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To the memory of Mr. Adolph Zaidovsky

1. Introduction* In the previous paper [4], the author introduced
functions, defined in ^(v) > 0, which were shown to possess transfor-
mation properties under G(j), the principal congruence subgroup, of
level i , of the modular group (j ^ 2). The case j = 2 is slightly dif-
ferent from the others and for the sake of simplicity we defer its treat-
ment until § 5.

With a fixed j ^ 3 the functions were defined in [4] as follows.
Let v be a positive integer, and let nx and n2 be integers with {n2, j) — 1.
We put

(1.1) bjy, j , nly n2) = (TT/8) ± k^A^{m) .
k

k

where Jx is the modified Bessel function of the first kind, defined by

p=« p\(p + 1)!

and Ak^(m)= S exp [-^-(vh'+ mh)]
(h, k)=l

^n^ivaodi k)

is a generalized Kloosterman sum. Here h! is any integral solution of
the congruence hh' = —1 (modk). We now define

(1.2) ajy, j , nlf n2) = am = bn(v, j , nl9 n2) + bm(v, j , -nu -n2) .

For the moment we omit the cases nx = 0, n2 = 1 (mod j) and nx = 0,
n2 = — 1 (modj), and put

(1.3) \(j, nu n2; r) = ± ajy, j, nlf n2)e
2^lj .
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For the cases nx = 0, n2 = 1 (modi) and nx = 0, n2 = —1 (modi) we make
the separate definition

(1.4) Xv(i, ^ , n2; T) = J- e-™"» + £ am(v, j , nly n2)e^lj ,
16 w=i

with am(v,j, nl9 n2) defined by (1.2). Notice that in the Definitions (1.3)
and (1.4), n± and n2 enter only modulo i; also, Xv(i, ^ , w2; r) = Xv(i, — ̂ ,
—tia; r), so that, with fixed v, we need only consider the i-(<£(i)/2) func-
tions with 0 ^ nx < i, 0 ^ w2 < i/2.

The following theorem is the fundamental one of [4] since it
summarizes the transformation properties of \(j, nu n2; z) under G(j).

THEOREM (1.5). The function \v(i , nlf n2; z) is regular in ^{z) > 0
and there satisfies the transformation equations

(1.6) \(j, nu n2; Vz) = \(j, n,, n2; z) + a)v(j, nlf n2; V) ,

for all V = (^) e G(i). ifere o>v(i, ̂ , ^2; F) does not depend on z, a,
or b.

We should point out that in [4] this theorem is proved in detail
only for the case nx — n2 = 1. However, the proof for the other cases
is identical except when nx — 0, n2 — 1, in which case minor changes
have to be made.

Let ^~'5 denote any fundamental region of G(j). From the Defini-
tions (1.3) and (1.4) the behavior of the functions Xv(i, nlf n2; z) at the
parabolic cusp at oo is clear. However, oo is the only parabolic cusp
of J^~'3 for which this is so. One of the principal objects of this paper,
in fact, is to determine the behavior of these functions at the cusps
other than that at oo. It turns out (see §3) that \(jfnl9n2;z) has a
pole of order v (in the appropriate unif ormizing variable) at the one para-
bolic cusp of ^ 5 of the form P = jmolkQ, with k0 = nj (modi2),
m0 = n2 (modi), and (/c0, m0) = 1; at all other parabolic cusps of J^'5
\(j, nly n2; z) is regular in the uniformizing variable. This result and
Theorem (1.5) together show that \(j, nu n2; z) is an abelian integral.

In order to derive this result we first determine the behavior of the
functions Xv(i, nu n2y z) under the group of transformations G°(j). This
group consists of those elements (^) of G(l), the full modular group,
satisfying the additional requirement that 6 = 0 (modi). The result,
which is contained in § 2, is of some interest in itself and is thus stated
as a separate theorem.

2. Behavior under G°(j). In order to determine the behavior of
the functions (1.3), (1.4) under G°(j) we make essential use of the
methods and results of [4]. In particular the computations of sections
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3 and 4 of [4] show that, for z on the positive imaginary axis, X^J, nun2; r)
can be written in the two forms (2.1) and (2.2), below. These two
forms, while different in structure, are obtained by the same general
method.

Suppose a < 0, b < 0, and d > jc > 0. Put t = j(c - {ib))d~l and
let ^~(K) denote the trapezoid in the k — m plane bounded by the
lines k = 0, m — (ak — Kt)/jc, m — (bk/j ± K)d~\ We introduce the
notation

EWl E*2 = E E + S S
k k ' j 2 {d j) k i ( d 2 d i'(mod j)

( m , & ) = 1

Then the computations of §§3 and 4 of [4] show that, for r on the
positive imaginary axis, Xv(j, nu n2; r) is equal to

16 16

m)
expf y , 1 ~ l ) , if ^ = 0 , ^ =

L A;(A;r/̂  — m) J /

(2.1) A(w1(w2) + -^r lim S S e
1 6 -8r-̂ °o (k, m)€,5 (K)

k>0

(exp \in
2fiv J - l) , otherwise.

V L Mfcr/7 — m) J /k{krjj — m)

These same methods can be used to show that, for r on the positive
imaginary axis, \(j, nu n2; z) is equal to

16 16

exp \ * ™ , 1 - l ) , if n, = 0, n, = 1
L fc(fcr/^ — m) J /

1 E*^]

(2.2) ^(^^2) + -i- lim E"1 S V W m / / i .
1 6 K^<=O »=i iwi^s:

j — m)

In (2.1) and (2.2) A(^, n2) is independent of r. We could give an ex-
plicit expression for A(nu n2) in terms of nl9 n2i v, and j , but this of no
significance here.

Now, put

SK(T)= S ^ S ^ - ^ ^
- m )

— m
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where we have set — k' — (mm' + 1)1 k, or

(2.3) kkr + mm' + 1 - 0 .

Notice that in the finite sum defining SK(T), the summation condition
k > 0 does not appear, but that we have excluded the term for
(&, m) = (0, —1) from the sum. In the case nx — 0, n2 = 1, the term corre-
sponding to k = 0, m = 1 appears in the sum, and when k — 0, m = 1,
we can choose k' = 0, m' = —1. Here (kr, m') is interpreted to be any
pair of integers satisfying (2.3). (It can easily be shown that the terms in
SK{r) are unaffected by the ambiguity in the choice of the pair (k'9 m')).
Thus when n± — 0, n2 ~ 1, the term e~2ni"rlj appears in the sum for
SK(T), and we have absorbed the extra term e~2**vrlJ, which appears in
(2.1) when nx = 0, n2 — l, into SK(T). In all other cases k — 0 does not
appear in the sum and the condition (k, m) =fc (0, —1) is no extra restric-
tion.

If the pair (k, m) is replaced by (—k,—m), the pair (k\mf) is
replaced by ( — kr, —mf) and the corresponding term in SK(T) is unchanged.
Therefore if we extend the region of summation in SK(r) by reflecting
^~(K) through the origin, SK(T) is multiplied by 2. The new region of
summation is the parallelogram ^{K)y bounded by the four lines

m = 4^- ± — , m = (ak± Kt)ljc .
3d d

At the same time, the new points (fc, m) that we have now introduced
into the summation satisfy the proper congruence conditions on k and
m. Hence we may write

(2.4) SK(r) = v 2Wl 5> exp \2ni»-V-m'TlJ 1 ^

This expression for S^(r) is fundamental in deriving the transformation
properties of our functions under G°(j).

Let V = (^) e G°(j). That is a, 6, c, and d are integers with
ad — be — 1 and 6 = 0 (modi). W7^ s/̂ aW further assume that a < 0,
6 < 0, araZ d > jc > 0, so that Xv(jf, ^ , ̂ 2; r) can be written in the form
(2.1) with this particular choice of a, 6, c, d. It follows from (2.4) that

(2.5) SK(VT) =i-S-'S-< ex P r2^v-^ ;+ 6 w ' / i ) - (r/i)(M' + amOl .
2 (* m)e&{K) L (zlj)(ak — jem) — (ma — &fe/j) J(zlj)(ak — jem) — (ma

If we now perform the transformation

I — ak — jem, n — —bk/j + md ,

then the parallelogram ^(K) in the k — m plane is mapped onto the
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rectangle in the I — n plane defined by 11| g tKf \n\ ^ K. Furthermore,
since ad — be = 1 and 6 = 0 (modi), it follows that the set of all
{fe, m) 6 ^(K) satisfying (fc, m) = 1 and k = wj (modi2), m = n2 (modi)
is mapped in a one-to-one fashion onto the set of all pairs of integers
{I, n) in the rectangle satisfying (I, n) — 1 and I ~ {anx — cn2)j (modi2),
n = dn2 (modi). Also, the set of (k, m) e &(K) satisfying (k, m) = 1
and k = —n^ (modi2), m = —n2 (modi) is mapped onto the set of {I, n)
in the rectangle satisfying I = — (anx — cn2)j (modi2), n = —dn2 (modi).
A straightforward computation shows that

(ah - jcm)(dk' + bm'lj) + {md - bklj)(jckr + am') + 1
= kk' + mm' + 1 = 0

so that we may put

V = dk' + bm'lj, n' = jck' + am' .

Hence (2.5) becomes

SK(VT) = i - 2flWi-CBa SdW2 e x P
2 ii ^r/j — ̂  J

and finally, SK(VT) is equal to

{2.6)

n

n "1

J

if a^i — cn2 ~ 0,

— V —wr Tin "I

IT I j — n J

= ± 1 (modi)

otherwise .

In (2.6) we have separated out the terms correspoding to I — 0, n = ± 1
when those terms appear in the sum, that is, when an± — cn2i = 0,
dn2 = ± 1 (modi). Now it follows from (2.1) and the definition of SK(T)
that

Mi, n,f n2; Vr) = A(nu n2) + A-li
1 6 JT

Thus, inserting (2.6) and comparing the result with (2.2), we find that

\(j, nu n2; VT) — \v(i, anx — c^2, dn2; r)

<2.7)

1
l im <

16 X--*»U (fc. m)e& (K)

1
^vm//fc I

J
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Now, let V — (^) be any element of G°(i), that is, we remove the
restrictions a < 0, b < 0, d > jc > 0. Let S = (l{) e G°(j). Cleary, if
p and q are integers, then Sp and Sq are in G°(j), and a simple calcula-
tion yields

a

tf = a + qjc , (3 =
7 = c , S = pjc + d .

with

Now p and q can be chosen in such a way that a: < 0, @ < 0, S > j? > 0r

so that we can apply (2.7) with V replaced by SqVSp. Denoting the
right hand side of (2.7) by Q)v(j, nu n2; V) — a)(V), we obtain

\U, Ki, n2; S
qVSpz) = \,(j, an\ - yn2, Sn2; z) + a)(SqVSp) .

But

a = a, /3 = b, y = c, 8 = d(modi)

implies that
n2m> T) = ^v( i , ̂ ^ i — cn2, dn2; z) .

On the other hand all the functions X,v defined by (1.3) are invariant
under S. Thus,

nu n2; S
qVS*z) = \(j, nlf n2; VS»z) ,

and we obtain

, nu n2; VSpz) = \(j, an, - cn2, dn2f z) + a)(SqVSp) .

In this equation we replace z by S~pz, again use the invariance of Xv

under S, and thus obtain the following result.

THEOREM (2.8). If V = ( g e G°(j), then for j?(z) > 0

(2.9) \(j, nu n2; Vz) = \(j, an, - cn2, dn2; z) + Q)v(j, nu n2; V) ,

where cov(i, nu n2; V) is independent of z. Furthermore, if S =
and p and q are integers, then

(2.10) a>v(j\ nly n2, S
q VSP) = o>v(i, nly n2, V) .

REMARK. The theorem has actually been proved only for purely
imaginary z since we derived (2.1) and (2.2) for such z only. However
the result follows immediately for ^(z) > 0 by analytic continuation-
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It should be noted that (2.10) follows from the argument immediately
preceding the statement of the theorem.

If we take V e G(j) in Theorem (2.8), then

— cn2 = nlf dn2 = n2 (mod j)

and (2.9) becomes

\U, nu n2; VT) = \,(j, nly n2; T) + (*),(j, nlf n2\ V) .

Thus Theorem (1.5) is contained in Theorem (2.8).
It is easy to see that each V e G°(j) simply permutes the set of

i*^(i)/2 functions Xv (with j and v fixed). We will later show that,
given any two of the Xv's (with the same j and v), there exists V e G°(j)
such that V transforms one into the other in the sense of (2.9).

3* Behavior at the parabolic cusps. The parabolic cusps of
are the points in which ^ 5 touches the real axis, and possibly the
point at oo. Every such point is either a rational point or oo, and
conversely, every rational point is a parabolic cusps for some ^ ^ By
Theorem (1.5), the analytic behavior of \,(jf nu n2; T) is the same at VT
as it is at r, for V e G(j). Thus in order to determine the behavior of
our functions at the rational points we need only consider their behavior
at the (finite number of) parabolic cusps of a single ^ y However, it
turns out to be just as convenient to examine directly the behavior of
the functions at all the rational points and at oo. We now regard
j , v, nu and n2 as fixed.

Let P = r/s, (r, s) — 1, be any rational point. In this context we
consider oo a rational point, since oo = 1/0. Now P is the one fixed
point of the parabolic transformation VF e G(j), defined by

'frsj + 1 -r2j\
\s2j 1 — rsj) , if P = rjs < oo

V , if P = ~ ,

and we define tP, the local uniformizing variable at P, by

expl" 27ri 1 , if P = r/s <
L s\nr — r s) J

It is an immediate consequence of Theorem (1.5) that

\(j, nl9 n2; VPr) = \(j, nu n2; T) + Q)v(j, nu n2; VP)

and therefore Xv(j, nl9 n2; r) has an expansion at P (or at tP = 0) of the
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form (cf., for example, [2, pp. 406-408])

(3.1) \(j, nu n2; z) = /3(P) log tP +

where am(P) and /3(P) of course depend upon j , v, nly and n2 in addition
to P. Note that in the case P — w, the expansion (3.1) is already fully
known, this being simply (1.3) or (1.4) by which \v( j , nu n2; z) was
originally defined. It is worth mentioning that /3(P) = 0 if and only if
<*>v(i, nly n2; VP) = 0.

Suppose k0 = nj (modi2), m0 = n2 (modi), and (m0, k0) = 1. We shall
determine the behavior of \(j, nu n2; z) at P — mj(kolj), that is, the
nature of the expansion (3.1) for such a P. Let k[ and m[ be chosen
so that kQk'o + mQm[ + 1 = 0, and put

° JK

Then, by Theorem (2.8) we have

Now mo^i — kon2lj = 0 (modi) and —m'Qn2 = —m^m^ — kQk[ + 1 = 1 (modi),
and we have

(3.2) Xv(i, nl9 n2; VH> mz) = \,(j, 0 ,1 ; r) + a>v(i, ^ , ^2; Vko, mo) .

Furthermore, F^1, mo maps the point P onto co. Therefore, since the
expansion of X(j, 0 ,1 ; z) at oo is, by the definition (1.4)

, 0 ,1 ; z) - (llW)e-2^ij + S a^e1-*"1^ ,

it follows from (3.2) that the expansion of Xv(i, ̂ ^ ^i2; r) at P — mo/(fco/i)
has the form

(3.3) \{j, nlf n2; z) - a_vtp
v + S

We have derived par t ( i ) of the following theorem.

THEOREM (3.4). ( i ) If k0 and m0 are integers such that k0 = nj
(mod i2), m0 = ^2 (mod j), and (m0, fc0) = 1, then the expansion of
X(j, nu n2; z) at P = mo/(fco/i) ^s o/ tJte /orm (3.3).

(ii) If P — r\s is any other rational point, then the expansion
at P has the form
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<3.5) \(j, nlt n2; r) =

REMARKS. The proof of part ( i ) shows that for any two V s with
the same v and j , there exists V e G°(j) such that V transforms one
into the other. Given two rational points P = r/s and Pf = r'/sf, with
(r, s) = 1, (r', sr) = 1, then P and P' are equivalent under G(j) (that is,
there exists V e G(j) such that V(P) = P') if and only if r = r',
s = s' (modi). Thus in any ^ 5 there is exactly one point of the type
mentioned in part ( i ) . The theorem shows that at this point Xv(j, nu n2; z)
lias a pole of order v in the local uniformizing variable and that, at all
other parabolic cusps, Xv(i, nu n2; z) is regular in the local variable.
Thus, Theorems (1.5) and (3.4) together show that X^(j, nl9 n2; z) is an
abelian integral.

We now proceed with the proof of part (ii). Early in the computations
of § 4 of [4] an expression for \(j, nlf n2; z) different from both (2.1)
and (2.2) was obtained. In [4] this was used to derive (2.1) and (2.2).
Here we find it convenient to make use of this earlier expression. In
order to do this we introduce the notation

v

and

(mfk)=l (m, fc)=i

Then, for ^ ( r ) > 0, \(j, nu n2; z) is equal to

l l °°. . • / r r~ 2TT !̂̂  ~I

16 16 ifei ^ooiSi^ I L fc(fcr/i - m) J

+ -— S# l™ Sik e"2jr*vm'/fc ^exp =—̂  — 1^ ,
^ 16 ^ N^£N I P L fc(A;r/i - m) J i

if % = 0, ^2 = ±

<3.6) A{nu n2) + A - E# Km S* ^"ivm'/fc {exp I" 2 ^ 1 - l}

- ^ E » lim S* e-»«* '̂̂  {exp F — - ^ — - 1 - l l , otherwise.
1 6 *=i ^->°° \m\zN I L A:(/cr/j — m ) J J

Now if Wj. = 0, n2 = ± 1 (modi), it is clear that \(j, nl9 n2, r) has a pole
•of order v at oo and this fact is included in part ( i ) of the theorem,
if we choose m0 = 1, k0 = 0. In this case we need only consider the
behavior of the function for finite rational points. At such points,
Tiowever, e~27CivzlJ is bounded, so that for all possible values of nl9 n2 we
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may reduce the proof of part (ii) of the theorem to showing that the
doubly infinite sums occurring in (3.6) behave decently at P — r\s.

We write

27ziv _ i

= S*lim 27tiv

(3.7)
k{kvlj — m)

! V k{krjj — m)

The separation into two sums is justified in [4], where it is shown that
the first sum is convergent. The second sum is absolutely convergent
as a triple sum. S^2(T) will be treated first.

LEMMA (3.8). Let P = r/s be as in part (ii) of Theorem (3.4), and
let T — r\s + iy (y > 0). Then £^2{r) is bounded as y —• 0 + . J /

on the half-line &(r) = rfs, ^(T) > 0.

Proof. From the definition of ^2(T) it follows that

(3.9) ~ /O~""V ~

Now,

- m I = V(krljs - m)2 +
fcr

— m

and

kr
— m

kr
— ms

since kr/j — ms is an integer different from zero. For if kr/j — ms —
0, then P — r/s = ml(k/j) and since A; = ^ i (modi2), m ~ n2 (modi),
(m, fc) = 1, this contradicts our choice of P. Therefore we may break
up the innermost sum of (3.9) as follows:

— m\p m<Tcr!Js + is

But,
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Z * ( -^ - — m ) ^ 1 J (kr/js — x)~*dx + 2(81*
m<krljs \ JS / J-°o

g ^ + 2 1 S I * ^ 1 + 2 [ s l y , s i n c e p ^ 2 .

L i k e w i s e ,

2* (m - 4 -̂)"" ̂  (x -

g - ^ — + | s | 3 ' g H
p - 1

Therefore,

Thus, by (3.9),

2

since f(p) ^ f(2) follows from p ^ 2, and the lemma is proved.
In order to treat S^^T) we use a refinement of the method that

was used in [4] to show that £/*I(T) converges.

LEMMA (3.10). Let r — x + iy, where y > 0 and x is not a rational
number of the form occurring in Theorem (3.4), part ( i ) . (Note that
x is not necessarilly rational here.) Then,

Proof. Consider the inner sum in the definition of ^ i ( r ) . As in
§ 2 of [4], we have

L.-1 V * z>-2?r*Vft'/fc V

j - m) ]

where we have put m = h + nk. Hence

lim 2 * —t— = k'2 E* e-Mh'»i* lim X (z/j - h\k - n)'1

(3 11) = m S * e~2*ivh'JJc — %- V
k2 o^^<?c k2 os»

In order to handle the sums on the right hand side of (3.11), we need
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the asymptotic estimate [5]

(3.12) X* e x p \ ~2m (Vhf + ph)\ = &(k2l3+8) , as k-> oo ,
o^h<k L k J

where 8 is any positive number, and the constant involved does not
depend on p. Then,

(3.13) ™- £* e-***'*1* = ^ Z* exp\^™-(vhf + kh)\ =
k2 o /̂Kfc fc2 o f̂t,<fc L k J

a s fe —> CXD . W e p u t

——- V
k2 o

(3.14) = 27T-i £* + 2Ki 2* ,
k=l k>M

where M is a positive integer to be specified. The second sum on the
right hand side of (3.14) can be written

Jc>M k2 0 /

But,

2 * exp

and therefore, by (3.12),
L.-4/3+S

Hence, if we are given a > 0, there exists M such that

(3.15)

Up to this point we have not used the special nature of x in the
proof. This will now be employed in estimating the first sum on the
right hand side of (3.14). In this sum there are a finite number of
different it's. Thus, only a finite number of pairs (h, k) occur in the
sum, and there exists a pair (h19 kx) that minimizes the expression

for all pairs in this sum. Furthermore, since y > 0, it is easy to see
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that

and we thus have

(3.16)

2it 11 -

where 0(/b) is the Euler function. But a simple^geometric consideration
shows that

since r = x + iy, with y > 0. By the restriction on x and the fact that
fcx = nj (modi2), hx = n2 (modi), and (hu kx) = 1, we have x/j - hjk, ^ 0,
and therefore

Using this in (3.16) and replacing the finite sum on k by an integral,
we obtain

(3.17)

< 4TT 11 1 log (M + 1) .

Combining (3.13), (3.15), and (3.17), we find that

47vlog(M
I 1 — __

where C is a positive constant. Now we have already chosen M (depend-
ing on e), and, given a and M, there exists y0 > 0 such that, for
0 < y < Vo,

Therefore,

t as y -* 0 + ,
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and the proof of the lemma is complete.
We now return to the proof of Theorem (3.4), part (ii). If we go

back to (3.7) we see that, with z as specified in part (ii) of Theorem
(3.4), lemmas (3.8) and (3.10) imply

— m)

The same method of proof yields

*=i N-*™ \m\zN I L k\kzjj — m)

Looking at (3.6) we conclude that

MJ, nlt n2; r/s + iy) = o ( — J _ _ ) , as y — 0+ ,

or, what is the same,

(3.18) Mo, nif n*, rls + iy) = o (—) , as y -> 0+ .
\ y J

Therefore, in (3.1), 0(P) = 0 and am(P) = 0, for m < 0, and the proof
of Theorem (3.4) is complete.

4. Construction of modular functions* It follows from Theorem
(3.4) that for any parabolic V e G(j),

(4.1) \(j, nl9 n2; Vz) = Xv(j, nlf n2; z) ;

that is for V parabolic, the constant a)v(j, nu n2; V) which occurs in
Theorem (1.5) is zero. We can see this by noting that Theorem (3.4)
implies that in the expansion about the fixed point of V, no logarithmic
term appears. Therefore, if G(j) is generated by parabolic V, the
functions Xv(i, nu n2; z) are actually modular functions for G(j); that is,
they satisfy (4.1) for all V e G(j). If we now take v — 1, recall the
assumption j ^ 3 of § 1, choose j g 3 so that G(j) is generated by
parabolic V, and let nlf n2 any permissible pair of integers, we have a
function Xx(i, nlf n2; z) which is a modular function for G(j), and which,
by Theorem (3.4) has exactly one pole of order one in j^~'5 (cf. under
Remarks). Thus, by the Riemann-Roch Theorem, ^~s has genus zero
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and since J^ 2 has genus zero, we may state the following result.

THEOREM (4.2). IfG(j), the principal congruence subgroup of level
j ^ 2, can be generated by parabolic transformations, then ^ 3 has genus
zero.

This theorem may very well be known. The converse has been
known for some time. For J?~j has a genus zero exactly when j = 2,
3, 4, and 5 [3, p. 398], and in these cases G(j) can indeed be generated
by parabolic transformations [3, pp. 267, 354-356].

As was pointed out in § 5 of [4], we can make use of Theorem (1.5)
and the fact that G(j) is finitely generated to construct modular func-
tions for G(j). This is accomplished by taking a linear combination of
the Xv(i, nu n2; r), with j fixed and (possibly) different v and nl9 n2f in
such a way that the resulting linear combinations of the constants
<*>v(i, nly n2; V) vanish for a set of V which generate G(j). In order to
be assured that we can carry this through we take a linear combination
of at least q + 1 functions, where q is the minimal number of genera-
tors for G(j). (It is known that q = 2q + fi/j — 1, where p is the genus
of ^"jj and fjt is the index of G(j) in G(l).) If we choose the functions
in the linear combination so that they all have the same nx and n2, the
resulting linear combination has a pole at only one point of ^"j. On
the other hand, we may also place poles at several different points of
^ } by choosing functions with different nl9 n2.

It has already been noted that when 3 ^ j ^ 5, the Xv(i, nl9 n2; z)
are themselves modular functions (no linear combination is necessary)
because in these cases G(j) can be generated by parabolic transforma-
tions. If we keep the condition 3 ^ j rg 5, and take v — 1 and any
permissible pair of integers nlf n2, we obtain a modular function
\(j, nl9 n2; r) = \ for G(j) with exactly one pole of order one in j ^ x %

By a well known theorem in the theory of modular functions [1, p. 97],
it then follows that every modular function for G(j) is a rational func-
tion of \ . In particluar, if M e G(l), then X^j, nlt n2; Mr) is again a
modular function for C(j) (since G(j) is normal in G(l)), and thus is a
rational function of \ . Now, the only pole of \ in ^~5 is a pole of
order one at a parabolic cusp specified by Theorem (3.4). If we call
this point P, the only pole of Xx(i, nl9 n2; Mr) is a pole of order one at
the parabolic cusp M~\P). If M~\P) is equivalent to P under G{j),
then there exist complex numbers AM and BM such that

\(j, nu n2; Mr) = AMXX + BM .

If M~l{P) is not equivalent to P under G(j), then there are complex
numbers AM and BM such that
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,(i, nly n2; Mr) = . + BM .
\ - \(3, nu n2; M-\P))

We summarize in part ( i ) of the following theorem.

THEOREM 4.3. ( i ) Let 3 g j ^ 5. If M e G(l), then there exist
complex numbers aM, @M, yM, 8M such that

(4.4) \(j, nu n2; Mr) = "«*» + &* = M*(\) .
7M\ + oM

(ii) The set of all M* regarded as linear fractional transforma-
tions, obtained by letting M run through G(l), is a finite group; the
mapping M —> M* defined by (4.4) is a homomorphism of G(l) onto
this group, with kernel G(j). Thus the group in question is isomor-
phic to G(l)IG(j).

Proof of (ii). The mapping M —> M* is obviously a homomorphism
and thus the set of M* forms a group. If we can show that the kernel
is G(j), the remainder of the theorem follows. Since \ is a modular
functions for G(j), the kernel obviously contains G(j). To show that
the kernel is contained in G(j), we choose M 0 G(j) and show that M
cannot be in the kernel.

We first remark that since \ is a modular function with one pole
in ^~j9 it follows from [1, p. 94, Theorem 11] that \ assumes every
complex value exactly once in ^ y Let M 0 G(j). If M is in the
kernel then Xx(i, nu n2; Mr) — \ . But since M 0 G(j) there are distinct
points rx and r2, not equivalent under G(i), such that r2 — MTX. It
follows that there are two distinct points of ^' 5 where \ assumes the
same value. This is a contradiction, so that M is not in the kernel,
and the proof is complete.

REMARK. The group of M*'s apparently depends upon the choice
of nx and n2. The theorem of course shows that for all choices of nx

and n2 (with j fixed) the groups obtained are isomorphic. It is not yet
clear whether these groups are actually identical, in the sense that they
contain precisely the same linear fractional transformations M*. In
order to decide this it appears necessary to determine the values of the
functions \{j, nu n2i z) at all of the parabolic cusps of ^ 5 .

5. The case j — 2. Up until now the case j = 2 has been omitted
from the discussion, because its inclusion would have made certain
computations more cumbersome and complicated unnecessarily the state-
ments of theorems. We now treat this case for the sake of completeness
and because it affords a simple example of the situation described above.
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Since j = 2, there are only two possible choices for the pair (nlf n2),
namely (0,1) and (1,1). Accordingly, we define

oo

\ v (2 ,1 ,1 ; r) = £ bjy, 2, 1, l)e*tmT

(5.1)

Xv(2, 0, 1; z) = — 6-2jc£vr + £ 6Jv, 2, 0, l)e™mr ,
16 »»=i

where &J>, 2,1,1) and 6m(v, 2, 0, 1) are defined by (1.1). The techniques
of the previous sections yield the following results.

( i ) The functions A,v(2, nlf n2; z) are regular in ^(z) > 0 and
there satisfy

(5.2) \(2, nly n2; Vz) = Xv(2, nlf n2; z), for V e G(2) .

No additive constant appears on the right hand side since, as previously
remarked, G(2) is generated by parabolic transformations.

( i i ) If V — ( ^ ) w i t h ad — be = 1 a n d a = c ~ d = l f b ~ 0 ( m o d 2 ) ,
t h e n

\(2,1,1; Vz) - Xv(2, 0, 1; r) + o>v(2,1, 1; V)

\(2, 0, 1; Vz) - Xv(2, 1, 1; r) + a>v(2, 0, 1; F) .

(iii) PFe ca^ choose an J^\ which has as parabolic cusps the points
— 1, 0, and co [1, p. 82]. The function Xv(2,1,1; r) is zero at oo, regular
at 0, and /KZS a po£# 0/ order v at —1. T/^ function X-v(2, 0 ,1; r) ^s
regular at —1 a^d 0, a^d has a pole of order v at co. Note that
\(2, 1, 1; r) = A,(r) and A,x(2, 0 ,1 ; r) = fx(z) = 1/X(z), where X(r) and fi(z)
are the classical modular functions connected with G(2). The expressions
(5.1) for these functions were first given by Simons [6]*

(iv) Theorem (4.3) holds when j = 2. In this case the matrices
M* are completely known [6], and the groups occurring in Theorem
(4.3), part (ii) for (nl9 n2) = (1,1) and (nlf n2) = (0,1) are actually identi-
cal. It does not appear to be easy to prove this by the methods of
this paper.

6. Conclusion. In [4] we constructed modular forms, of positive
even integral dimension and multiplier system identically one, for G(j).
In this paper nothing has been said about the behavior of these forms
at the parabolic cusps of J^~$> since in a future publication, forms of
arbitrary nonnegative integral dimension with more arbitrary multiplier
systems for G(j) will be constructed and the behavior of these forms
at the cusps will be discussed there.

It is of interest to note that the methods and results of this paper
and [4] can be applied to construct modular functions and forms for
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certain other congruence subgroups of the modular group.
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