
PRIMITIVE ALGEBRAS WITH INVOLUTION

WALLACE S. MARTINDALE, 3RD

A well known theorem of Kaplansky ([1], p. 226, Theorem 1) states
that every primitive algebra satisfying a polynomial identity is finite
dimensional over its center. Related to this result is the following con"
jecture due to Herstein: if A is a primitive algebra with involution
whose symmetric elements satisfy a polynomial identity, then A is
finite dimensional over its center. Our main object in the present
paper is to verify this conjecture in the special case where A is assumed
to be algebraic. In the course of our proof we develop some results,
which may be of independent interest, concerning the existence of non-
trivial symmetric idempotents in primitive algebras with involution.

l Some preliminary remarks* In the present section we mention
•a few definitions and observations which we shall need in the remainder
of this paper.

By the term algebra over Φ we shall mean an associative algebra
{possibly infinite dimensional) over a field Φ. A primitive algebra over
Φ is one which is isomorphic to a dense ring of linear transformations
of a (left) vector space V over a division algebra Δ containing Φ (see
[1], p. 32). The rank of an element a of a primitive algebra is the
dimension of Va over Δ. We state without proof the following three
remarks.

REMARK 1. Let A be a primitive algebra with identity 1 contain,
ing a set of nonzero orthogonal idempotents e19 e2, * ,em such that

(a) ex + e2 + + em = 1
(b) rank e< = r{ < oo, % — 1, 2, , m.

Then the dimension of V over Δ is ΣΓ=î » < °°

REMARK 2. Let A be a primitive algebra with center Z. If za = 0
for some z Φ Oe Z and some ae A, then a = 0.

REMARK 3. Let A be a primitive algebra. If a and b are nonzero
elements of A, then aAb Φ 0. More generally, if a19 a2, , αn are non-
zero elements of A, where n is any natural number, then

aλAa2A an-λAan Φ 0 .

An I-algebra is an algebra in which every non-nil left ideal contains
a nonzero idempotent. An algebra over Φ is algebraic in case every
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element satisfies a non-trivial polynomial equation f(t) = 0, where f(t) =
Σ<****» a i e Φ One can show that every algebraic algebra is an I-algebra.
In the proof of this fact (see [1], p. 210, Proposition 1), however, the
following sharper result is obtained.

REMARK 4. Let a be a non-nilpotent element of an algebraic alge-
bra. Then the subalgebra [[a]] generated by a contains a nonzero
idempotent.

An involution* of an algebra A over Φ is an anti-automorphisrn of
A of period 2, that is,

(a + b)* = α* + 6*

(aa)* = aa*

(ab)* = δ*α*

α** = α

for all α, 6 e A, a e Φ. It is to be understood that in the rest of this
paper the characteristic of Φ is assumed to be unequal to 2. An element
a is symmetric if α* = a; a is skew if α* = — a. * is an involution of
the first kind in case every central element is symmetric. * is an in-
volution of the second kind in case there exists a nonzero central ele-
ment which is skew. Every involution is of one of these two kinds.

2Φ Sn*algebras The notion of an algebra satisfying a polynomial
identity can be generalized according to the following

DEFINITION. A subspace R of an algebra A over Φ satisfies a poly-
nomial identity in case there exists a nonzero element f(tlft2, •••,£„)
of the free algebra over Φ freely generated by the t{ such that

f(x19x2, ~-,xn) = 0

for all x{e R. R will be called a Pl-subspace of degree d if the degree
d of f(tly t2, , tn) is minimal.

The element f(tlf t2, , tn) is multilinear of degree n if and only if it
is of the form

tσ2 ί , a(σ) e Φ, some a{σ) Φ 0 ,
c

w h e r e σ r a n g e s o v e r a l l t h e p e r m u t a t i o n s of ( 1 , 2, • • • , % ) .

LEMMA 1. Let R be a Pl-subspace of degree n of an algebra A.
Then R satisfies a multilinear polynomial identity of degree n.

This lemma is a slight generalization of [1], p. 225, Proposition 1.
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The same proof carries over directly and we therefore omit it.
Our main purpose in this paper is to study algebras of the follow-

ing type.

DEFINITION. Let A be an algebra with an involution * over Φ.
Suppose that the set S of symmetric elements is a P/-subspace of degree
^ n. Then A will be called an Sn-algebra. In case * is of the first
(second) kind, we shall refer to A as an S^-algebra of the first (second)
kind.

It is surprisingly easy to analyze ^-algebras of the second kind, as
indicated by

THEOREM 1. Let A be a primitive Sn-algebra of the second kind.
Then A is finite dimensional over its center.

Proof.1 According to Lemma 1 S satisfies a multilinear polynomial
identity of degree n:f(t19t29 9tn) = 0. Let z be a nonzero central
element of A which is skew. If k is skew, then

(zk)* = k*z* = ( - k){- z) = kz = zk ,

and hence zk is symmetric. Therefore we have

0 = f(zk19 s2, s3, , sn) = zf(k19 s2, s39 , sn)

for all kλ e K, Si e S, where K is the set of skew elements. By Remark 2
f(k19 s2f s3, , sn) = 0. It follows that f(x19 s2, s3, , sn) — 0 for all xx e A,
Si e S, since every x e A can be written x — s + k9 s e S, k e K. Continuing
in this fashion we finally have f(x19 x%1 •••, xn) = 0 for all x{eA. The
conclusion then follows from the previously mentioned theorem of Kaplan-
sky ([l], p. 226, Theorem 1).

3 Some basic theorems^ The assumption that the symmetric ele-
ments of an Sn-algebra satisfy a polynomial identity is used chiefly to
prove

THEOREM 2. Let A be a primitive Sn-algebra over Φ. Then there
exist at most n orthogonal non-nilpotent symmetric elements.

Proof. Suppose slf s29 , sn+1 are n + 1 orthogonal non-nilpotent
symmetric elements. Using Remark 3 and the fact that the s{ are non-
nilpotent we may choose elements x19 x29 , xn e A so that

A similar proof was communicated orally to the author by I. N. Herstein.
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Now set ui = SiXiSi+1 + si+1xfsiy i = 1, 2, , n. By Lemma 1 S satisfies
a multilinear identity of degree n:

where σ ranges over all the permutations of (1,2, •••,%) except the
identity permutation J. /(ί^, w2> > wn) = 0 since the u{ are symmetric.
To analyze the right hand side of (1) we first note that if u^μ^ Φ 0,
i, j , k distinct, then either j = i + 1 and fc = i + 2, or j = ΐ — 1 and
& = i — 2, because of the orthogonality of the s{. It follows that

f(u19 u2, , un) = ̂ 2 . -. wn + α%A-i ^i

for some α e Φ , Hence

(2) 0 = s^s^s^ slxnsn+1 + as^x^slx*^

Multiplying (2) through on the left by s19 we have 0 = 8\xxs\x% .. slxn$%+1,
a contradiction.

An idempotent e of an algebra A is called non-trivial in case e φ 1
(if A has an identity) and β Φ 0.

THEOREM 3. Lei A be a primitive I-algebra with an involution*.
Then:

(a) If there exists an x Φ 0 e A such that xx* — 0, then either A
contains a non-trivial symmetric idempotent or A is isomorphic to the
total matrix ring Δ2J where Δ is a division algebra. In the latter case
En — E22, where the Ei5 are the %nit matrices, i, j = 1, 2.

(b) If xx* Φ 0 for all x Φΰe A, then either A is a division
algebra or A contains a non-nilpotent symmetric element which has
no inverse in A. If xx* Φ 0 for all x Φ 0 e A and A is algebraic over
Φ, then either A is a division algebra or A contains a non-trivial
symmetric idempotent.

Proof. Suppose first that there exists an xΦOe A such that xx* = 0.
We can choose an α e i such that e — αx is a nonzero idempotent, be-
cause A is an I-algebra. Since xx* — 0, e Φ 1. From the equations
ee* = (αx)(αx)* — αxx*α* = 0 it is easy to check that e + e* — e*e is a
non zero symmetric idempotent. We may thus assume that le A and
e + e* — e*e = 1. eAe is a primitive /-algebra ([1], p. 48, Proposition 1,
and p. 211, Proposition 2). If eAe is not a division algebra, then it contains
an idempotent / = ebe, f Φ 0, f Φ e. Since ff* — ebee*b*e* = 0,
/ + / * — / * / is a nonzero symmetric idempotent. It is unequal to 1
since otherwise e = e(f + f* — /*/) — /• We may therefore assume
that eAe is a division algebra and consequently that rank e = 1. Since
(1 — e*)(l — e) = 1 — (e + e* — e*e) = 0, a repetition of the above argu-
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ment allows us to assume that 1 — e is also an idempotent of rank 1.
It follows from Remark 1 that A is the complete ring of linear trans-
formations of a two dimensional vector space V over a division algebra Δ.

If e*e — 0 as well as ee* = 0 it is easy to show that relative to a
suitable basis of V e = En and e* = E22, In this case we are finished.
Therefore suppose e*e Φ 0. We shall sketch an argument, leaving some
details to the reader, whereby a non-trivial symmetric idempotent can
now be found. First find a basis (u19 u2) of Fsuch that uxe = u19 u2e = 0,
^xe* = 0, u2e* = Xuλ + u2, where λ Φ 0 e J . By setting ^ = λ"1^ and
^2 = u2 we obtain a basis (v19 v2) of F relative to which e = En and
e* = 2£21 + i?22. From this we have

21

E* = [(E21 + E22)EnY = (E21 + E22)EU = E2

E22 = e — i?2*i = JSΊi ~~ E21 .

Set ^ί 2 = aEn + βE12 + 7£;21 + 8E229 a, β, γ, δ e zί. From the following
three equations

£7n — E21 = £"2*2 = (E21E12)* = E*2E2l = βEn + SE21

E21 + E22 = # * - ( E i , ^ ) * = ^£ί?i*a - OLEΆ + βE22

aEu + βE12 + 7E21 + 8E22 = E*2 = (EnEu)* = E*E*

we obtain a = 1, /S = 1, γ = — 1, and δ = — 1. Hence

Έ*2 = En + E12 -- £21 — E22

and —El2E*2 = ί7u + £712 is then a non-trivial symmetric idempotent.
There remains the case in which xx* Φ 0 for all x Φ OeA. We

note that in this situation there exist no nonzero nilpotent symmetric
elements, for, if s Φ 0 is symmetric, then s2 = ss* Φ 0. If A is not al-
ready a division algebra then we can find an element x Φ OeA such
that xA is a proper right ideal. It follows that xx*A gΞ xA is also a
proper right ideal, and so xx* is a nonzero, and hence, non-nilpotent
symmetric element which has no inverse. In case A is algebraic over
Φ the subalgebra [[xx*]] generated by xx* contains a non-trivial sym-
metric idempotent, by Remark 4.

4. Total matrix rings with involution* We begin by proving

THEOREM 4. Let A be the total matrix ring Am with an involution
*, where Δ is a division algebra over Φ. Then there exists a set of
orthogonal symmetric elements ex, e2, , eOTl,/i/2,

 # ,/W 2 such that:
(a) The βi are non-nilpotent elements of rank 1. In case A is
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algebraic over Φ, the e* are idempotents of rank 1.
(b) The fj are idempotents of rank 2, and fjAfά is isomorphic to

Δ2, with En — E22 (see Theorem 3).
(c) mx + 2m2 = m.

Proof. Let su s2, , sh be a set of nonzero orthogonal symmetric
idempotents, with h maximal. By the maximality of h we have

Each SiAs{ may itself be regarded as a total matrix ring Δr with an
involution induced by *, where r* is the rank of s{. We first consider
those SiASi having the property: there exists an x Φ 0 e ŝ As; such that
xx* — 0. Theorem 3, together with the maximality of hy then says
that SiASi is isomorphic to Δ2, with E*λ = E2i. Relabeling these sύ as
/iff*, •• ,/«2, we have taken care of (6).

The remaining sif of course, have the property that xx* Φ 0 for all
as =£ 0 e S As;. As we have noted before, SiASi can have no nonzero
nilpotent symmetric elements, since xx* φ 0. Consider a typical s^S;
and select from it an element xλ of rank 1. Then yx = s^f ^ 0 is a
non-nilpotent symmetric element of rank 1. Now assume that fc(<rΐ)
orthogonal non-nilpotent symmetric elements ylfy2, , yk of rank 1 have
been found. Since the dimension of W= Σ ί ^ i F ^ is less than rif we
can find an element xk+1 of rank 1 such that Wxk+1 = 0. Then yk+1 =
xk+1x*+1 is a non-nilpotent symmetric element of rank 1 such that
Wyk+1 = 0, that is, yiyk+1 = 0, ΐ = 1, 2, , k. Also i/fc+1y. = 0, i =
1, 2, , fc, since (yk+1y%)* = 2/**2/?+i = 2/<2/Λ+I = 0. It follows that there
exists in s^Si a set of r< non-nilpotent orthogonal symmetric elements
2/1.2/2, •• ,2ΛV each of rank 1. If A is algebraic over Φ the subalgebra
iίVj]] generated by each yά contains a nonzero idempotent z3- (necessarily
of rank 1), and so we have rt orthogonal symmetric idempotents
z19 z2, •••, zr., each of rank 1. Repeating the argument for all the
SiASi and labeling either all the yi or all the z3- as elf e2, •• , e w , we
have completed the proof of (a), (c) follows readily from the fact that
rank et = 1, rank f5 = 2, and Σi e ΐ + Σ i / i = !•

To illustrate Theorem 4 we consider the following simple example.
Let A — Φ2J where Φ is a field, and define an involution * in A by:

αj \1 0 Λ«. ccj\-l θ)'

The reader may verify that A contains no symmetric elements of rank
1. Similar examples of higher dimension can also be given.

In the remainder of this section we derive a result which will enable
us, at least in the algebraic case, to "pass" from the total matrix ring
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Δm to the division algebra Δ itself.

LEMMA 2. Let A be the total matrix ring Δ2, algebraic over Φ, with
an involution *, where Δ is a division algebra over Φ. Suppose En=E22.
Then one of the following two possibilities must hold:

(a) A contains a symmetric idempotent of rank 1.
(b) The involution * in Δ2 is of the form:

«i ocλ* _ / 0 -β-Λίct! aλί 0 β

a3 aj V/5"1 0 )\a2 aj\—β 0

for all a% e Δ, some β φ 0 e Δ, where a^>a is an involution in Δ.

Proof. It is well known (see for example [2], p. 24, Theorem 9)
that the involution * in A has the form:

a, aλ

aB aj \a2 aj

/ 7 β\
where U = _ is a nonsingular element of Δ2 and ̂ - > α is an in-

\±β δ/
volution in Δ. Consider the equation E22 = E*± = U^E^U, that is,

7 /3\/0 0\ __ /I OW 7 /3

±/9 δ/\0 1/ "" VO 0/V±^ δ

0 β
It follows that γ = δ = 0, and hence U = ,

\±β 0
/cy ry \

At this point we observe that an element [ ) e A is a non-
\Ύi Ύ2J ί±β β\

nilpotent element of rank 1, unless 7i + 72 = 0. Now set B =
^±^8 ±β\ \±β β)

It is easy to check that B* — U'H _ _ \U = ± By and hence B is
\ β. β I i o β\

either symmetric or skew. If β ± β = 0, i.e., 17= K we are
finished. Therefore assume that /5 ± β Φ 0. We then apply the ob-
servation made at the beginning of this paragraph to conclude that B
is a non-nilpotent element of rank 1. Since B is either symmetric or
skew, it follows that B2 is a non-nilpotent symmetric element of rank
1. The proof is complete when we note that, as A is algebraic over
Φ, the subalgebra [[B2]] generated by B2 over Φ contains a symmetric
idempotent of rank 1.

THEOREM 5. Let A be the total matrix ring Δm, algebraic over Φ,
with an involution^ *, where Δ is a division algebra over Φ. Then
there exists a division subalgebra D of A such that D* = D and D is
isomorphίc to Δ.



1438 WALLACE S. MARTINDALE, 3RD

Proof. Theorem 4 asserts the existence of either (a) a symmetric
idempotent e of rank 1 or (b) a symmetric idempotent / of rank 2,
where fAf is isomorphic to Δ2 with the induced involution * such that
JEΊ* = E22. In case (a) we merely set D ~ eAe and the required con-
clusion follows. In case (b) Δ2 satisfies the hypothesis of Lemma 2. If
Δ2 contains a symmetric idempotent of rank 1 we proceed as in case (a).
Otherwise we conclude from Lemma 2 that the involution * in Δ2 is
given by:

L aλ* = / 0 -β-Λ/a, aλί 0 β

a3 aj [-β-1 0 )\a2 aj\-β 0

Let D be the division subalgebra of Δ2 consisting of all elements of the
[a 0)

form ] I, aeΔ. D is obviously isomorphic to Δ. Furthermore, one
(0 a)

verifies that

la 0 ) *

(0 a

β-λocβ 0 )

0 β-'aβ]
eD

and we see that D* — D.

5. Division ίvalgebras We begin this section by stating

LEMMA 3. Let Δ be an algebraic division algebra over its center
Φ for which there exists a fixed integer h such that the dimension of
Φ(x) over Φ is equal to or less than h for every separable element
x e Δ. Then Δ is finite dimensional over Φ.

Except for the restriction of separability, this lemma is virtually
the same as [1], p. 181, Theorem 1. The proof appearing in [1] carries
over directly, and we therefore omit it.

LEMMA 4. Let Δ be an algebraic Sn-division algebra of the first
kind over its center Φ. Suppose E is a finite dimensional field exten-
sion of Φ. Then E(&ΦΔ is isomorphic to the total matrix ring Γm,
where Γ is a division algebra and m ^ 2n.

Proof. E (g) Δ is well known to be a simple algebra over Φ with
minimum condition on right ideals. Hence E® Δ is isomorphic to Γm,
where Γ is a division algebra and m is a natural number.

An involution τ can be defined in E§§ Δ as follows:

(a 0 x)τ = a 0 x*

for ae E, x e Δ. It can be verified that τ is a well-defined involution
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and that every symmetric element (under τ) in E 0 Δ can be written
in the form:

Let f(tlf t2, , tn) — 0 be the multilinear polynomial identity of degree
n satisfied by S. Because this identity is multilinear and because E is
the center of E§t)Δ> it follows from (3) that the set of symmetric ele-
ments of i?(x) Δ under τ also satisfies f(tlf t2, , tn) = 0.

Now regard E(g> Δ as the total matrix ring Γm9 with involution τ.
By Theorem 4 there exists in Γm a set of at least k non-nilpotent
orthogonal symmetric elements, where 2k ^ m. Theorem 2 tells us that
k ^n, and hence m ^ 2k ^ 2n.

We are now able to prove

THEOREM 6. Let Δ be an algebraic Sn-dίvision algebra. Then Δ
is finite dimensional over its center.

Proof. By Theorem 1 we may assume that Δ is an Sn-algebra of
the first kind over its center Φ. Suppose Δ is not finite dimensional
over Φ. Then by Lemma 3 there exists a separable element x e Δ whose
minimal polynomial g(t) over Φ has degree r > 2n. Let E be a finite
dimensional field extension of Φ containing the r distinct roots
a19a2, •••,<*„ of g(t).

We claim now that the element x — a{ is a zero divisor in E® Δ,
i = 1, 2, , r. Indeed,

0 = g(x) = Π (« - <*i) = (χ - ad Π (» - a,-) ,

and it suffices to show that Γ L v ^ ~ aj) is a nonzero element of E(&Λ.
Suppose ΐ[j¥:i(x — a;) = 0, that is,

(4) ( x r - 1 ® l ) - ( a r - a < g > Σ * i ) + ••• ± ( l ® Π α i ) = 0 .

Since of"1, xr"2, , 1 are linearly independent over Φ, all the correspond-
ing terms of E in (4) must be zero, which is clearly impossible. There-
fore x — cti is a zero divisor in Eζ>§ Δ.

According to Lemma 4 E 0 z/ is isomorphic to the total matrix ring
Γmf where m ^ 2w. We may therefore regard E§§ Δ as the complete
ring of linear transformations of an m-dimensional vector space V over
the division algebra Γ. Set Vt = {v e V \ v(x — a{) — 0}, i = 1, 2, , r.
Vi is a nonzero subspace of V since a? — a{ is a zero divisor in E(& Δ.
Using the fact that the a{ are distinct elements belonging to the center Ey

we have that V{ are independent subspaces of V. It follows that
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m ^ dim Σ V{ = Σ (dim V̂ ) ̂  r > 2w .
ι = l ι = l

A contradiction now arises since m ^ 2n. We must therefore conclude
that Δ is finite dimensional over its center.

6. Primitive Sn-algebras. We are now in a position to proceed with
the proof of our main result.

THEOREM 7. Let A be a primitive algebraic Sn-algebra. Then the
center of A is a field, and A is finite dimensional over its center.

Proof. Since A is primitive, A may be regarded as a dense ring
of linear transformations of a vector space V over a division algebra
Δ. According to Theorem 2 there exist at most n orthogonal symmetric
idempotents. Let elfe29 ,em be a set of m orthogonal symmetric
idempotents, with m ( ^ n) maximal. For each i, β A^ is again a primitive
algebraic algebra with involution induced by *. The same is true for
(1 — e)A(l — e), where e — eλ + e2 + + em1 if A should not already
happen to have an identity. We now use Theorem 3 in conjunction
with the maximality of m to assert that the rank of each e{ is 1 or 2, and
that A does have an identity 1 = eλ + e2 + + em. It follows that
the dimension k of V ^ 2m and consequently that A is isomorphic to
the total matrix ring Δk. The center of A is, of course, a subfield of
Δ. Theorem 5 now says that Δ is an algebraic S^-division algebra. By
Theorem 6 Δ is finite dimensional over its center. Hence A is finite
dimensional over its center.

COROLLARY. Let A be a primitive algebraic algebra with an in-
volution * such that the set K of skew elements is a Pl-subspace of
degree n. Then A is finite dimensional over its center.

Proof. Let f(t1912, , tn) = 0 be the multilinear polynomial identity
of degree n satisfied by K, according to Lemma 1. If su s2eS, where
S is the set of symmetric elements of A, then sλs2 — s2sλ e K. From this
it follows that f{uιv1 — vλuλ, u2v2 — v2u2t , unvn — vnun) = 0 is a non-
trivial polynomial identity of degree 2n satisfied by the elements of S.
In other words, A is a primitive algebraic S2n-algebra, and the conclusion
follows from Theorem 7.

Note. Herstein's original conjecture was: if A is a simple ring (or
algebra) with involution whose skew elements satisfy a polynomial identity,
then A is finite dimensional over its center. In this paper we have
verified his conjecture in the special case where A is a simple algebraic
algebra which is not a nil algebra.
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