APPLICATIONS OF THE TOPOLOGICAL METHOD OF
WAZEWSKI TO CERTAIN PROBLEMS OF
ASYMPTOTIC BEHAVIOR IN ORDINARY

DIFFERENTIAL EQUATIONS

NELSON ONUCHIC

Introduction. The main objective of this paper is to present some
results concerning the asymptotic behavior of the integrals of some
systems of ordinary differential equations.

As Wazewski’s theorem, used in our work, is not very well known,
we state it here, giving first some definitions and notations.

Hypotuesis H. (a) The real-valued functions fi(t, z, +++, x.),
i1=1, -+, n, of the real variables t,x,, ++-, x,, are continuous in an
open set @ R,

(b) Through every point of 2 passes only one integral of the
system

dt
z filt, x,, -ee, 2,)
s=|"] f(t,x):(f ............ ) and (t, ) e Q .
o Fult, @y, v oo, @)

Let @w be an open set of R, w C 2 and let us denote by B(w, 2)
the boundary of w in £.

Let Py (t, x,) € 2. We write I(t, P,) = (t, x(t, P,)), where (¢, P,) is
the integral of the system # = f(t, ) passing through the point P,.

Let (a(P), B(P,)) be the maximal open interval in which the integral
passing through P, exists. We write

I(4, P) = {(t, 2(t, Py) [t € 4}

for every set 4 contained in (a(F,), B(F,)).

We say that the point P,: (¢, x,) € B(w, £2) is a point of egress from
w (with respect to the system # = f(¢, ) and the set Q) if there exists
a positive number 8 such that I([t, — 3§, ¢), P,) C w; Py is a point of
strict egress from w if P, is a point of egress and if there exists a
positive number & such that I((¢, ¢, + 8], P,) € £ — @. The set of all
points of egress (strict egress) is denoted by S(S*).

If A c B are any two sets of a topological space and K: B— 4 is
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a continuous mapping from B onto A such that K(P) = P for every
Pec A, then K is said to be a retraction from B into A4 and A a
retract of B.

THEOREM OF WAZEWSKI. Suppose that the system & = f(t, x) and
the open sets w C 2 C R"* satisfy the following hypotheses:

(1) Hypothesis H.

2 S=8*

(B) There exists a set Z < w U S such that Z N S is a retract of
S but s mot a retract of Z.

Then there is at least one point Py (Y, x,) € Z — S such that I(t, P,)
C w for every t, < t < B(P).

The theorem of Wazewski [6, Théoréme 1, p. 299] is actually more
general than the one stated above.

If fi¢, 2, +++,2,),2 =1, --+, n, are complex-valued functions of the
real variable ¢t and of the complex variables «,, «--, z,, the n-dimensional
complex system & = f(f, ) can be considered as a 2n-dimensional real
system, so that the theorem of Wazewski is also extensible, in a
natural way, to complex systems [5, p. 19. §1 and p. 21, §2].

The most difficult part in the applications of the method of Wazewski
is, in general, to verify that S = S*. To accomplish this Wazewski
introduced the concept of a regular polyfacial set [6, §14 p. 307 and
§ 15, p. 309]. However the distinction established by Wazewski between
positive and negative faces has certain inconveniences. In some appli-
cations of the method of Wazewski there appear sets @ such that S = S*
but whose faces are only ‘‘almost positive’” and ‘‘almost negative’ .
We thus have to work sometimes with sets w that are similar, in some sense,
to the regular polyfacial sets and that satisfy the condition S = S*.

In the first part of our work we give a generalization of polyfacial
regular sets eliminating the distinction between positive and negative
faces and such that the main theorem concerning the polyfacial regular
sets [6, Théoréme 5, p. 310] remains valid. We observe that the sets
® considered in Z. Szmydtowna’s paper [5, §4, Théoréme 1, p. 24,
in our Theorem II-1 and in Barbalat’s paper [1, Théoréme 1, p. 303;
Théoréme 2, p. 305] are generalized regular polyfacial sets, in our
sense, but are not regular polyfacial sets.

Szmydtowna [5, Corollaire 1-Remarque 2, p. 30] proves a theorem

1 Szmydtéwna’s Theorem 1 is false. We observed that the proof is wrong because
the statement: ‘‘La frontiére de w touchant celle de 2 exclusivement sur le plan ¢t = o
---” [5, p. 28] is false.

J. Lewowics [3], developing a counter-example suggested by J. L. Massera, has shown
that the theorem is actually false. Nevertheless, Theorems 2 and 3 deduced from Theorem
1 are correct because, in the particular case of linear systems zr = A(t)r, with A(t) defined
for T <t < o, the solutions are defined for all T <t < oo.
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which generalizes a theorem of Perron. In part II of our work (Theo-
rem II-1) we obtain the same conclusion but starting from hypotheses
different from those of Szmydtowna.

Note?. Our Theorem II-1 improves a result of N. I. Gavrilov. 1.
M. Rapoport in his book ‘‘On some asymptotic methods in the theory
of differential equations’’, Kiev (1954) has also studied problems of this
type. For some reference to their work to see ‘“‘Forty years of Soviet
Mathematics’’, Moscow (1959), Vol. i., pp. 520-521.

Our Theorem II-2 follows the same line of ideas.

Theorem II-3, due to Professor J. L. Massera, shows that in the
case n = 2 the asymptotic behavior can be deseribed more completely.

Consider two systems

(1) Yy = A(t)y
2) iz = A(t)x + 9(t, x)

where A(t) is a continuous matrix for ¢ = T and g¢(t, ) a continuous
vector-function in 2 = [T, ) x R*.

Suppose that g(f, x) satisfies some condition ensuring the uniqueness
of the solution through each point P, 2 and that all solutions are
defined for T =<t < . We say that (1) and (2) are asymptotically
equivalent if there exists a homeomorphism ¢ from the plane t= T
onto itself such that if @, = ¢(P,) then lim [z(¢, P,) — y(t, Q)] = 0 [4,
Cap. IX, §4, p. 634]. t

In part IIT of our work the main result is the establishment of a
condition that implies the asymptotic equivalence between two linear
systems (Theorem III-3).

The author is deeply indebted to Professor J. L. Massera for his
constant guidance and invaluable help during the preparatation of this
paper, the result of work done at the Instituto de MatemAitica ¥y
Estadistica, Montevideo, Uruguay

Part 1
Let the real-valued functions
fz(trmlr"'rxn)y ’i:ly-o-,n,

of real variables ¢, x, ---, 2, belong to C?, p =1, on an open set 2 C
R, i.e., all partial derivatives
o,

— . @ +p+ s 0, =k=p)
ot 0x, ' - 01,

2 The information given in this Note is due to the referee. We have not had
access to the above works. We are indebted to him for this.
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exist and are continuous on 2.
Consider the differential system

@ %= f(t, »)
where
X .}:‘l(ty Ly, ’ xn)
e=|:|and f(t, x) = D
x.n fn(t’ Lyy =+, xn)

with (t, z) e Q.

Let g(t, ) be a real-valued function belonging to C**' on 2, let
Py (b, %) € 2 and let x(¢) be the integral of system (I) passing]through
the point P,. We set @(t) = g(¢, x(t)); since f(¢, )€ C? and g(t, x) e C***
it follows @(t) e C**' on (a(P,), B(P,)).

The qth derivative, ¢ < p + 1, of g(t, ) at the point P,: (¢, x,) with
respect to the system (I), is by definition

[—j; §D(t)lo and is denoted by [Di,g9(P)]5, .

Let H(P) = Ht,x),© =1, -+, m, be functions € C*™* on the open
set 2 < R+,
Let

w={PeQ|H(P)<0,i=1, -+, m}
Iy={PeQ|H(P)=0,H(P)<0,j =1, -, m)

The I"; are called faces of w.

Such a set w will be called a generalized regular polyfacial set
relative to (I) if, for each ¢ =1, ---,m and each Py (¢, x,)el’;, the
following alternative holds:

(1) The smallest index ¢ =<p + 1 such that [D H/(P)], # 0 is
odd and the corresponding derivative is positive;

(2) P, is not a point of egress.

Let L;, M; be the corresponding sets of points. Useful criteria to verify
Pye M, are:

(@) the smallest index ¢ =p + 1 such that [D{,H(p)],, # 0 is
either odd with a negative value of the derivative or even with a posi-
tive value of the derivative;

(b) There exists [a, b] C (a (P, B(P,)) such that a <t <b and
I(a,b], Py T,
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LEMMA 1. If @ is a generalized regular polyfacial set relative
to (I),

Cs

S::S*:L;”le— Mi-

1=1

Proof. Since I'; = L; U M;, B(w,2)c U,
s*csScUL - UM,
i=1 i=1

it is enough to show that any point P, belonging to this last set is a
point of strict egress. For such a P, J={j|PoeL;}+¢. If jed,
H;(P)) = 0 and there exists a 8 > 0 such that H,(t, I(¢, P,)) <0 in [t, —
8, t) and H,(¢t, I(t, P)) > 0 in (t, t, + 8. If 7€ J, Po¢é I"; whence H;(P,)
< 0 and there exists a 8 > 0 such that H,({, I(t, P,)) < 0 in [t, — 5, ¢o)-
There exists therefore a § > 0 such that H;¢, I(t, ) <0, =1, .-+, m,
telt,— 8, 1), and, for at least one j(¢J), H,(t, P,)) > 0,t e (¢, t, + 8], so
that P,e S*.

PArT I1

Consider the linear differential system
¥ = filt)y; + ]Z.:lgij(t)yj , 1=1,¢4,7

where the coefficients f;, 9,5, T <t < o, are continuous functions (in
general complex-valued) of the real variable ¢.
By using Wazewski’s method Z. Szmydtéwna proved that if

R(flc_fk+1)>0y S:R(fk_fk+l)dt:ooy kZl,'”,?’L—-l,
and

: G.; — g = e =1, ... —

RRG g PIT R ER et
then there is a system of n linearly independent solutions (y,,, «--, ¥,.),
k=1,--,n, with lim, .y;/ys = 0 for 7 # k [5, Corollaire 1, Remarque
2, p. 30]. This theorem generalizes a theorem of Perron who obtains
the same result requiring the existence of a constant ¢ > 0 such that
R(f.) > R(fis) +¢, k=1, --+,n—1, and lim,..g;; = 0.

We notice that Szmydtéwna allows the f;, 7 =1, ---, n, to be large
and the g;; to be small in some sense. In the following theorem we
obtain the same result allowing also the f; to be large and the g,; to
be small but in a sense completely different from Szmydtowna’s.
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THEOREM II-1. Suppose that the system
an z; = filt)x; + 5::. 9::i(t)x; , t=1,+0,m,

satisfies the following hypotheses:

(1) The coefficients fi, 9.5, T =t < o, are continuous functions
(in general complex-valued) of the real variable t.

(2) There exists a real-valued continuous function h(t), T <t <
oo, such that for all © + j we have

|B(fi — )| = k),
") 9.0 1 et < oo
and

[ Rlg — ;) [evdt < =,
r

where H(t) = g‘h(s)ds
T
Then there is a system of n limearly independent solutions
xn(t)’ ey xln(t)

(@), »oo, 2 (E)) = eeveoerenannnn
xnl(t)’ ) xnn(t)

with lim, .2 /2. = 0 for all © + k.

Proof.
For every fixed integer p, 0 < p < n, we set

w, ={P: (¢, x)| [ @ " — |, 'P(t) < 0,0 p,t >t = T}

where @(t) and ¢, will be conveniently chosen so that, for every ¢ = ¢,
P(t) > 0, ¢ is differentiable, lim,..p(t) =0 and ®, is a generalized
regular polyfacial set.
Let
H(P) ==z ["— |2, |9'(), 1F D,
HP)=t,—t,
it follows that w, = {P| H(P) < 0,1 =1, --+, n}.
Set, for q + p,
[,=r,—{Q:t|z=0
={P| |a,| = |z, |P@®), | 2. | = |x, | P(®) for © + p, t = ¢, x,+ O} .

An easy computation shows that
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%[DaUHQ(P)]P ey 2 | @, [POR(fy — o + 9u — )]

— | @, PP)P(t) — | @, *P*(E) ,;;, | gy | Il z;ll
a5 ] gy | 1L L
e g | |,
Since |z, | = |, | @(t) = | ;| for j # p it follows that |«;|/|z,| =

®(t). As we want @(t) > 0 and lin,..p(t) = 0 we can take ¢, such that
@(t) <1 for t = t,. Then

D H PP " = |2, [PORFy = o+ g = 920)
- I Ty |2¢(t)¢(t) - I Ly |2¢2(t) ]%l 9pi l - l Ly 12¢(t) 129;:1] 9qi ] .
since

¢(t)R(fq _fp +gqq _gpp) —(,D(t) _(p(t)ZIQPj! — %‘gqjl >

— P(t) — () — g(t) ,

where
g(t) = {% [ R(gis — 95) | + 19} + e 70,

in order to have, for q # p, [D.,H,(P) e [, >0, it is sufficient to choose
@(t) such that
(A) $) + POIE) + 9(t) = 0.

P(t) = e ¥ ‘“S g(s)e®'® ds is indeed a solution of (A) satisfying the
conditions @(t) >t0, @ differentiable and lim,_.@(t) = 0.

If w, is defined in this way, taking into account that [D(me(P)]perp
= —1 and that the set {Pe /", |2, = 0} € M,, for q + p, it follows that
®, is a generalized regular polyfacial set.

For 7 ++ p we have

L¢=f'¢ and L, = ¢,
M, =M={P:(t,x)|t=t,x=0}and M, =1,.

By Lemma 1
S=S=Ur,—r,—Mm.

1FDp
We choose

Z,={Pi(t, @) |t =7 >ty 3, = o) # 0, | o | < | @3] p(e), i # 9} = [[ B} ,
J

where B? is a solid sphere in R*. We have
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anSzan[yﬁi*Fp_M]:%zpn[fi—rp_M]-

For 1 # p

Z,N [ — Ty — M]={P:(t, )|t =T,% =&, | ;| = | 2% | 9(7),
lz;| = jap|P(2), 7 #p} =Bi X +++ X Bl X S} x B%, X +++ x B!

(in the cartesian product above B? is exclued) where S! is the boundary
of B} in R

Modulo homeomorphisms we have therefore Z, = B** (solid sphere
in B"%) and Z, N S = §*~* = Boundary of B*~*in R** so that Z, N S
is not a retract of Z,.

There is however a retraction ¢:S— Z, N S given by ¢(P)= P*,
with t* = 7, @} = @}, xF = @(v)/p(t) | %} |/| €, | *®;, © + p. The verification
is trivial.

By using the theorem of Wazewski we can conclude the existence
of at least one point Py (7, )€ Z, — S with I(¢, P,) C w, for every
t = 7. This means that the solution z,({) = (2,(t), -+, z,,(t) of (II)
passing through P, satisfies

M<cp(t) for t =7 and i - p.
| @p5(2) |

Letting p =1, -+, n we find n solutions (x,(¢), ---, x,(t)) with the
required property. Let us show that these solutions can be taken
linearly independent.

By choosing Z, with sufficiently large 7 and 2, = 1 the absolute
values of the coordinates w,,, ¢ # p, of the points of Z, can be made
arbitrarily small. We then have

xl(T) €n e &y
xz(f) o €yt 00 Eon
xn(‘[) enl e snn

where ¢; = 1 and the |¢;;| are smaller than any given positive number
for all © # 5. This completes the proof

In the following theorem we will look for linearly independent
solutions of (II) with similar properties to those of Theorem II-I but
not necessarily requiring that they form a fundamental set of solutions
of (II).

THEOREM II-2. Suppose that the system (II) satisfies the following
hypotheses:
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(1) The coefficients fi,9:;, T =<t < o, are continuous functions
(tn general complex-valued) for the real variable t.

(2) There exists a natural number r < n such that R(f,) = ..+ =

R(£), R(f) = R() for all i <, | |g.(t) |4t < o for all i+ and
(IR — g1 dt < eo.
Then there exists s + 1 (r + s = n) linearly independent solutions

(@,(t), ++ -, 2,(t)) = ( .............
xnr(t) M xnn(t)

such that lim, .2/, =0 for all i £k, k=17r, ---, n.

xlr(t) °c xln(t))

Proof. Given an integer p, r < p =< n, we prooceed exactly as in
Theorem II-1 up to the point where we got the expression:

@(t)R(fq _fp + Geq — gpp) - ¢(t) - g)(t)j;p I gpjl _J_;l l gq}l

which we denote by B,.
As we have R(f, — f,) = 0 for all ¢, 0 < ¢ < n, it follows (p(t) < 1)

B, = — ¢(t) — g(t) where rg(t)dt < .
t0

Making 9(t) = r[g(s) + e~*]ds it follows that @(t) > 0, ¢ is differ-
entiable, lim,..@(f) = 0 and B, > 0.

Proceeding as in Theorem II-1 we find a set of (s + 1) solutions
(x,(t), ++-, 2,(t)). Still by a similar reasoning we may show that these
solutions can be so chosen that for a sufficiently large = we have

@ (T), »oo, @(T)) = eeveeeeenn

rry 2%y S

with ¢; = 1 and the |¢;; [, 2 # J, smaller than any given positive number,
so that, they are linearly independent.

If » = 2 Theorem II-2, with some supplementary hypotheses, leads
us to a deeper result. As already mentioned in the Introduction the
following theorem is due to Professor J. L. Massera with whose per-
mission it is reproduced here.

THEOREM II-3. Suppose that the system
T = fl(t)x + gu(t)x + g12(t)y
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Z) = fz(t)y + 921(t)x + gzz(t)y

satisfies the following hypotheses:

1) The coefficients fi, 9:;, T <t < oo, are continuous real-valued
Sfunctions of the real variable t.

(%ﬂm>m&3mm~mmw—m&wmnw<mmw¢j

and || gu®) — 9.(0) | dt < 0.

Then there exists a solution (x,(t), ¥.(t)) satisfying lim,_ ., (t)/#(t)
=0 and, for any other solution (x(t), y(t)) which is not proportional
to (x,(t), ¥.(t)), we have lim, .y(t)/x(t) = 0.

Proof. The existence of a solution (z,(%), ¥:(t)) with the required
property follows from Theorem II-2.

Without loss of generality we may assume g, = ¢g,, = 0. Choose
t,> T so large that i (g + 9. At < 74 Let (n(0), 1) be the
solution which satlsﬁes 2(t) = 1, y.(t;) = 0. Setting 6(t) = arg (w.(t),
%.(t)), we claim, in the first place, that | 8(¢) | < w/4 for t = ¢,, Assume
that this were not the case. It then follows that there exists an interval
(¢, t,), t, = t,, such that 0(t,) = 0,]0(t,) | = 7/4,0 < |6(t) | < z/4 for t, <
t<t, say, 0(t,) =m/4,0 < O(t) < w/4 for t, <t < t, whence x,t)- y.(t)
>0 in (¢, t). Since

Usy — oY, — 9,25 — G35 + (fs — J)%Y,
x2 + y 3+ U;

§ =

ta .
we arrive to the contradiction /4 = 0(t,) — 0(t,) = S "ddt < 7/4.

t
We next prove that lim,_..y,(f)/2.(f) = 0, or eqﬁivalently lim,_..0(t)
= 0. There exsists a sequence t, — « with 6(¢,) —> 0, otherwise 4(z) >
6, > 0, say, which leads to the contradiction

0®) — 0(t) = — || (fitt) — £(8) sin () cos 0(t)dt

t
+&wm+mmw~~m.
0

Now, given ¢ > 0, choose t, such that | 0(t,) | < ¢/2, S (00| + | g )t <

¢/2. An argument similar to the one used to prove |6(¢)| < z/4 then
shows that | 6(¢) | < ¢ for ¢t = ¢,.

Assume t, large enough so that |2.(¢) |/| 1:()) | < 1, | wu(t) |/ zt) | < 1
for ¢ = t, and, say, %.(t) > 0, z,(f) > 0; then

%:(t) < (fu(®) + | 9.(0) D). wu(2)
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£ 2 (FO — 1 9.0 D- .40)
whence
t) = it exp (| (50 + 1 9u0) D)
2:®) 2 a,(t). exp (| (A0 — 1.0 Dat)

and

() — wilt) ‘ _ N
U= 20 exo (| (40 = 10 + 190 + 1 00 Dit) > 0.

Finally, any solution (x(t), ¥(t)) which is not proportional to (x,(t),
4,(?)) satisfies, for a certain constant value %,

y@®) _ w@® + k@) _ @0)[20) + k@O)/z0)
a(t) T,(t) + ky(t) 1+ k@.(8)/5.0))(y:(8)/7.(8)) '

Part II1

Consider the linear differential systems
(I11) % = A(t)x + B(t)x
(I1I') y = AQ)y

where A(t), B(t), T =t < «, are continuous complex matrix functions.

Conti [2, Theorem I, p. 589] proved that: if r{ B(t) | dt < o where
B(t) = (bi(t)) and | B(t) | = 3. |bi(t) | and +f (III') is uniformly stable,
then the system (III) and (III') are asymptotically equivalent®,

The theorem of Wintner [7, 7-i, p. 423] stating that:

If B(t) =(0i(t), T=t< o,1,j =1, +++,n, is a matriz of n* con-
tinuous functions satisfying ml B(t)|dt < o, then every solution of

% = B(t)x tends to a finite limit as £t — o, is a particular case of
Conti’s result (A(t) =0) .

Our Theorem III-3, is also a generalization of Wintner's theorem
but different from that of Conti.

Theorems III-1 and III-2, which are preliminary to Theorem III-3,
give us some information, though less than asymptotic equivalence,
concerning the behavior of two systems, one of which not necessarily
linear.

THEOREM III-1. Suppose that the systems

3 The theorem of Conti is actually more general. We have considered the theorem
applied to linear systems only.
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(I1I-1) &; = fil®)x; + g9i(¢, x) ,
(II1-2) ¥: = [0y ,
t=1,--,m, g9(t, x) = (9., x))

satisfy the following hypotheses:
1) fit), T =t < o, are continuous functions (in general complex-

valued) of the real variable t; g.(t, x) are functions (tn general complex-
valued) continuous in

2={t,®)|t> T,z =3|w]| < «}

and satisfy some condition which tmplies the existence of only one
integral passing through each point of Q.

2) g, x)| = |z|F(t) on Q.
(8) There exists a negative constant K such that
K = | R(f(e)de
t
Sforall v=1t>T and
oo 13
S F(t) exp [LR( fi(s))ds]dt < oo

forall 1 =1, ««-, m.
Then for every solution y(t) of III-2 there is a solution xz(t) of
III-1 such that lim,_.[2x(f) — y(t)] = 0.

Proof. We define w = {Pe Q] |x; — y(t) | < @i(t),t > t, = T} where
the @,(t) and ¢, will be adequately chosen so that for allt =¢,1=1, ..-,n,
we have: @,(t) > 0, ¢, differentiable, lim, ..p;(t) = 0 and @ a generalized
regular polyfacial set.

If we put

H(P) = | & — yt) [ — #(0) , i=1.em
H, (P)=t,—t

it follows that w = {P| H(P) < 0,t =1, -+, n + 1}.
For all 4,1 <1 < =n,

ri={Pe@|la; —y@®) | = 28), |2; =4, | = Ps), T =1, ++o,m, t =L} .

An easy computation shows that
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—;-[Dm,_um(P)]Pe 'y = PORIFD)] — 2O)P:(2)

—POF O Sl —u |+ 1w ]

As we want @,(t) > 0 and lim,..9;(t) = 0, we can take ¢, such that
S@i(t) <1 for all ¢t = ¢. Then,

U Do s HiP) [P e I 2 BORIAWO] — 2:7:0) — POF )

— 2 OF® 3] e | exp || RIAGIs 2 pIORILO] — 200

— 2. OF(®) 3,1 d, | exp | RIAGIds = PAORIAO] - 2.0
— PO

where we can assume S h(t)dt < o and, without loss of generality,
h(t) > 0 for all ¢ = t,.

In order to have, for all 1 =1, -+« n, [Duu-Hi(P)|Pe ", >0 it is
sufficient to choose @(f) such that

— @4(t) + RLfi(®O]p.(t) — h() > 0.

The problem is then to look for a solution 2z(t) of 2z < a(t)z — v(t)
satisfying 2(f) > 0 for all ¢ = ¢, lim,...2(f) = 0, knowing that ¥(f) > 0
for all t = ¢, S Y(t)dt <  and | o(s)ds = K for some constant K and
all v=t>=t,. If W() is a solution of W = (@)W — ¥(¢) it follows

that z(t) = 2W(t) is a solution of Z < g(t)z — v(t). It is then sufficient
to find a solution W(t) satisfying W(t) > 0 for all £ = ¢, and lim,... W(?)

=0. The solution W(t) = exp <Sc o(s)ds). va(v) exp(—gu a(s)ds)dv ex-
t t t
ists and indeed W(t) > 0 as t — o because ’

W) = Sj(y(v) exp (— Sja(s)ds)dv =< e"Krfy(fv)dv .

Since [Dun—nH,(P)] = —1 it follows that w is a generalized regular
polyfacial set and S =S* =U~.l; — [,4..

If we choose

Z:{(t’x)lt =T> tm]x:i _yJ(T)[ é?j(f)rj‘: 1) "'yn}
it follows that SN Z=U, [N Z -,
rinzZ={x)t=r1|x,—yir)]
= ¢i(7'-)’ l r; — yj(z-) l § q)j(T)!j = 1: ey n} o
Then Z = []?.,B?
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an:CjB;x cee X B3, X S} X B}y X +++ X B
i=1

and, modulo homomorphisms, Z=B*, Z N S=S*""! so that Zn S is
not a retract of Z. However, it is easily seen that ¢: S — SN Z given
by ¢(P) = P*, with t* =7, o} = y.(v) + [2; — ¥:()]P:(7)/P,(t), is a re-
traction.

Using the theorem of Wazewski we can conclude the existence of
at least one point P,: (7, %) € Z — S such that (¢, 2(¢, P)) = I(t, P) C @
for all t = ¢,.

Since «(¢, P,) is defined in the future, i.e., B(P,) = » (because
B(P) < « implies {I(t, Py)|t, =t < B(P,)} bounded, which is not possi-
ble), it follows that lim,..[x(t, P,) — y(t)] = 0.

COROLLARY 1. Suppose that the systems

(I11-1") &; = filt)x; + 2::‘1' 9:5();
(I11-2" ¥ = f(t)y:

t=1,-,m, gt =(9:()

satisfy the following hypotheses:

(1) The coefficients f;, 9:5, T =t < o, are continuous functions
(in gemeral complex-valued) of the real variable t.

(2) There exists a constant K such that
K< S"R[f,.(s)]ds forall v=1t= T and
t
oo t
[T9@ 1exo {[ RLA@s}at < <o, i=1,m.
Then for every solution ¥y(t) of (III-2') there exists a solution
z(t) of (III-1') such that lim,..[2(t) — y(t)] = 0.
The theorem of Wintner mentioned before follows a once from

Corollary 1.

TueoREM III-2. Suppose that the systems

(III-A) £ = 3 FulO)m; + 06, )
(III-B) 0 = 30}

i:j =1,0,m, g(t’ x) = (gj(t; x))

satisfy the following hypotheses:
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1) fi;(t), T <t < o, are continuous functions (in general complex-
valued) of real variable t; g,(t, x) are functions (in general complex-
valued) continuous in

Q={¢tx)|t<T|x|< o}

and satisfy some condition which tmplies the existence of only one
integral passing through each point of £.

2 |git, x| =|z|F@) in Q.
(8) There evists a constant K such that
KéS?UMM%fMauvzthwm
S“’F(t) exp {S;R[ f“(s)]ds}dt <o, R
[17.0 exp {[ Rifuds)at < o, k=1, mizg.

Then for every solution y(t) of (III-B) there is a solution x(t)
of (II-A) such that lim, .[z(t) — y()] =0

Proof. Consider the systems
(I1I-A) &; = fi(t)x; + 9:(t, ) where §;(¢, ¥) = (¢, x) + ;fij(t)xj
(I11-C) 2. = fu(®)z; .

These systems satisfy the condition of Theorem III-1. Hence for
every solution z(¢) of (III-C) there is a solution x(f) of

(III-A) such that lim,_ .[z(t) — ()] =0

Consider now the systems

(I1-B) b = 2 Fii®)y;
(II1I-C) z; = fu(l)z; .

It is easy to see that they also satisfy the hypotheses of Theorem
III-1. Hence for every solution z(¢) of (III-C) there is a solution #(t)
of (III-B) such that lim, .[y() — 2(¢)] = 0. But we can also prove that
for every solution y(f) of (III-B) there is a solution 2(f) of (III-C) such
that y(f) —2(¢) >0 as ¢ — . For that purpose it is enough to show
that there is a fundamental set 2'(t), ---,2"({) of solutions of (III-C)
such that the solutions y'(t), ---,y"(t) satisfying ¥%'(t) —zi(t)—>0 as
t— o, foralli=1,:-+,n, are a fundamental set of solutions of (III B).
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Let us take zi(t) = <ZI(§t)) such that 2zj(t) = 0 for all j + ¢ and 2i(t)
2:(t)
= exp (S;f}i(s)ds) forall i=1, -, 7.

The corresponding ¥i(t),+ =1, «++, n, satisfy lim, .yi(t) =0 if 7 # 1
and lim,_., | ¥i(t) — exp [S;fn(s)ds | = 0. Hence, there exists ¢, such that

t = t, implies
13
i(t) — : 1x
|90) — exp | | Fu@)ds || < Lex .

Whence

|90 > exp {[| RIfuds| — Ler = Lex.

Therefore, for any ¢ > 0 there is a #(¢) such that ¢ = ¢(¢) implies
|yit) | > 1/2e5,1 =1, +++-,m, and |yit)| < ¢ for all ¢ #+ 5. This implies
the existence of a == T with det(y'(c), ---, ¥*(7)) # 0 and (¥'(t), ---,
y*(t)) is a fundamental set of solutions of (III-B).

From the results concerning the systems (III-A), (III-C) and (III-B),
(ITII-C) we conclude that for every solution y(¢) of (III-B) there is a
solution x(t) of (III-A) such that lim, .[x(t) — y(¢)] = 0.

THEOREM III-3. Suppose that the systems

(1) &= 35 w0 + 3 0500,
(I11-8) 5 = 33 Fis0)w; Li=1n

satisfy the following hypotheses:

(1) The coefficients fij, 95, T =t < o, are continuous functions
(in general complex-valued) of the real variable t.

(2) There exists constant K such that K < SUR[f“(s)]ds for all
v2t=T,i=1,-++,n, and t

| 9.0 L exp {]] RLAs(oNMds}at < <o, i k=1, -m
[ 1750 e {| RIsu@Ws)at < 0, 40 =1, 0 m i

Then the systems (III-a) and (III-B) are asymptotically equivalent,
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Proof. By Theorem III-2 for every solution y(t) of (III-B) there
is a solution z(¢t) of (III-a) such that lim,..[z(¢) — y()] = 0.

Let us show that given a fundamental set (¥'(), .-, y"(t)) of so-
lutions of (III-B) the corresponding solutions (x'(¢), «+-, "(t)) of (III-cx)
satisfying lim,..[2'(¢) — ¥'(¢t)] = 0,7t =1, -+, n, also form a fundamental
set of solutions.

Congsider the auxiliary system

(I11-7) 2 = fu(®)z, t=1,,m.

Applying the argument used in Theorem III-2 to the systems (III-5),
(III-y) we conclude that there exists a fundamental set (y'(¢), ---, y"(t))
of solutions of (III-B) and a ¢, such that ¢ = ¢, implies

|yit) | g%e“ and yi(t) - 0 as ¢ — o for all 4 # 7 .

Let (2'(t), +--, 2"(f)) be the solutions of (III-a) such that lim,-.
[2'(t) — ¥*(!)] = 0 (the existence of which follows from Theorem III-2).
Then lim, ..x}(t) = 0 for all © # 7 and there exists T = ¢, such thatt = 7
implies | zi(t) | > 1/4e*.

For sufficiently large ¢ we have therefore

det (x'(t), +--, ™)) = 0

and this means that (x'(f), ---, z"(¢)) is a fundamental set of solutions
of (ITI-).

The systems (III-a) and (III-B) being linear this implies that they
are asymptotically equivalent.
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