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The heavy symbolism used in the theory of recursive functions has
perhaps succeeded in alienating some mathematicians from this field, and
also in making mathematicians who are in this field too embroiled in
the details of thier notation to form as clear an overall picture of their
work as is desirable.3 In particular the study of degrees of recursive
unsolvability by Kleene, Post, and their successors4 has suffered greatly
from this defect, so that there is considerable uncertainty even in the
minds of those whose speciality is recursion theory as to what is super-
ficial and what is deep in this area.5 In this note we shall examine
one particular theorem (namely the Kleene-Post theorem asserting the
existence of incomparable degrees6) and show that it is a special case
of a very easy and well-known theorem of set-theory. Exposition will
be such as to require (except in a few footnotes) no preliminary ac-
quaintance with recursive matters. It is to be hoped that some mathe-
maticians in other areas may be stimulated by this exposition to try their
hand at some open questions about recursive functions: it is to be hoped
also that they will not carry away the impression that all of recursion
theory is as trivial as this paper will show the Kleene-Post theorem to be.

First let me describe in an informal way what relative recursiveness
is. The only properties of it which we shall need will be apparent from
this informal discussion.

Denote by ε the set of all nonnegative integers. A function shall
mean a number-theoretic function / : ε —• ε. A function is called recursive
if it can be computed in an effective (mechanical) manner: we shall
not need the details of the definition.7 Sometimes two functions / and
g are so related that the function / can be calculated in an effective
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1 Composition of this paper was supported by NSF grant G-7277.
2 Category methods have also been used by the author in [12], and form the basis of

the entire treatment of degrees in [3],
3 A related (but much deeper) contribution to the methodology of recursion theory has

made by Addison, e.g., in [1].
4 See, e.g., [7], [14], [15], [19]. A sadly neglected paper in the same area which

completely avoids these unnecessary complications is Lacombe [10].
5 The principal result of Spector [19] (minimal non-recursive degrees) is probably

'deep' in this sense, as is likewise the Friedberg-Muc'nik proof ([4], [11]) of the existence
of incomparable degrees of recursively enumerable sets.

6 Strictly speaking, the Kleene-Post theorem ([7], p. 390) gives more information than
our version, since it gives incomparable degrees <O r. But this result too can be obtained
by a category argument, as I shall show in a later publication.

7 Cf., e.g., Davis [2], p. 41.
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(mechanical) way apart from requiring, for the computation of each
particular function-value f(n0), a finite amount of information concerning
values of the function g: in this case we say that / is recursive in or
relative to g. The simplest way to envisage this relation is probably in
terms of Turing machines.8 We say that / is recursive in g if there
exists a Turing machine with input and output tapes such that if the
values g(Q), g(l), g(2), . . . are fed in that order into the input, then for
every nonnegative integer n the unique true statement of the form
f(n) = m will appear after a finite time on the output tape (and no
false statement of that form will ever appear). Another characterization
which may also aid the intuition is the following: / is recursive in g if
there is a formal system9 Σ such that every true statement of the form
f(n) = m, and no false statement of that form, is deducible in Σ from
a finite number of true statements of the form g(x) = y. The exact
definitions of Turing machine and formal system are quite irrelevant
for our purposes: all that matters is that

(1) only finitely many values of g are used to compute any value
of / and

(2) the total number of Turing machines or formal systems
is countable.

In both cases (2) is a consequence of the fact that the process of
computation of one function from another can be described by a finite
description using only symbols belonging to a finite alphabet fixed in
advance; the same will be true if we characterize relative recursive-
ness in some way other than by Turing machines or formal systems.10

To every Turing machine or formal system corresponds uniquely a
mapping Φ from functions to functions, called a partial recursive oper-
ator. It is important to notice that certain such Φ may not be defined
for all functions as arguments. It may well be that a certain Turing
machine T, on being supplied with the values of a certain function g,
will print statements of the form f(m) = n on its tape only for certain
m. In that case we say that T computes only a partial function from
g. We regard the operator Φ as defined on the family of all those g
from which T computes a full (everywhere defined) function. For
example, suppose we consider the mapping which assigns to every function
/ the function < Φf > such that

< Φf >(x) = (μy) (f(y) = 0);11

8 Davis [2], Ch. 1-2.
9 For 'formal system' see Davis [2], Ch. 6 and 8, Smullyan [17] passim. The first

use of formal systems to define partial reqursive functionals seems to date from Myhill-

Shepherdson [13], p. 315, where we followed a suggestion of Marian Boykan (now Pour-El).
1 0 E.g., by systems of recursion equations (Kleene [5], pp. 326-327).
1 1 (μy) ( V •) denotes the least y satisfying the condition . . . ί/... if such exist,

and otherwise is meaningless.
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then Φ is a partial recursive operator whose domain of definition is the
family of all functions which vanish for at least one value of the argu-
ment (and whose range is the family of all constant functions).

We denote by ^~ the family of all functions, and we topologize it
as the product of countably many replicas of the integers each with
the discrete topology. This corresponds to the metric

p(f, g) =
(μx)(f(x) Φ g(x)) + 1

or 0 if / — g. It is well-known12 that this is a complete metric space,
hence of second category on itself. This is the basic fact that we shall
use in what follows.

By a finite function we mean a mapping of a finite subset of ε into
ε; if /0 is such a function, we define, ^K(f0) as the family of all (full)
functions which extend /„. We can take as a (countable) basis for JίΓ
the collection of all families ^ (/<,). Φ : ^-^ ^~ with ^ g J^is con-
tinuous (in the induced topology on ^ ^ ) 1 3 just in case

(3/0) (/ e ^/(/ 0 ) and (v/')

> < Φf' > (x) = y)) ,

i.e., if and only if any value < Φf > is determined by finitely many
values of /. In view of what was said above it follows that all partial
recursive operators are continuous14" (on their domain). For use later on
we observe also that the domain of definition of such an operator is a
Gδ set; this too is an immediate consequence of the preceding informal
remarks.

We write / g g if / is recursive in g,f<g if / ^ g but not g fg /.
The relation / ^ g is a pre-order; hence its symmetrization f=g (i.e.,
/ ^ g and g gΞ /) is an equivalence relation. The equivalence classes
into which it divides ^ ~ are called degrees) we call one degree & lower
than another degree 3ί * and write 2$ < & * if / < g for all (equiva-
lently, for some) / G ^ , ^ G ^ * .

Now we can prove the existence of incomparable degrees. Observe
first the there are exactly c degrees, since there are c functions and at

12 Sierpinski [16], p. 191.
13 A partial recursive operator defined on a dense subset of -^ need not have a continuous

extension to the whole space (Kleene [5], p. 685); and even when it does this extension
need not be partial recursive (Lacombe [10], p. 155, Theorem XIX). Hence it will not
suffice for our purposes to consider only everywhere defined operators.

14 This observation is essentially Kleene's (cf. the proofs of Theorems XXIa and XXYI
in [5], pp. 339, 348-349); that the property in question amounted to continuity was observed
apparently independently by Lacombe (in a series of papers in Comptes Rendus going back
at least to 1953) and later by Trahtenbrot [2O3. Davis ([2], pp. 164 seqq.) oddly uses the
word 'compact' to mean 'continuous'.
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most (in fact, exactly, but we shall not need this) ^ 0 functions belong-
ing to any given degree. Observe also that there are at most ^ 0 degrees
lower than a given degree. For let ^ * be a degree; then if /belongs
to a degree lower than ^ * it must be of the form < Φg > where
# e ^ * and Φ is partial recursive. But there are only countably many
g's in £^* and only countably many Φ's; hence there are only countably
many functions of degree < ϋ ^ * and a fortiori only countably many
degrees < ^ * . 1 5 This gives a plausibility argument for the existence
of incomparable degrees, for if every two degrees were comparable we
would have a simply ordered set of the power of the continuum in which
each element had only a (finite or) countable number of predecessors;
and this is easily seen16 to imply the continuum hypothesis.

The continuum hypothesis is equivalent17 to the assertion that the plane
is the union of countable many curves (where a curve is the set of all
points (x,f(x)) or of all points (f(x), x) for some (not necessarily every-
where defined) real function / ) . We know also that the plane is not
the union of countably many continuous curves,18 since each such curve
is nowhere dense and the plane is of second category on itself. These
considerations yield at once the existence of incomparable degrees. If
every two degrees were comparable the space J^2 would be the union
of all curves {(/, < Φf >)} and {(< Φf>,f)} with Φ partial recursive.
But this is impossible because as we have seen each of these curves is
continuous and hence by a classical argument nowhere dense,19 and
because j ^ 2 , like J^", is a complete metric space and hence of second
category on itself, q.e.d.

Now we use the same method to establish a stronger statement
which answers a question rather recently raised (and still more recently
settled) by Shoenfield.20 Do there exist uncountably many degrees any
two of which are incomparable? We shall obtain an affirmative answer
to this question using only the hypotheses that ^7~ is a complete metric
space and hence of second category on itself, and that there are only
countably many partial recursive operators each of which is continuous

15 For the lowest degree (that to which recursive functions belong) there are of course

no degrees lower. There are also degrees than which only a finite nonzero number of

degrees are lower (Spector [19], Theorem 4).
16 Sierpinski [16], p. 23.
17 Sierpinski [16], p. 11.
1 8 Nor of countably many measurable curves (i.e., Lebesgue measurable in the plane);

this is the foundation of Spector's proof in [18] of the existence of incomparable hyper-

degrees. (Measure arguments have to replace category arguments in the study of hyper-

degrees because hyperarithmetic operators are in general discontinuous.)
19 The only hypothesis needed is that ^ is a Hausdorff space with no isolated points.
2 0 Raised in [15], settled in [14]. More recently Sacks has obtained (unpublished) a

continuum number of pairwise incomparable degrees and Lacombe and Nerode (unpublished)

have obtained a continuum number of independent (and minimal non-recursive) degrees

(see [7], p. 383 for the definition of independence).
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in the topology induced on its domain.
Given any basic open set ^/K(f0) and any partial recursive operator

Φ, it may or may not be the case that < Φf> has the same value for
all fe^Kifo) for which it is defined. If this happens for some
we call < Φf > a singular function; in symbols

g singular «-• (a/0) (30) (Φ partial recursive and

(v/e ^r(/o)) « Φf > defined - < Φf > = g)) .

A function which is not singular we call regular. Clearly there are c
regular and at most ^ 0 singular functions.21

We wish to exhibit an uncountable collection of pairwise incomparable
degrees, or, what comes to the same thing, an uncountable family of
functions none of which is recursive in any other. We prove this by
establishing successively the following propositions.

A. If / is regular and Φ partial recursive, then Φ~ι{f) is nowhere
dense.

B. If / is regular, then the family of all functions of degree ^
the degree of / is of first category.

C. If / is regular, then the family of all functions of degree
comparable with the degree of / is of first category.

D. If ^""is a (finite or) countable family of regular functions, then
the family of all functions which are either singular or of degree compa-
rable with that of some function belonging to ^ " i s of first category.

E. If J^ is a (finite or) countable family of regular functions,
there exists a regular function of degree incomparable with the degree
of every function in

F. There exists an uncountable family of pairwise incomparable
degrees.

Clearly A->B-»C-»D->E—>F, so we have only to prove A. Let
then / be regular, Λ" a basic open set, Φ a partial recursive operator.
We seek a subneighborhood ^<Γ of Λ^ such that for all g e Λς, Φg is
undefined or Φf. If < Φg > is undefined for all g e ^Y\ take Λ* — <yT*
If on the other hand < Φg > is defined for some g e <Λ'\ then there
exists (since / is !*egular) such a g for which < Φg > Φ f. Let &~ be

21 The singular functions are precisely the functions / for which the relation f(x) = y
is hyperarithmetic (see Davis [2], p. 192 for the definition of hyperarithmetic). The proof
is essentially contained in [8].
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the domain of Φ. Then {g | < Φg > φ /} = ^Vx ΓΊ ̂  for some open
*yV[. Consequently we can take ^^— Λ^ Π -^Γ &nd Φ~\f) is nowhere
dense, q.e.d.

It must be stressed that some existence thorems in the literature
of degrees apparently cannot be reduced to category arguments, at least
not in the topology which we used.22 Also Shoenfield's proof of the
existence of ^ pair wise incomparable degrees is essentially different
from the above, and yields the further information that given any
countable family of non-recursive functions (i.e., not of the lowest
degree, not effectively calculable) there is a function of degree incompara-
ble with all of them. We only obtain the statement (E above) reading
'regular' for 'non-recursive'; and this is weaker as we have seen. If
possible we seek a category argument which will yield this stronger
result. However we cannot do this without more structure on ^ . For
we can exhibit a countable family of continuous operators

with the following four properties:

I . They are closed under composition* whenever possible,

II. They contain the identity.

III. The domain of each is a Gδ.

IV. There exists a minimum in the induced ordering f^g

such that it is false that given any countable family of functions none of
which is minimal in the sense of IV, then there is a functions incompa-
rable with them all.

The following additional assumption however, which is true for
partial recursive operators, yields enough additional structure for us to
obtain Shoenfield's result by essentially his method.

V. If the domain of Φ is dense on an open set, its intersection
with that set contains a minimal (i.e., recursive) point.

It is obviously enough (in view of the earlier part of this paper) to
prove that Φ~ι(f) is nowhere dense for each non-recursive f For this,
consider such an / and let ^ be a basic open set and Φ a partial
recursive operator. We seek again a subneighborhood Λ^ of ^\r disjoint
from Φ~\f). If the domain ^ of Φ is not dense on yj/\ this is trivial;

22 Spector's proof in [19] of the existence of minimal non-recursive degrees has been
made into a category argument by Lacombe (unpublished); but the topology used is highly
artificial.
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so assume it is dense. By V, its intersection with ^ίr contains a re-
cursive point g. If < Φg > = f, f would be recursive, contradicting
the hypothesis. Hence < Φg > Φ f and as alove we can take ΛΊ =
<Λl (Ί ΛT where ^ " i s an open set such that {g \ < Φg > Φ /} —JΫX Π ^Γ
q.e.d.

The proof of V however seems to require essential use of (non-topo-
logical) properties of recursive functions as distinguished from operators,
specifically their closure under a certain iterative procedure. We conclude
that ShoenfiekΓs result (and a fortiori the results of Sacks and Nerode
mentioned in footnote 20) probably do not, like some of the other theo-
rems on degrees mentioned in this note, rest solely on elementary set-
theoretic considerations. However, the distinction between those which
do and those which do not require more advanced and specialized means
(i.e., between those which are truly 'recursive' and those which are
merely set-theoretic) seems worth making, if only because it throws
some light on aspects of the methodology of the whole domain which
the present treatment in the literature leaves almost completely in the
dark.
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