GENERALIZATIONS OF SHANNON-MCMILLAN THEOREM

SHu-TEH C. Moy

1. Introduction. Let X be a non-empty set and &~ be a o-algebra of
subsets of X. Consider the infinite product space 2 = [[;._.. X, where X, = X
for n = 0, +1, +2, .-+ and the infinite product g-algebra . & = [[7._. .52
where &2 = ¢ for n =0, +1, =2, .... Elements of 2 are bilateral
infinite sequences {-:-, x_,, %, &, *+-} with z, € X. Let us denote the
elements of Q by w. If w ={-++, 2, %y, x,, +++} x, is called the nth
coordinate of ® and shall be considered as a function on 2 to X. Let
T be the shift transformation on 2 to 2: the nth coordinate of Tw is
equal to the n + 1th coordinate of w. For any function g on 2, Ty is
the function defined by Tg(w) = 9g(Tw) so that Tx, = x,,,. We shall
consider two probability measures £, v defined on & Let 2, = []r, X,
where X, =X, 1=1,2,---,n and &, = [[,.% where &= .97 1 =
1,2,-++,n. Then 2, =X and % =.2% Let ., ., m<n, n=0,+1,+2, ¢,
be the o-algebra of subsets of Q2 consisting of sets of the form

[(t) = {"'r L1y Loy Ty, "'}I(ﬂﬁm, Tmt1r ** %5 Lp) € E]

where E € %, ... Let F_., be the g-algebra generated by U,>_, Fm.-
Let 4.0 Y. be the contractions of , v, respectively, to . %, ., and ¢t .. .,
Y_.., be the contractions of g, v, respectively, to # . ,. Throughout
this paper v,.,. s assumed to be absolutely continuous with respect to
Uy Yo K Py JOr m < m,m =0, £1, +2, .-+, Let f,, , be the deriva-
tive of v, , with respect t0 Ly, ny fron = Wi n/ Utmne Fm 1S Fm . measurable
and nonnegative. f, , is also positive with v probability one. Hence
1/fmn. is well defined with v probability one. A fundamental theorem
of Information Theory by Shannon and McMillan may be considered as
a theorem concerning the asymptotic properties of f,., as n — . The
theorem may be stated as follows: Let X be a finite set of K points
and . be the o-algebra of all subsets of X. Let v be any stationary
(T invariant) probability measure on & and ¢ be the equally distributed
independent (product) measure. Then n~'log f., converges in L,(v). In
particular, if v is ergodic, the limit function is equal to log K — H with
vy probability one where H is the entropy of v measure [3] [8]. Generali-
zations to arbitrary X, & were first studied by A. Pérez. He introduced
an A, condition on v as follows. v is said to satisfy A, condition if
V.., is absolutely continuous with respect to v_.. o4, forn =1,2,.--.
He proved the following theorem. If v, ¢ are stationary and g is the
product (independent) measure on & and if
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(a) lim,..n*\logf, . dv exists and is finite,

(b) v satisfies condition A4,,
then {n~'log f,.} converges in L,(v) [6]. Later Pérez announced that
the theorem remains to be true for any stationary measures g, v [8].
The present writer proved that for Markovian g, v with v being stationary
and p¢ having stationary transition probabilities the v-integrability of
log f.., implies the L,(v) convergence of {n~'log f;,}. The proof is based
on an iteration formula for f,,[4]. In this paper we shall study the
case that v is stationary and g is Markovian with stationary transition
probabilities. It shall be proved that the condition

() \(logfi,—logfi,—)dv <M< o for n=1,2,8, -+ implies the
L,(v) convergence of {n'log f,,}. In fact the conditions (c) and (a) are
equivalent for this case, so that the theorem is a generalization of the
theorem of Pérez given in [6]. The proof is conducted along similar
lines used by McMillan. The crucial step is proving the L,(v) convergence
of {logf_,,—logf_,_i}. The condition (¢) is shown to be necessary and
sufficient for this convegence.

2. Generalizations of Shannon-McMillan theorem. Let =z, ./ 0,
Gy Qs Ty Fmns Lnws Ymos Jmm D€ as in I. Notations for conditional
probabilities and conditional expectations relative to one or several random
variables will be as in [2], Chapter 1, §7. A probability measure on
F is Markovian if, for any Ae S m<nn=0,+1, +2, -

Plx,e A|®p, +++, 2,,] = P2, € A|2,_]

with probability one. A Markovian measure is said to have stationary
tramsition probabilities if for any A € & and any integer n

Plw, € A|@,] = T"Pla, € Alx_y]

with probability one. In this paper, since we have two probability
measures ¢, Y, we need to use subscripts g, v to indicate conditional proba-
bilities and conditional expectations taken under g, v respectively. For
any Ec 2,1I;, the indicator of FE, is the real valued function on 2
defined by

I(w)=1 if wekFE
=0 if wéFE.

The log in this paper is the logarithm with base 2.
LEMMA 1. Define v, , on #,, by

(1) v, () = SP,L[El Ty =+ Ty
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then v, , is a probability measure on %, , with v, (E) = v,.(E) for
Ee Z,,... Furthermore v, , LV, , with

dl)m,n/dv;n,n = fm,n/fm,n—l .
Proof.

p;zrz(E) = PP-[EI Lmy **°y xn—l]du

PIJ-[E| Loy ** %, xn-—l]fm.n—ld;u

[ S S S

EM[IEfm.n-—l I Ly s xn—l]dﬂ
= funnde.
E

Hence V!, is a probability measure on %, ,. Furthermore, for £ € &, ,

bl B) = | it = | FmalFmn) it
= | (Fualfmn) @i

Hence v,,,, is absolutely continuous with respect to v, , and dv,, ,/dv, , =

fm,n/fm,n—l-

THEOREM 1. If v is stationary and p is Markovian with stationary
transition probabilities then

(2) Snalfmn—s = T"(F-nolfm-n-)

with v probability one for all m <n, n =0, £1, £2, --..

Proof. If p is Markovian and has stationary transition probabilities
then for any A € &/

Plx,e Alx,, +++, %] = PJx, € A|2,]
= T"PJx, € Alx_,]

with g probability one and, therefore, also with v probability one. Hence
for any Ae &Y Be %,_,

”:n.n[xn € Ay (xm.’ trey xn—l) € B]

Pﬂ[wn €A | Ty %y xn—l]dy

S[(zmw-,xn_l)eB]

Plx, e Alx,_,|dv
1

S[(zm.nnm”_l)eﬂ
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T"Pfx, € A|x_]dy

[(@pyr 22y 1) EB]

]P,L[xo € A|x,]dy

S[(xm_l.-“.w_l)EB
S Pla, e A%y, «++, @]dv
[zpy—p, @1 €B]
= V"m——n,o[xo € Av (xm-nv cty x-—l) € B]'
It follows that
y;n,n[(xm’ *y xn) € C]a‘: u:n—n.o[(xm—m M) 270) € C]

for every C € .%,_,.,. Since by Lemma 1

dum.n/d’);ﬂ,n = fm,n/fm.n—u dvmvn.o/dv;n—n,o = fm~n.0/fm—n,~1

(2) follows easily.

LEMMA 2. If p is Markovain and m, < m, <0 then v, , is an
extension of Vi, t0 F o
Proof. For any A e & B e F,,
Vinol% € 4, (T, <+, ) € B]

- S[ Puay € A, ++-, o ]dv
(T +*

++,x_1)€B]
2 1

= S Plx, e A|x_,]dv
[z @) EB}

- S[(Zmz,.,,'kl)eB]P/x[% €AWy, +r+, 2 ldy
= v, @ € A, (X, +++, %) € B].
It follows that
Yy o(E) = Yy o E)

for every E e Z,,.,.
THEOREM 2. If p is Markovian and m, < m, < 0 then
(3) 108 .0 — 10 .-
= g(logfmz,0 — log f,)dv = 0 .
Proof. By Lemma 2 v;, , is an extension of v} , to %, , Since

Ying0 € Ym0y Yimgo € Vipo by Lemma 1, dy,,o[dv,,, is the conditional ex-
pectation of dv,, ./dv,, , relative to .7,, , under the measure v;, ,. Jensen’s
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inequality for conditional expectation implies that
0 = ((@n, oA, ) 108 (@ ofdh, VT,
= (@, /51,0 g (@2 ofdh, ML, o

Hence

(4) 0= S log (v, /dv,, )dy = S log (dvp, oy, )dvy

and (3) follows from (4) and Lemma 1.

THEOREM 3. If p is Markovian then {log f,., — log f..—.} converges
with v probability one as m — —oo. The limit function may take + o
as its values.

Proof. 1t is sufficient to prove that {f, -i/fn. converges with v
probability one as m — —oo. Since v,,, is absolutely continuous with
respect to v, and dy,, . /dv, o = fm.olfm— by Lemma 1, f, _/[fn, is the
derivative of v,,, continuous part of v, , with respect to v,, Since, by
Lemma 2, v, , is an extension of v, , if m, < m,, {—fx 1[f-v0 F i
k =1} is a v semimartingale ([2] pp. 632). Since

V= fndfonol v = [ty 1

the semimartingale convergence theorem implies that {f_. ./f ..} converges
with v probability one as k — oo.

The following lemma may be considered as an improvement of a
theorem by A. Pérez ([6] Theorem 7; pp. 194).

LEMMA 3. Let B,C 3, C -+ be a sequence of g-algebras of subsets
of Q and B be the c-algebra generated by U, B.. Let ¢, N be two prob-
ability measures defined on B and ¢, N, be the contractions of ¢, \,
respectively, to B,. If ¢, is absolutely continuous with respect to
Sfor k=1,2, -+ and if there is a finite number M such that

S log (db/dNy)dp < M
for k=1,2, -+« then

(i) ¢ s absolutely continuous with respect to \,
(ii) log (dop/dN) is ¢ integrable and there exists

lim S log (dby/dNe)dep = S log (d/dN)de ,
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(iii) {log (d¢/d)\;)} converges in L(p) to log (ddp/dN).
Proof.

(i) Let h, = d¢,/d\,. Then f{h, B:, k = 1} is a martingale under
A measure. Now

M= S log (deby/dy)dep = S (log hy)luud .

and
(5) M+ 3z |tulogh, + Hir = Gogm) | hudr
Hence
[ o, s = (log m) (2 + )
so that Smkzmhkdx—» 0 as n — o, uniformly in k. Hence {h;} converges

with \ probability one and also in L,(\) ([2] Theorem 4.1, pp. 319). Let
the limit function be A. Then S hdx = ¢(A4) for all A e U, B: and so
A

for all A € 8. This proves that ¢ is absolutely continuous and that
h = (dp/dN).

(ii) The sequence {h;log h,} converges with )\ probability one to
hlog h. Since the functions &, log #;, are bounded below uniformly by
the number %,

|11 1og R < lim (R log hudn = lim | log hudg < 1 .
Hence hlog h is ) integrable. Since the real valued function £&log & is
continuous and convex, h,log h,, h,log h,, +-+, hlog h constitute a semi-

martingale under the measure (2], Theorem 1.1, pp. 295). Hence

Shl log hydh < Shz log hd\ < -+ < hlog hd\
so that lim,w,c,gh,c log h,d\ exists and is equal to Shlog hdx. Now

Si]oghidcﬁz Shlloghldk:&]hlogh!dx,
hence log % is ¢ integrable and

(6) S log hddp = Sh log hdx = lim Shk log by dr = lim S log hy ddb .

t Inequality (5) was pointed out by the referee. The proof of Lemma 3 was much
shortened by following his suggestions.
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(iii) Since h, log h,, h,log h,, +++, hlog h constitute a semimartingale
under the measure )\, we have, for E e 3,
g hy log hydn < S By 10g hpsydh < g hlog hd .
B E E

Hence
S log h,dp < S log hrpsydp < S log hdd ,
yo E E

so that logh,, logh,, «-+,logh constitute a semimartingale under the
measure ¢. Hence (ii) implies that log %, are uniformly ¢ integrable and
{log h;} converges to log h in L,(¢) ([2], Theorem 4.1s, pp. 324).

THEOREM 4. If p is Markvian and there is a finite number M
such that

|0g £10 = log £, v = M

Sfor m = —1, =2, .-+ then {log f,.— log fn._} converges in L,(v) as

m — — oo,

Proof. By Lemma 2 V.0 is an extension of Vigo if my <m, <0
and

de,o/dV:n,o = fm‘O/f'mu—l .

If there is a probability measure v’ defined on the o¢-algebra generated
by Unz_..%,, which is an extension of v!, for m = —1, —2, «++, then
the conclusion of the theorem follows easily from Lemma 8. If X is
the real line and if .~ is the o-algebra of Borel sets then the existence
of V' follows from the Consistency Theorem of Kolmogorov. For the
general case we shall proceed by using the usual representation by space
2 of sequences of real numbers as follows:

Let

9e = Fwolf -1 -

Let G be the map of 2 into the space 2’ of real sequences {£,§&,, ---}
defined by

G(®) = {g(w), g(w), +++} .
Considering &, as functions on £’ we have
£(G(w) = gi(®) .

Let B, be the collection of Borel subsets of 2’ which are determined
by conditions on &, &,, ---, & and S be the collection of all Borel subsets
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of 2'. Let ¢ be the probability measure on B and ¢,, \, be the proba-
bility measures on 3, defined by

P(E) = v(GTE) ,
b E) = v o GE) ,
M(E) = VL (GTE) .

{g9x} converges in L,(v) if and only if {£} converges in L,(¢). Now X,
are consistent; Kolmogorov’s Consistency Theorem implies the existence
of a probability measure M on B which is an extension of every )\, and
do/dn, = &,. Hence Lemma 3 is applicable and the L.,(¢) convergence
of {£} is obtained.

THEOREM 5. If v is stationary and p is Markovian with station-
ary transition probabilities and if

S log fo,dy < e
and if there is a finite number M such that
| 108 fon —log fr-ddv = M
for n=1,2,++-- then n'logf,, converges in L,(v) as mn— o. In

particular, if v is ergodic, the limit is equal to a nonnegative constant
with v probability one.

Proof. By Theorem 4 {log f,.— logf. .} converges in L,(v) as
m— —oo. Let h be the L,(v) limit of the sequence. Let % be the
L,(v) limit of the sequence {n~* >7.,T‘h}. By Theorem 1 f,./[fons=
T™(f-n.olf-n.-1), hence

ntlog fo, = n7tlog fo, + 07 ; T*log (f-il f-i—1)
[|n= & 7108 (£l o) — B
= w2 5|1 74 log (fosal foim) — TR | d
+ S]n—lzTih—mdu
=0 32| Nog (fsol fra) — B d
+S|n—1ZTih—E[dv—>0 as n— oo .

Thus the L,(v) convergence of {n~'logf,.} is proved. The limit is &
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which is the L,(v) limit of {n=* >\, T®h}. If v is ergodic
k= Sh dv
with v probability one and

Skdu — lim S[log Fono—log fu JJdv = 0.

m—r—oco

COROLLARY 1. Under the hypothesis of Theorem 5 if v is stationary
and ergodic but not Markovian then v is singular to .

Proof. If p is Markovian but v is not Markovian then there is a
positive integer n, such that

UL ong1 # Fomgl >0 .

For, if for every positive integer n
tSfon # Sfoul =0
then
Pz, € Al@y, +++, ©yy] = Pulw, € Al0,-1]

with v probability one for every A € . and v is Markovian instead.
Now since

fo.n0—1 = E}L[fo,no I Loy =y xno—-l]

and the function £log & is strictly convex, hence
[ £20108 Fum @t = | Fun,-1 108 fumpadpe > 0

so that

S[logfo,no — 10g fonyaldy > 0.

Since S[log Sfon — 10g fo.n—]dy is non-decreasing in n,

lim S[log Fon—10g fonddv=a>0.
Now v is ergodic; the L,(v) limit 2 of {n'logf,,} is equal to a with v
probability one. Let m,, %, --- be a sequence of positive integers for
which {n;*log ...} converges with v probability one to a so that {1/f;,,}
converges to 0 as n;— o. Let &' be the o-algebra generated by
U, F. and let ¢, £ be the contractions of , v, respectively, to & '.
Since 1/f,, is the derivative of v-continuous part of p,, with respect
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to v, {1/fo..} converges with v probability one to the derivative of v-con-
tinuous part of g with respect to v by a theorem of Anderson and
Jessen [1]. Now we have

liml/f,.=0
with v probability one and ¢ is singular to v'. Hence p, v are singular
to each other.

Extensions of Theorem 5 and Corollary 1 to K-Markovian g are
immediate.

3. Discussion. As was mentioned in the introduction the crucial
step in establishing Theorem 5 is to prove the L,(v) convergence of
{log f-no — log f_, —1}. If ptis the product (independent) measure on &
the measure v’ in the proof of Theorem 4 is actually v_..., X 4, Thus
condition (c) or, equivalently, condition (a) implies condition (b) in the
introduction. In [7] it is stated that the condition (b) is necessary for
the L,(v) convergence of {logf_,,— logf_, .} (7] Theorem 2(b)). A
simple is as follows. Let X be the real line and . be the collection
of all Borel sets. Let v = ¢ and distribution of x, be Gaussian. Let
v, = x,) = (x, = x,) = 1. Then v_,, is singular to v_;, _; X v,, how-
ever the L,(v) convergence of {logf_ ., — log f_,_.} is trivially true since
f man = 1.
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