THE STRUCTURE OF CERTAIN MEASURE ALGEBRAS

KENNETH A. RoOsS

Introduction. In their paper [3], Hewitt and Zuckerman study the
measure algebra _# (G) where G is a topological semigroup of the follow-
ing type: G is a linearly ordered set topologized with the order topology, is
compact in this topology, and multiplication is defined by zy = max (, ¥).
In this study, we will suppose that G has the above properties except
that compactness will be replaced by local compactness. (See § 8.5 [3]).
As the reader will readily observe, we are heavily indebted to Hewitt
and Zuckerman for their initial study of these measure algebras. For
completeness, we have listed, without proof, a few of their results; they
are stated in their paper for compact semigroups but the proofs easily
carry over to locally compact semigroups.

In §2 we study G and G,. The characterization of the Gel’fand
topology on G is somewhat simpler than that of Theorem 5.5 [3]. The
major result of this study is Theorem 8.4, stating that every closed ideal
in _# (G) is the intersection of maximal ideals; i.e., spectral synthesis
holds for _# (G). Malliavin [7] has recently shown that spectral synthesis
fails for .# (G) when G is a non-compact locally compact commutative
group." Theorem 3.4 shows that this result cannot be generalized to
locally compact commutative semigroups. In §4, a generalization of
Theorem 6.7 [3] is indicated; see Theorem 4.5. This is used to obtain
additional facts about .# (G) (§5). In 5.8 we show that our theory is
not a special case of the theory of function algebras.

1. Preliminaries.

1.1. We will be concerned with linearly ordered sets; i.e. sets ordered
by transitive, irreflexive relations < . For elements x and ¥ in such a
set X, we define Jz,y[ ={,e X: 2 <2<y} and [z,y]l={re X: 2 <z
< y}. The half-open intervals [z, y[ and ]z, y] are defined analogously.
We also define | — o, 2] ={#e X: 2< 2} and ] —o, x] = {re X: 2 < a}
with analogous definitions for [z, oo[,]x, o[, and | — o, «[. The sym-
bols — o and o will never denote actual elements of X. The order
topology for X is the topology having the family {] — oo, 2[}eex U
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follows easily from this.
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{l#, [}.ex for a sub-base.

For terminology not explained here in measure theory, topology, and
harmonic analysis, see [1], [5], and [6], respectively. If A is a subset
of B, we will write A < B; A c B will mean that A is a proper subset
of B. For sets A and B, we write A — B={r:2xe€ A,x¢ B}and A4B =
(A— B) U (B— A). The empty set will be denoted by 0. For any set
A, x4 will denote the characteristic function of A.

1.2. STANDING HYPOTHESES. Let G be a set linearly ordered
by the relation <. Suppose also that G has the order topology and that
under this topology G is locally compact. For z,y e G, we define 2y =
max (x,y). With this multiplication G is a locally compact topological
semigroup.

1.3. Let €(G) denote the linear space of all complex-valued continu-
ous functions on G that are arbitrarily small outside of compact sets. For
fe C(@), let || f|| = max,eq | f(x)|. Let _#Z(G) consist of all countably
additive, complex-valued, regular, finite Borel measures on G. Let € (&)
be the linear space of all complex-valued bounded linear functionals L
on €(G). For each L e €f(G) there is a unique M e _#(G) such that

(1.3.1) L(f) = Lf (x)dM(x)

for all fe €(G). Also for each Ne _7(G), 1.8.1 defines a member of
C¥(G). Under this correspondence, ~#(G) = €f(G). We will associate
L with \, M with pu, ete.

Let v e _#Z(G). Then for Borel sets E = G, we define

(1.3.2)  |M|(E) = sup{ SN (B | 2 {B)r, is a Borel partition of E}
k

=1

Then the set-function |\ | belongs to _#(G) and
(1.3.3) I =IXM(G) =L
where L e €f(G) is defined by 1.3.1. See [2].

1.4. THEOREM. Let L and M be in CF(G). For all f € €(G), let

(1.4.1) LxM(9) = | | f@enanadpw) .
Then LxM € C¥(G), and
(1.42) IL+M | S I L - 1 M-

1.5. For ), pe #(G), we define Mz to be the unique measure in
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_#(G) that corresponds to LxM e CF(G) .

1.6. THEOREM. Under the convolution defined in 1.5 and the or-
dinary linear operations, _#(G) is a commutative Banach algebra.
We omit the proof; see §2 [3].

1.7. For ae @G, let ¢, _#Z(G) be defined by

lifac E,

(1.7.1) W) =1, 5 . g

for Borel sets E S G. For he _#Z(G) and A = G a Borel set, M e _Z7(G)
is defined by M(E) = MA N E) for all Borel sets F < G.
The proofs of the following four lemmas are routine and uninteresting.

1.8. LEMMA. Let ES G be a Borel set and ne _#Z(G). Then
for any ¢ > 0, there exist a,be E such that

(1.8.1) IMEN]—w,a)<e and M(EN]b o) <e.

1.9. LEMMA. Let X be a linearly ordered set and U = X be a finite
union of open intervals. Then U is the pairwise disjoint union of
open intervals:

where intervals of the form [inf X, b,[, |a,, sup X |, and [inf X, sup X] are
also admissible if inf X or sup X exist. Moreover, a, ¢ U except possibly
in the case where a; = inf X, and b, ¢ U except possibly in the case that
b, = sup X.

1.10. LEMMA. Let X be a compact linearly ordered set and U = X
be an open set. Then U is the pairwise disjoint union of open intervals:

U =U la., bal

where intervals of the form [inf X, b,[, Ja,, sup X], and [inf X, sup X]
are also admissible. In addition, a, ¢ U except possibly im the case
that a, = inf X, and b, ¢ U except possibly in the case that b, = sup X.

1.11. LEMMA. Let X be a locally compact limearly ordered set.
Suppose that K = X is compact and that U is an open set such that
K<S U< X. Then there exist finitely many pairwise disjoint closed
compact intervals {[a;, b}, such that U 2 Ur.[a;, b] 2 K. Also there
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exist finitely many pairwise disjoint open intervals {Ju,, v;[}?-, such that
U2 Ui Jus, v 2 K and each closed interval [u,, v;] is compact. Inter-
vals of the form [inf X, v,[, Ju,, sup X], and [inf X, sup X] are also
admissible whenever inf X or sup X exists.

2. The spaces G and @0.

2.1. A Dedekind cut {4, B} of G is a pair of subsets of G such that
ANB=0, AUB=G, and * <y whenever x ¢ A and ye B. Let G
denote the set of all semicharacters of G.

2.2 THEOREM. Let {A, B} be a Dedekind cut of G such that A + 0.
Then the function

lifxed,

(2.2.1) Y o@) =1 if veB

s a semicharacter of G. Conversely, every semicharacter on G has the
form 2.2.1.

2.3. THEOREM. Let {A, B} be a Dedekind cut of G such that A # 0.
Then the mapping

(2.3.1) 70 = (A) = | P s(@)dN@) (e 2(@)

18 @ homomorphism of _#(G) onto the complex mumbers. Moreover,
every homomorphism of _# (G) onto the complex numbers has the form
2.3.1.

Proof. This is essentially proved in Theorems 3.2 and 3.3 [3];
however the proof in [3] that 7, is multiplicative can be simplified. Let
N, tte #(G). According to Theorem 2 [8], Mx((E) = : x p{(x,¥) G x G:
2y € E} for Borel sets £ S G where M x g is the product measure of :
and #. Hence if {4, B} is a Dedekind cut of G, then

O p) = Mxp(A) = N x p{(z, ¥) € G x G: max (z, y) € A}
=\ x A x A)=MA)p4) = 1,07 p).

2.4. THEOREM. The Banach algebra _#(G) is semisimple.
Proof. In virtue of 2.3 we need to prove that if MA) =0 for all

Dedekind cuts {A, B}, then ) is identically zero. Suppose that MA) =0
for all Dedekind cuts {4, B}; evidently MI) = 0 for all intervals I. If
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M is not identically zero, then MK) #= 0 for some compact set K & G.
By regularity there is an open set U 2 K such that |A| (U — K) < [MK)].
For each z € K, let I, be an open interval such that x e I, € U. Let
L, «-+, I, be a finite subset of {I,},ex covering K. Let V = Ur,[; clearly
Kc VU Byl9, Vis the pairwise disjoint union of a finite number
of open intervals. Hence M V) = 0. Thus

IMV — K)| = [MV) — MK)|
= [MK)| > MU = K) 2 [M(V = K) = [ MV — K)|

which is a contradiction. Hence )\ is identically zero.

2.5. Theorem 2.3 identifies completely the homomorphisms of _Z (G)
onto the complex numbers. Relation 2.3.1 associates each homomorphism
w4 0of _# (G) with the semicharacter -, ;. Hence we will usually consider
G as consisting of the homomorphisms 7,. For M e _7(G), we define X
on G by

(2.5.1) M) = 7 (V) = MA) (7, €G);

X is the Fourier transform of .

For =n,, «w, e G, we will write T,<m, if and only if Ac A'.
Under this ordering, G is obviously linearly ordered. Evidently G is
isomorphic to the maximal ideal space of _#Z(G). The Gel’fand topology
for G is the weakest topology for which all the functions \ are con-
tinuous.

Henceforth we will write m,; for m_. . and m, for m_.. 4 (@ € G).

2.6. DEFINITION. Let G, = G U {m,} where 7, < 7 for all = ¢ G.
The symbol 7, may be taken to correspond to the zero homomorphism
of _#(G), the zero semicharacter of G, and the Dedekind cut {0, G}.

2.7. THEOREM. The Gel’'fand topology on G coincides with the
order topology.

Proof. Let m, € G where A#G,\ € A (G), and ¢ > 0. Using 1.8,
we can find b € A and ¢ ¢ A such that || (]b, ¢]) < e. Clearly 7, € |my, Tyl
For 7y, e |y, Ty, we have

IN7) — M7p) | = [MA) — MB)|
=|MA4B)| = [MA4B) = [NM(b, ) <e.
Thus X is continuous at 7, € @(A # () in the order topology. Similarly
% is continuous at 7, in the order topology. Hence the Gel’fand topology

is weaker than or equivalent to the order topology.
For b,c e G,b < ¢, it is easy to verify that



728 KENNETH A. ROSS

A A

& — & = Yamp.mer 3N & = Yiryp vl

Hence sets of the form

(2'7'1) ]ﬂ:b[. n-c][ b <c,
and
(2.7.2) 17t @l S

are open in the Gel’fand topology. All sets of the forms 2.7.1 and 2.7.2
comprlse a basis for the order topology. It follows that the order topology
on G is weaker than or equivalent to the Gel’fand topology on G.

2.8. THEOREM. The set G, with the order topology s a totally
dzsconnected compact Hausdorﬁ' space. For v e _#(G), let X be de ﬁned
on G, to agree with X on G and such that M7) = M0) = 0. Then X is
continuous on G,

Proof. Let <# consist of all subsets of GO of the form:

(2.8.1) 17ar, 70 (@ <),
(2.8.2) [Eoy n.b][ ’
(2.8.3) 17, 76 -

Each set in &7 is open and closed and <Z is a base for the order topology
on G,. Hence G, is totally disconnected. The remainder of the proof
is omitted.

2.9. DEEINITION . Let I be an interval of G, and let & be a continuous
function on G,. Then we define:

(2.9.1) V(h; I)—sup{Z M) — (w2 m ST = ver S 7T, meI}.

In particular, we define V() = V(k; G,) and say that % has finite varia-
tion if V(h) < .

2.10. Let  be a continuous function on G, and let Ty STy S voe
< W4, Ty, € G Then
k
(2.10.1) Vs [7a, 7)) = X Vs 70 Tl -

Let 2 be a continuous, real-valued function on @0 of finite varia-
tion. For =, € Gy, let hy(xw,) = V(k; [y, 7,]). Let th =h, — h. Then h,
and h, are continuous, non-decreasing functions on G,.

3. The closed ideals of _#(G).

3.1. LEMMA. Let n,, 75 € G,, where w, < 75, and let v e _Z(G).
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Then
(3.1.1) IMN(B —A)=VR; [ 7))

In particular, ||| = M (G) = V (V).
Proof. It is easy to show that V(N ; [m,7s]) < [N (B — A).

Let ¢ > 0. Let E, .--, E, be pairwise disjoint non-void Borel sets
whose union is B— A. For 1 =1,---,m, let K, S E;, be a compact
set for which || (E; — K;) < ¢/m. By induction (and using the second
part of 1.11) we obtain pairwise disjoint open sets U, ---, U, such that

(i) K,LeU,cU, =6 - (UrinK; U Uiz _j)r
(ii) IM(U; — K;) < ¢/m,
(iii) U, is a finite union of pairwise disjoint open intervals ;

t=1,+-+,m. Now Ur,U, is the finite union of pairwise disjoint open
intervals, say {I}};_,, such that each I} is a subset of some U,. For
j=1,-+-,7r, let I, =I; N (B — A). Evidently Uj-.I, = Ur(U; N (B —
A)); we may suppose that each I, is non-void. Let A,;,={reG: 2 <y
for some y e I,}(j =1, ---, r). Relabelling if necessary, we may suppose
that A, c A, --- C A4,. LetA,, ,={re G:2x <yforallye I}. Then
Ty STy < Ty STy < Ty, =000 <7y, =73 and I, = Ay — Ay, for
j=1,++-,7r. Now

VRS 70 7l 2 5 R(Ea) — M) = 5 MA — 4)]

> é(x(zj)f gg[x(m N (B— A4))|

whereas
3 IME)| = 3 IME — K) + MU 0 (B— 4)
— MU N (B— A) —K)| = 2+ 5 IMT 0 (B — 4))]
so that

SIME)| < 26+ VE; [74 ).

It follows that [N (B— A) < V(N; [z, 75]) since {E}r, and ¢ are
arbitrary.

3.2. LEMMA. Let R be an interval of G, of the form 2.8.1 or 2.8.3.
Suppose that ne _7(G) and that N(z) # 0 for all = e R. Then there
exists a v € _#(G) such that
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— for ;e R,
(8.2.1) Uz) = { Mx)

0 for7zéR.

Proof. Suppose that R = |z, 7, and let X = [z,y[. Evidently
X is a locally compact subsemigroup of G. Throughout this proof, ele-
ments of X will be denoted by 7 ; whenever the symbol 7, occurs, it is
tacitly assumed that A £ X and that {4, X — A} is a Dedekind cut of
X. The functions X will be considered defined on G or X rather than
G, or X,. For Borel sets ES X, let ME)=ME N X) + M] — oo, 2[)
&, (F). We have X € _#(X). We now show that

(3.2.2) MR L) = NTayy . ap) for e X .

Indeed >\(7r,,) =XA4)=MA N X) +M]—c0, 2]),(4) =MA) + M]— o x[)
=MAU] — oo, &) = M@,y —wr o) SiNCE T 7)o € R whenever 7, € X,
it follows from 3.2.2. that

(3.2.3) M7E)#0 for #,eX.

By Theorem 4.15.1 (9) [4], X € _#(X) has an inverse D € _#(X). For
Borel sets £ < G, let

WE) = XE N X) — ¥(X)e, (E) .

Evidently v e _#Z(G). It is now routine to verify 3.2.1.

If R=]m,,n,], we let X =[x, [ and repeat the preceding proof
with the appropriate modifications.

3.3. NoOTATION. For subsets A and B of G (or @0), we write A < B
if reAand ye B imply x <y and A< B if x € A and y € B imply
2 < y. Note, in particular, that 0 < A and A < 0 for any set 4. Let
P={n,.+-,m,} be a finite subset of G, where 7, < T, < =+ < T
We will sometimes write (X ; P) for "3 |[M7sy) — Mx) |, A € #Z(G),.

For 7, e Gy, let I, = {» € .7 (G): MA) = 0}. Note that I, = _7(G).
Since each I (7w, e @) is the kernel of the homomorphism 7, the set
{I}z e4 is precisely the set of all regular maximal closed ideals in _Z(G).

The following theorem characterizes the closed ideals in _#(G).

3.4. THEOREM. LetI & _#(G) be a closed ideal. Let H = {r e Gy
M7) = 0 for all e I}. Then H is closed in G, and

(3.4.1) I=N1.

T4€EH

Proof. Obviously H = MNie:(X)7%(0) is closed and I & N exls -



THE STRUCTURE OF CERTAIN MEASURE ALGEBRAS 731

Let ) be a fixed element of N.,exls. LetZ ={ze G,: Nx) = 0}.
Clearly Z is closed iAn G, H< Z,and &, ¢ Z. By Lemma 1.10, the comple-
ment Z' of Z in G, is a pairwise disjoint union of open intervals:

7' =l 7y ]

where one of these intervals may be of the form ]z, , 7;]. Moreover,
my, € Z for all @ and 7, € Z for all @ except possibly when 75 = 7.
We assume in the following that 7, ¢ Z’; elementary modifications are
necessary when 7, € Z'.

We first prove

(3.4.2) V) = VN [7a, Ts,)) -

Using 8.1, we have S.V(\; [74, %5,]) = SalM (Ba — 4a) < M (G)
=VQR). Let 1, <, < +++ < W, W, € G,, and call this partition P’. Let
P=P U({n;}. Let a,a,++,a, be precisely those a such that
]n'AWi, 77:31”[ NP = 0. For this paragraph we write 4, for A,, and B, for B,,.
We may suppose that ]z, 75| < I7y,, ,, 75, [(G=1,-+-,k —1). For
t=1,+-+,k, let P,=]n,, 7| NP. Let Z, = [7, 7, ]JNP. For i =1,
coeyk—1,let Z, = [ry, 7y, ] NP. Let Z, = [75, @] NP. Clearly some
or all of the Z, may be void. Evidently we have:

(i) P=2UPUZUPU -+ UP,,UZ_, UP,UZ;

(11) Z0<P1<Z1<P2< e <Pk—1<ZIc—1< Pk<Zlc;

(iii) Z N P=UkZ;

(iv) Picry, sl (t=1,---,k)

(v) the intervals given in (iv) are pairwise disjoint.
Now let P* =P U {m,, Ty, Ty Tp,y *** » Tuypy T} Clearly Z, < {m,} < P,
<{mp} = Z = {m} < Po< oov =22y = {74} < Py < {mp,} = Z,. Using
the notation established in 3.3, we now get

m

2

—1
=1

R — Mm)l = (75 P) S SR PY)
=SSR m UP U -

By 2.9, we have 3, (/): T U P U{m,}) = V(X ; [ﬂdi’ Tp,])
for 1 =1, .-+, k. Combining these inequalities, we obtain

5 R = @) £ 5 VR 70y ) £ S VE; 7y, )

Since the partition P’ was arbitrary, we have V(}) < 3. V(Z; [z 4y Ta,])
and hence 3.4.2 is proved.

Let ¢ > 0. We shall ultimately show that there is a ¢ € I such that
[IN— ]| =3e. Since ¢ is arbitrary and I is closed, this will prove that
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x e I, It will then follow that M:,exls & I, completing the proof. By
3.4.2, there exist a,, ++- , a,, such that 3, V(}; [Ty T, ) + 6= V).
We shall henceforth write A; for A,, and B, for B,. Then

(3.4.3) VR = 5 Vsl m) e

We may suppose that A, c B, A, Cc B, --- & A, C B,. By 1.8, there
exist x;,y; € B; — A; such that

(3.4.4) IM((B: — A) — [z, ) < % (G=1,--+,m).

Let U; = |z, 1, w3 [ ; obviously U; is open and closed. Note also that
Ui Slry, ms, [SZ'. Let U= U~LU,; U is open and closed (and hence
compact). Also U< Z' < H' where H’' denotes the complement of H
in G,. Thus for each w, € U, there is a \, € I such that M, (A4) =
(7)) # 0. Note that m, ¢ U since 7, H and 7y ¢ U since 74 ¢ Z'.
By the continuity of X, on Go and Theorem 2.8, there exists an open
and closed set V, such that

(@) mie Vg

(b) 7 e V, implies X (7) # 0;

() Vi€ U,

(d) V, has the form 2.8.1.2
Since U is compact and U.,erV, = U, there is a finite set {V }i-, such
that UiV, = U.

For V,, = I7a,0 mpl , let Vo, = [, mapl and Vi, = Jmy,, 7wa]. Let
7" be the family of sets consisting of all V,,, V7, and V. For ze U,
let R, =N{VeZ:mweV} C(Clearly there exist only finite many distinct
R, — say {R}i..

The following assertions are easily shown:

(@) ULR, =T;

(b’) each R; has the form 2.8.1%

(¢) the family {R;}:., is pairwise disjoint;

(@) for each 1, there exists a \; € I such that 7 € R; implies X,(7) # 0.
By Lemma 38.2%, there are v; € _#(G) such that

1
D) = { Ni(m)
0 if 7¢R;;

if TreR,,

1=1, -+, k. Let pt = . Axxvan; clearly 1 e I. Evidently

2 If ng€Z’, then V4 can be of the form 2.8.3.
3 If ng€Z’, then R; can be of the form 2.8.3.
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) = {X(Tc) ifrelU,
FO=10 itz¢uU.
We observe that

(R — ) (@) = { 0 if 7 e U= m Tyl »

Mm) if T =7, or T=1,,.
Using this, Lemma 3.1, and relation 3.4.4, we have
(3.4.5) VN — 5 [0 Tpl) = N0 |+ 1N,
M7 ) — M7g) | + [M7T5,) — M7y,) |

V(r; [ﬂ"AU 75:%[]) + V(N5 [7y0 75,])

IM( =, 2] — A) + IM(Bi =] —o, )

= IMB; — A) — [z, w:]) = L
m

Il

A IIA

We also have from 8.1 that
(3.4.6) VN5 [0 T5)) + VN [74, Tay)
= N ((B; — A4) — [%, wi]) = . .
m

Using 2.10, 3.4.5, and 3.4.6, we obtain

(3.4.7) V(x - [2; [71-,4‘; ﬂ'-Bt]) = V(i\' - 1&; [n-AV n‘;ci[]) + V(/X’ - i’l; [n-x,[’ 72"115]])
+ VN — g [n'll,;]v TEB,;]) = V(n; [ﬂ:Az’ TC%[])

VO = 3 [ T + VO [ 7)) = 22

We used the fact that /¢ is zero on [z, 7,] and [z, 5] since these
sets are disjoint from U. Finally, using 2.10, 3.1, and 3.4.7, we get

=gl = VE = f) = VO — /5 [7a,, 7)) + V&~ f5[m, 7))
+ 3V = 5 [Ty 7)) + 3 VE — 5[50 7))
= V& [y 7l) + VO [0 7)) + 2V [, )
+ 3V — /5 74 m]) S V(G = B + M (4) + 510 (4 - B
+26= (@) = SN (B — 4) + 26 = V)

= SV [7ay o) + 2¢ -

Now applying 3.4.3, we obtain ||A» — ¢|| < 3¢. This completes the proof.
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3.5. ExAwmPLES. LetG =10, 1] and M € _#Z(G) be ordinary Lebesgue
measure. Then the ideal I = {Mxpt + an: e _#Z(G) and a is a complex
number} is dense in _Z(G) since X vanishes only at 7, I is the ideal
generated by . If G = [0, 1] and \ is Lebesgue measure, then I = {Mkp:
re 7Z(G)} is the ideal generated by M and I is dense in {\ € _Z(G):
M{0}) = 0}

4. The Herglotz-Bochner theorem for _~(G). This section gener-
alizes § 6 [3].

4.1. DEFINITION. Let % be any bounded, real-valued, nondecreasing
function on G,. Let 4 denote a partition {t.}i—, of G where ¢, < ¢, < +-+
< t,. For an arbitrary complex-valued function f on G, let

S(fs 4) = £(t) mey) = Wzl + 3 F (8 [hlmg) — b, )] -

4.2. THEOREM. Let f e€eC(G) and h be as wm 4.1. Then there
exists a unique number L(f) such that for every € > 0 there exists a
4, as in 4.1 with the property that |L(f) — S(f, 4)| < e for all 42 4,.
We write this relation as L(f) = lim,S(f, 4).

4.3. THEOREM. The function L defined in 4.2 for all f e €(G) is
a bounded nonnegative linear functional on CyG).

4.4. DEFINITION. Let & be a continuous function on @o and let
T4 g € Gy, wy < Tz Then we define

(4.4.) Vil 70 751) = sup {55 Vs (7.0 7))
=2 <T=2Y< o <l = Y

Tu S Ty Ty 1 = Tpy (20 Yl compact} .

In particular, we define V. (k) = V(k; |7, 7s]). We also define
(4.4.2) Vb [, T4]) =0

for 7, € G,.

4.5. Let h be a real-valued continuous function on G, having finite
variation and let 7, =7, < -.- < 7,. Then

(4.5.1) Vil [Ty 7al) = 35 Vilh 7y 7))

4.6. THEOREM. Let h be a continuous function on G, having finite
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variation and such that h(m,) = 0. Then there exists a N € _7Z(G) such
that X = h if and only if

(4.6.1) V(k) = Vih)

The proof is a tedious lengthy extension of the proof of Theorem
6.7 [3] and uses 4.2, 4.3, 3.1, 4.5, and 1.11 in the case that % is non-
decreasing. The general case is proved by applying 2.10.

4.7. EXAMPLES. Let G be the real line under the usual ordering.
Then a function h on @0 is the Fourier transform of some measure
M € _#Z(G) if and only if % is continuous, has finite variation, and h(xz,) = 0.

Condition 4.6.1 is not always satisfied by continuous functions % on
G, having finite variation and satisfying h(m,) = 0. Let G = [0,1] x Jo, 1]
where (a,b) < (c,d) if a <c¢ orif a =c¢ and b <d. Let h on G, be
defined by

M(r,) = sup{a € [0, 1]: (a,x) € A for some x € ][0, 1[}.

The function % is continuous, V() =1, and V, (k) = 0. The linear func-
tional L obtained from % in 4.3 turns out to be the zero functional.

5. Some consequences of the Herglotz-Bochner theorem., Theorems
5.1 and 5.2 are routine applications of 4.6.

5.1. THEOREM. Let ¢ be a continuous function from a subset
H 2 {0} of the complex plane to the complex plane such that $(0) =0
and

(5.1.1) for every M > 0, there exists a K, > 0 such that
[p(z) — p(w)| = Ky |2 — w| for z,we H, |z| =M, |[w| =M.

(1.e., ¢ satisfies a Lipschitz condition for arbitrarily large disks.) Then
for every \ e _Z(G) for which (range \) S H, there exists a v e _7(G)
such that D = goX.

5.2. THEOREM. Let ¢ be a continuous function from [0, oof to [0, oof
that is mon-decreasing, absolutely continuous on all intervals [0, M],
and such that $(0) = 0. Then for every nonnegative measure » € _Z(G)
there exists a nommegative v € _7(G) such that ¥ = ¢oi.

5.3. COROLLARY. Let ) € //(g). Then there exists a v € 7 (G)
such that d(z) = |Nx)| for all 7 e G,.

5.4. COROLLARY. Let )\ € ,//A(G). Then there exists a v e _Z(G)
such that D() = \x) for all = e G,; here Z denotes the complex conju-
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gate of z. In other words, _#(G) is self-adjoint (see page 88 [6]).

5.56. COROLLARY. Let N € _#Z(G) be a nonnegative measure. Then
there exists a nonnegative v € _#Z(G) such that vxv = \.

5.6. It is natural to ask whether Theorem 5.2 is valid for more
general measures \; one might hope that the result would be valid at
least for M e _#Z(G) for which X is nonnegative. If this were the case,
5.5 would also generalize. However, we will see in 5.7 that this is not
the case whenever G is infinite. Theorem 5.7 also shows that the
Lipschitz condition assumed for ¢ in 5.1 cannot be replaced by absolute
continuity. (The function ¢(x) =1/ g is absolutely continuous on all
intervals [0, M] but does not satisfy 5.1.1.)

5.7. THEOREM. Suppose that G 1s iwiﬁnite. Then there exists a
» e _Z(G) such that X is nonnegative on G, and such that . # vxv for
all ve 2Z(G).

Proof. Suppose G has an infinite subset {x;}7, such that x; < x;,
for all 7. Let )\ be the discrete measure defined by

’l{ if » odd,
n

M{z,}) =
— ———l—-—~if n even .
(n — 1)
It can be shown that A satisfies the conclusions of the theorem. If G
does not have an infinite subset as above, then G has an infinite subset
{x.}z, such that x, > x;,, for all ©. This case is treated in a similar

manner.

5.8. It is evident from 5.7 that _#(G) (G infinite) is not isomorphic
as an algebra to the algebra €(X) for any locally compact space X.
In the contrary case, .Z(G) would be isomorphic to €«(G) and the
isomorphism would beA x—X. However, if he (5:0(@) is nonnegative,
then for some k, € €(G), we have h} =h.

Finally, the result of 8.3 [3] holds for locally compact G. That is,

5.9. THEOREM. A measure : € _7Z(G) 1is idempotent if and only
if N is of the form:

(5.9.1) A= 800 - 601 + e + (——1)"’6%

where ¢, < ¢, < o0 <Cg
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