topologically right quasi-regular. Then ue e R and ue is not topo-
logically right quasi-regular. Letting Q = {uea — a\ae A}, we write
ue = v + / , where ve Q, / e Qp. Then / is a left projection, and since
uee ~ ue — ve + fe, ve e Q, fee Qp, we have fe = / so that as before,
f — e. Finally, ue = eue — ev + e — e (since LeQ = 0); thus [e e R and
eAaR.

Our final development of this section will show that a minimal left
projection e has the property that eAe is isomorphic to the complex
number field, as in the case of Hilbert algebras. We may first prove
as in Theorem 4.3 of [1] that eAe is a division algebra with identity e;
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this follows from the fact that for 0 =£ a = eae e eAe, a A = eA and
Aa — Ae. We then establish the following lemma.

LEMMA 3.4. If e is a minimal left projection, then eAe is a
complete metric space.

Proof. Since H is complete, eAe is also complete. Moreover,
eAe c LeReH — ReLeH. If the sequence {cn} in eAe has limit a? in H,
then cw = LeRecn —> Le22e^, so that a? = Leii!e# e LeReH. Hence eAeaLeReH.
To complete the proof we shall show that LeReHczeAe.

Suppose that x e LeReH. Then LXA is a right ideal of A containing an
element Lxa that is not topologically right quasi-regular. Using Theorem
3.1 we write Lxa = v + / , where ve R, fe Rp, R = {LZa;a6 - 6 16 e A},
and / is a left projection. Since LfR = 0, LfLxa = L/y + / = / =£ 0, so
that

ReaeLfx = lim ReaeLfcn = lim (fcn)(eae) = lim f((cne)a)e

= lim ReLfRacne = ReLfRax = ReLfLxa = / e .

Now fe =fc 0, since

0 =£ / = L/L^a = L/JRaB = lim/(cna) = lim/ecna .

Thus, denoting by (^ae)"1 the inverse of #ae in &4e, we have

R(eae)-iReaeLfx = LfR(eae)-iReaex = L , ! ? ^ = Lra; = fe{eae)~x ^ 0

so that the left ideal it^A fl 4 ^ (0). By the corollary to Theorem 3.2
there exists a left projection # in i?x^4: hence for some 6 in ^4, ^ =
i?x6 = I/&# = I/&i?eo; = i?eL&o; = i2ejRx& = flre ̂  0. Since g ^ e, we conclude
from the minimality of e that g — e. Thus

6 = Rxb = Lei2x& = LeL&a7 = LeLbLex = L,&eo; ,

and # = (cftej^e eAe. Therefore LeReHczeAe.

THEOREM 3.3. If e is a minimal left projection, then eAe is iso-
morphic to the complex number field.

Proof. Since eAe is a complete metric ring whose product is con-
tinuous in each factor, it follows from a theorem of Arens [3, Theorem
5] that multiplication in eAe is continuous in both factors simultaneously.
Then for any a, b in eAe, \\ab\\ ^ M\\a \\ || 61|: this holds by a variation
of a theorem of Banach [4, pp. 40-41], as remarked in the introduction
to [1]. The conclusion now follows from the Mazur-Gelfand theorem.

4. Discrete SP-algebras* We shall now consider the class of SP-
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algebras that are discrete in the sense of Nakano [7]. For these alge-
bras we may prove an analog of the first Wedderburn structure theorem.

DEFINITION 4.1. An SP-algebra is discrete if for any left projec-
tion e there exists a minimal left projection / ^ e.

The following simple example of a commutative discrete SP-algebra
illustrates all the concepts we have used up to the present.

EXAMPLE 4.1. Let (S, m) be a totally atomic measure space, and
let A be the maximal extension in L\S, m) of L, the algebra of all
simple complex-valued functions on S, with pointwise multiplication and
the usual scalar-product. Since every nonzero ideal of A contains an
idempotent (which cannot be topologically right quasi-regular), A is
topologically semi-simple; A is also readily seen to be right complemented
and discrete.

DEFINITION 4.2. An SP-algebra A will be called (topologically)
simple if A is topologically semi-simple and if there exists no proper
closed two-sided ideal of A.

We shall need the following lemma, which here is not as immediate
as in the case of Banach algebras.

LEMMA 4.1. The left annihilator l(R) of a closed right ideal R is
a closed left ideal. The left annihilator 1(1) of a closed two-sided
ideal I is a closed two-sided ideal.

Proof. Let R be a closed right ideal. Then if x e l(R), Lxa = 0
for every a in R n A. If b e A, then LLbXa = RaLbx = LbRax = LbLxa =
0. Now for any y in R, consider {an}, where an—+y, ane Rf] A (by
Lemma 3.2). We have LLbXan = 0 for each n, and since LLbX is a closed
operator, LLbXy — 0. Thus Lbx e l(R)> and l(R) is a left ideal. By a
similar method it may be shown that l(R) is closed and that if / is a
closed two-sided ideal, 1(1) is a right ideal.

LEMMA 4.2. If I is a two-sided ideal of A, then Ip is a two-sided
ideal and Ip = 1(1) = r(I).

LEMMA 4.3. / / I is the smallest closed two-sided ideal containing
the minimal left projection e, then I contains no properly smaller
closed nonzero two-sided ideal.

The proofs are similar to those used when A is a Banach algebra.

LEMMA 4.4. Every minimal closed two-sided ideal I is the com-
pletion of a simple right complemented SP-algebra In A.
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Proof. In A is dense in 7, by Lemma 3.2. That J n A is simple
and right complemented follows from the fact that a right (two-sided)
ideal of I f) A is a right (two-sided) ideal of A. If Lx (Rx) is bounded
on I n A9 where x e I, then Lx (Rx) is bounded on A and xe A. If] A
is thus symmetric and maximal; the remaining requirements are readily
verified.

THEOREM 4.1. Every topologically semi-simple discrete right com-
plemented SP-algebra A is a direct sum of simple right complemented
SP-algebras, each of which is of the form JflA, where I is a closed
two-sided ideal of A.

Proof. Let e be a minimal left projection in A, and let I be the
smallest closed two-sided ideal of A containing e. By Lemmas 4.3 and
4.4, / n A is a simple right complemented SP-algebra. Furthermore,
P(A) = I f) A, where P denotes the projection operator with range /.
Ip Ci A is also a topologically semi-simple discrete right complemented
SP-algebra. The proof is completed by the use of Zorn's lemma.

We may now introduce the notion of left adjoints and state some
results on their existence; there will then follow a weak type of left
complementation.

DEFINITION 4.3. The element xl is a left adjoint of x in H if for
any a, b in A we have {Lxa, b) = {a, Lxib).

THEOREM 4.2. Let e be a minimal left projection in A. Then
every element of eA has a left adjoint in Ae. If A is discrete, the
set of elements of A that have a left adjoint is dense in H.

COROLLARY. If A is discrete and L is a left ideal of A, then
LpnAisa left ideal. (Note: Lp n A is not known to be dense in Lp.)

These results are established by exactly the same proofs as those
given for Theorems 1 and 2 of [11]. For the second part of the theo-
rem we must use the fact that an arbitrary left projection 6 in a dis-
crete algebra belongs to the closed right ideal generated by the family
of all minimal left projections in A. This is done in the following lemma.

DEFINITION 4.4. Two left projections e and / are strongly orthogonal
if ef = 0.

LEMMA 4.5. In a discrete SP-algebra A, every left projection is
the limit of a countable sum of strongly orthogonal minimal left pro-
jections.
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Proof. If e is a left projection and / is a minimal left projection,
where / ^ e, then # = e — / is a left projection. Since f — fe — f+fg9

fg = 0, so that / and # are strongly orthogonal. Let iT be any set of
strongly orthogonal left projections kt such that kt ^ e for every kt in
K. Let ifo = {/b,[l<p,| |2}, and let Kn = {kt 11/2W < ||fcf||» ^ 1/2-1}.
Then each left projection fc4 belongs to exactly one set Kni and it is
easily seen that each Kn contains a finite number of k%\ hence K is
countable. The proof is completed by a routine use of Zorn's lemma.

5. Annihilator SP*algebras«.

DEFINITION 5.1. Let A be discrete. A will be called an annihilator
SP-algebra if l(R) n A =£ (0) for every proper closed right ideal R, and
r(L) n A ^ (0) for every proper closed left ideal L. A will then be said
to have the annihilation property.

A Hilbert algebra may be shown to have the annihilation property.

THEOREM 5.1. Every closed nonzero right ideal R of a right com-
plemented annihilator SP-algebra A contains a left projection.

Proof. We assume that R is proper, or the theorem already holds
for R. Since Rp is a proper closed right ideal, l(Rp) f l i ^ (0). By the
argument used in Theorem 3.2, l(Rp) n A then contains an element a
that is not topologically right quasi-regular. Let Q = {ab — b | b e A},
for which a is a relative identity. Since La(R

p) = (0), we have RpaQ,
and hence Qp c R. Letting a = e + u, e e Qp, u e Q, we obtain as in
Theorem 3.1 a left projection e in R.

THEOREM 5.2. If e is a minimal left projection in a right comple-
mented annihilator SP-algebra Ay then every element of ReH has a left
adjoint in eA.

Proof. Suppose that x e ReH; then x = Rex = Lxe. Consider the
right ideal LXA — LLxeA. We assume that Lex =£ 0; otherwise x may be
replaced by x + e and we show that x + e has a left adjoint. If {LLxean}
is any sequence in LXA such that LZxean —> y, then LeLLxean = LeLReXan =
LeRaJRex = RanLeRex = Xean —> Ley by Theorem 3.3, and ean -> l]xLey.
Since Lia.e is a closed operator, 2/ = Lixe{llXLey), so that every element
in LXA is of the form LLxez = LX2:, where 2 e JJ. By the preceding
theorem LXA contains a left projection / = LLxeu. Then fe =£ 0; other-
wise, consider a sequence {cn}, where cn e A, such that cn —> %, L ^ ^ —•
LBeXu. (This is possible, because L^^ is the closure of the graph of the
operator L'ReX with domain A.) We would then have
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0 = ef= LeLL%eu = LeLBeXu = lim LeLBeXcn = lim LeRcJRex

— lim RCnLeRex — lim Xecn = XLe^ .

But

0 =£ / = LZa;e^ = lim LReXcn = lim RCnRex = lim i2eCn& = lim Lxecn ,

and ecn —> Leu; this shows tha t / e ^ 0, and tha t / = LxLeu, since L a is
a closed operator. Thus

fe = ReLxLeu = lim ReLxecn = lim ReReCn% = lim i? e % e^

= lim Lxecne = lim [JinLxe = //# ,

so that #* = lfji(ef).

COROLLARY. ii!eil = Ae.

Proof. For any a? in if!eU, Lx is a closed operator, so that L** = Lx.
But L* — Lxi is bounded and defined everywhere in H; hence the same
is true of its adjoint. Thus x e ReH n A — Ae.

THEOREM 5.3. Let A be a topologically semi-simple right comple-
mented annihilator SP-algebra. Then A contains a left ideal L with
the following properties:

(1) L is dense in A.
(2) L is isomorphic to an algebra M of matrices which are

functions on a certain set J x J. Every matrix X of M has a left
adjoint X1 = X* in M.

(3) If x,y e Ly then (x, y) = tr XTY*, where X and Y are the
matrices of M corresponding to x and y, and T is a bounded, self-
adjoint, positive definite matrix operator on L\J).

Proof. (1) Let F — {ei}iej be a maximal family of strongly or-
thogonal minimal left projections in A, where J is a suitable index set.
Consider R — S«ej^A. We first prove that R is dense in H; using this
fact we may then draw the same conclusion for L, the left ideal con-
sisting of finite sums X«ejA^. The argument is exactly the one used
in Theorem 3 of [10].

(2) Letting eiAej = Aij9 we have L = ^ijAljf where the sums over
j are always finite. From Theorem 4.3 of [1], we know that each Ai3

is one-dimensional and that we may choose matrix units etJ in AtJ so
that eu = ei9 ei3ejlc = ei7c, and etJ

l = en. (We have here used the fact that
every element of Ai3 has a left adjoint in A3i.) For any two elements
of L we now have x = Z«j%% and y = YajVifii^ where % and ytJ are
complex numbers. Moreover, the product xy is given by
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( S ^ . A J X E y*ieki) = (Z %%)(E 2/^0 = S ^ ^ ^ « >

with the sums taken over all the indices shown in each case. Finally,
if x e L, then x e ^Aej (where again the sum is finite), so that xl

exists and xl = xi3eH.
(3) Setting ttJ = (eii9 ei3), we define a matrix T = (ti}). It is easy

to see that T is well defined and self ad joint. For any two elements
i n £> w e h a v e

0», i/) = ^jAhjVv = tr x r r * .

Next we shall show that T is a bounded, positive definite operator on
L\J). In order to do so, we first prove that W, the restriction to Aer

of the conjugate-linear mapping x —> x\ is bounded, where r is some
fixed index in J. By Theorem 5.2 and its corollary, W is a mapping of
the complete metric space Aer into erA; moreover, W is a closed oper-
ator. It follows from the closed graph theorem that W is bounded, and
for every x in Aer,

( 1) (x\ xl) ^ M(x, x).

Now each element x = ^tx(i)etr of Aer corresponds to the element X —
x(i) of L\J)y and conversely, where each point of J is taken to have
unit measure. For any finite sequences x(i) and y(i) in L\J) and the
corresponding x and y in Aer, we have

<2) (a?1, i/1) - ZtMfyuVti) •

By the continuity of 7F, the expression (2) holds for all X, Y in L2(J)
and the corresponding x, y in Aer. Applying (1) we then have for any
X in L2(J), [XT, X] = £ i . ^ ) W ) = (*S »z) ^ ^(», ») = II er \\

2M[X, X],
where x — ̂ iX(i)eir and [,] is the scalar-product of L\J). This shows
that T is a bounded operator on L\J), and that T is positive definite,
since {x\ xl) > 0 if X =£ 0.

We may now remark that as in the case of Hilbert algebras a
necessary and sufficient condition for H to be a Banach algebra under
the given norm (or an equivalent one) is that inf ||e4|| = m > 0, where
{ej is the set of all left projections of A. The necessity is obvious; to
prove the sufficiency it may be shown by the method of [13] that T has
the lower bound m, from which it follows that T has an inverse and
that consequently L is complete, as well as dense in H. Thus L = H,
and one may further prove that every element of H has a left and
right adjoint: H is, in fact, a two-sided il*-algebra.

If A is discrete and commutative, then A is necessarily an annihi-
lator SP-algebra, by Lemma 4.2. We therefore conclude with a theorem
for algebras of this type.
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THEOREM 5.4. Let A be a commutative SP-algebra which is comple-
mented and discrete. Then A is a Hilbert algebra isomorphic to that
described in Example 4.1.

Proof. Since for any two distinct minimal projections e and / , ef
is a projection and ef ^ e, ef ^ / , we conclude that ef — 0; that is,
distinct minimal projections are strongly orthogonal. As in the case of
Theorem 4.3, we use the method of [11] to show that H = 2,e«A, where
{Ci}iej is the family of all minimal projections, and each e%A {— e%Ae^
is isomorphic to the complex number field. Thus, if x e H, x = 2 \ei9

its adjoint x* — ] £ X ^ and (x, x) ~ S l \ l 2 l k « l i 2 - It is now clear that
H is isomorphic to L2(J, m), where m{E) = 2«es (I ei IIs for every counta-
ble subset E of J. A is then isomorphic to the maximal extension of
L, the set of all simple functions on J", which is a Hilbert algebra.
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