PRIMITIVE ALGEBRAS WITH INVOLUTION

WALLACE S. MARTINDALE, 3RD

A well known theorem of Kaplansky ([1], p. 226, Theorem 1) states that every primitive algebra satisfying a polynomial identity is finite dimensional over its center. Related to this result is the following conjecture due to Herstein: if A is a primitive algebra with involution whose symmetric elements satisfy a polynomial identity, then A is finite dimensional over its center. Our main object in the present paper is to verify this conjecture in the special case where A is assumed to be algebraic. In the course of our proof we develop some results, which may be of independent interest, concerning the existence of non-trivial symmetric idempotents in primitive algebras with involution.

1. Some preliminary remarks. In the present section we mention a few definitions and observations which we shall need in the remainder of this paper.

By the term algebra over Φ we shall mean an associative algebra (possibly infinite dimensional) over a field Φ . A primitive algebra over Φ is one which is isomorphic to a dense ring of linear transformations of a (left) vector space V over a division algebra Δ containing Φ (see [1], p. 32). The rank of an element a of a primitive algebra is the dimension of Va over Δ . We state without proof the following three remarks.

REMARK 1. Let A be a primitive algebra with identity 1 containing a set of nonzero orthogonal idempotents e_1, e_2, \dots, e_m such that

- (a) $e_1 + e_2 + \cdots + e_m = 1$
- (b) rank $e_i = r_i < \infty$, $i = 1, 2, \dots, m$.

Then the dimension of V over Δ is $\sum_{i=1}^{m} r_i < \infty$.

REMARK 2. Let A be a primitive algebra with center Z. If za = 0 for some $z \neq 0 \in Z$ and some $a \in A$, then a = 0.

REMARK 3. Let A be a primitive algebra. If a and b are nonzero elements of A, then $aAb \neq 0$. More generally, if a_1, a_2, \dots, a_n are nonzero elements of A, where n is any natural number, then

$$a_1Aa_2A\cdots a_{n-1}Aa_n\neq 0$$
.

An I-algebra is an algebra in which every non-nil left ideal contains a nonzero idempotent. An algebra over Φ is algebraic in case every

Received September 23, 1960.

element satisfies a non-trivial polynomial equation f(t) = 0, where $f(t) = \sum \alpha_i t^i$, $\alpha_i \in \mathcal{O}$. One can show that every algebraic algebra is an *I*-algebra. In the proof of this fact (see [1], p. 210, Proposition 1), however, the following sharper result is obtained.

REMARK 4. Let a be a non-nilpotent element of an algebraic algebra. Then the subalgebra [[a]] generated by a contains a nonzero idempotent.

An $involution^*$ of an algebra A over Φ is an anti-automorphism of A of period 2, that is,

$$(a + b)^* = a^* + b^*$$

 $(\alpha a)^* = \alpha a^*$
 $(ab)^* = b^* a^*$
 $a^{**} = a$

for all $a, b \in A$, $\alpha \in \mathcal{O}$. It is to be understood that in the rest of this paper the characteristic of \mathcal{O} is assumed to be unequal to 2. An element a is symmetric if $a^* = a$; a is skew if $a^* = -a$. * is an involution of the first kind in case every central element is symmetric. * is an involution of the second kind in case there exists a nonzero central element which is skew. Every involution is of one of these two kinds.

2. S_n -algebras. The notion of an algebra satisfying a polynomial identity can be generalized according to the following

DEFINITION. A subspace R of an algebra A over Φ satisfies a polynomial identity in case there exists a nonzero element $f(t_1, t_2, \dots, t_n)$ of the free algebra over Φ freely generated by the t_i such that

$$f(x_1, x_2, \cdots, x_n) = 0$$

for all $x_i \in R$. R will be called a PI-subspace of degree d if the degree d of $f(t_1, t_2, \dots, t_n)$ is minimal.

The element $f(t_1, t_2, \dots, t_n)$ is multilinear of degree n if and only if it is of the form

$$\sum_{\sigma}\alpha(\sigma)t_{\sigma_1}t_{\sigma_2}\cdot\cdot\cdot\cdot t_{\sigma_n}\text{, }\alpha(\sigma)\in \mathcal{Q}\text{, some }\alpha(\sigma)\neq 0\text{ ,}$$

where σ ranges over all the permutations of $(1, 2, \dots, n)$.

Lemma 1. Let R be a PI-subspace of degree n of an algebra A. Then R satisfies a multilinear polynomial identity of degree n.

This lemma is a slight generalization of [1], p. 225, Proposition 1.

The same proof carries over directly and we therefore omit it.

Our main purpose in this paper is to study algebras of the following type.

DEFINITION. Let A be an algebra with an involution * over \emptyset . Suppose that the set S of symmetric elements is a PI-subspace of degree $\leq n$. Then A will be called an S_n -algebra. In case * is of the first (second) kind, we shall refer to A as an S_n -algebra of the first (second) kind.

It is surprisingly easy to analyze S_n -algebras of the second kind, as indicated by

THEOREM 1. Let A be a primitive S_n -algebra of the second kind. Then A is finite dimensional over its center.

*Proof.*¹ According to Lemma 1 S satisfies a multilinear polynomial identity of degree $n: f(t_1, t_2, \dots, t_n) = 0$. Let z be a nonzero central element of A which is skew. If k is skew, then

$$(zk)^* = k^*z^* = (-k)(-z) = kz = zk$$
,

and hence zk is symmetric. Therefore we have

$$0 = f(zk_1, s_2, s_3, \dots, s_n) = zf(k_1, s_2, s_3, \dots, s_n)$$

for all $k_1 \in K$, $s_i \in S$, where K is the set of skew elements. By Remark 2 $f(k_1, s_2, s_3, \dots, s_n) = 0$. It follows that $f(x_1, s_2, s_3, \dots, s_n) = 0$ for all $x_1 \in A$, $s_i \in S$, since every $x \in A$ can be written x = s + k, $s \in S$, $k \in K$. Continuing in this fashion we finally have $f(x_1, x_2, \dots, x_n) = 0$ for all $x_i \in A$. The conclusion then follows from the previously mentioned theorem of Kaplansky ([1], p. 226, Theorem 1).

3. Some basic theorems. The assumption that the symmetric elements of an S_n -algebra satisfy a polynomial identity is used chiefly to prove

THEOREM 2. Let A be a primitive S_n -algebra over Φ . Then there exist at most n orthogonal non-nilpotent symmetric elements.

Proof. Suppose s_1, s_2, \dots, s_{n+1} are n+1 orthogonal non-nilpotent symmetric elements. Using Remark 3 and the fact that the s_i are non-nilpotent we may choose elements $x_1, x_2, \dots, x_n \in A$ so that

$$s_1^2 x_1 s_2^2 x_2 \cdots s_n^2 x_n s_{n+1} \neq 0$$
.

¹ A similar proof was communicated orally to the author by I. N. Herstein.

Now set $u_i = s_i x_i s_{i+1} + s_{i+1} x_i^* s_i$, $i = 1, 2, \dots, n$. By Lemma 1 S satisfies a multilinear identity of degree n:

(1)
$$f(t_1, t_2, \cdots, t_n) = t_1 t_2 \cdots t_n + \sum_{\sigma \neq I} \alpha(\sigma) t_{\sigma_1} t_{\sigma_2} \cdots t_{\sigma_n},$$

where σ ranges over all the permutations of $(1,2,\cdots,n)$ except the identity permutation I. $f(u_1,u_2,\cdots,u_n)=0$ since the u_i are symmetric. To analyze the right hand side of (1) we first note that if $u_iu_ju_k\neq 0$, i,j,k distinct, then either j=i+1 and k=i+2, or j=i-1 and k=i-2, because of the orthogonality of the s_i . It follows that

$$f(u_1, u_2, \dots, u_n) = u_1 u_2 \dots u_n + \alpha u_n u_{n-1} \dots u_1$$

for some $\alpha \in \Phi$. Hence

$$(2) 0 = s_1 x_1 s_2^2 x_2 s_3^2 x_3 \cdots s_n^2 x_n s_{n+1} + \alpha s_{n+1} x_n^* s_n^2 x_{n-1}^* \cdots s_2^2 x_1^* s_1.$$

Multiplying (2) through on the left by s_1 , we have $0 = s_1^2 x_1 s_2^2 x_2 \cdots s_n^2 x_n s_{n+1}$, a contradiction.

An idempotent e of an algebra A is called *non-trivial* in case $e \neq 1$ (if A has an identity) and $e \neq 0$.

Theorem 3. Let A be a primitive I-algebra with an involution*. Then:

- (a) If there exists an $x \neq 0 \in A$ such that $xx^* = 0$, then either A contains a non-trivial symmetric idempotent or A is isomorphic to the total matrix ring Δ_2 , where Δ is a division algebra. In the latter case $E_{11}^* = E_{22}$, where the E_{ij} are the unit matrices, i, j = 1, 2.
- (b) If $xx^* \neq 0$ for all $x \not\equiv 0 \in A$, then either A is a division algebra or A contains a non-nilpotent symmetric element which has no inverse in A. If $xx^* \neq 0$ for all $x \neq 0 \in A$ and A is algebraic over Φ , then either A is a division algebra or A contains a non-trivial symmetric idempotent.

Proof. Suppose first that there exists an $x \neq 0 \in A$ such that $xx^* = 0$. We can choose an $a \in A$ such that e = ax is a nonzero idempotent, because A is an I-algebra. Since $xx^* = 0$, $e \neq 1$. From the equations $ee^* = (ax)(ax)^* = axx^*a^* = 0$ it is easy to check that $e + e^* - e^*e$ is a non zero symmetric idempotent. We may thus assume that $1 \in A$ and $e + e^* - e^*e = 1$. eAe is a primitive I-algebra ([1], p. 48, Proposition 1, and p. 211, Proposition 2). If eAe is not a division algebra, then it contains an idempotent f = ebe, $f \neq 0$, $f \neq e$. Since $ff^* = ebee^*b^*e^* = 0$, $f + f^* - f^*f$ is a nonzero symmetric idempotent. It is unequal to 1 since otherwise $e = e(f + f^* - f^*f) = f$. We may therefore assume that eAe is a division algebra and consequently that rank e = 1. Since $(1 - e^*)(1 - e) = 1 - (e + e^* - e^*e) = 0$, a repetition of the above argu-

ment allows us to assume that 1-e is also an idempotent of rank 1. It follows from Remark 1 that A is the complete ring of linear transformations of a two dimensional vector space V over a division algebra Δ .

If $e^*e=0$ as well as $ee^*=0$ it is easy to show that relative to a suitable basis of V $e=E_{11}$ and $e^*=E_{22}$. In this case we are finished. Therefore suppose $e^*e\neq 0$. We shall sketch an argument, leaving some details to the reader, whereby a non-trivial symmetric idempotent can now be found. First find a basis (u_1,u_2) of V such that $u_1e=u_1,u_2e=0$, $u_1e^*=0$, $u_2e^*=\lambda u_1+u_2$, where $\lambda\neq 0\in \mathcal{A}$. By setting $v_1=\lambda^{-1}u_1$ and $v_2=u_2$ we obtain a basis (v_1,v_2) of V relative to which $e=E_{11}$ and $e^*=E_{21}+E_{22}$. From this we have

$$egin{align} E_{11}^* &= E_{21} + E_{22} \ E_{21}^* &= [(E_{21} + E_{22})E_{11}]^* = (E_{21} + E_{22})E_{11} = E_{21} \ E_{22}^* &= e - E_{21}^* = E_{11} - E_{21} \ . \end{array}$$

Set $E_{12}^* = \alpha E_{11} + \beta E_{12} + \gamma E_{21} + \delta E_{22}$, α , β , γ , $\delta \in \Delta$. From the following three equations

$$egin{aligned} E_{11}-E_{21}&=E_{22}^*=(E_{21}E_{12})^*=E_{12}^*E_{21}^*=eta E_{11}+\delta E_{21}\ E_{21}+E_{22}&=E_{11}^*=(E_{12}E_{21})^*=E_{21}^*E_{12}^*=lpha E_{21}+eta E_{22}\ lpha E_{11}+eta E_{12}+\gamma E_{21}+\delta E_{22}&=E_{12}^*=(E_{11}E_{12})^*=E_{12}^*E_{11}^*\ &=eta E_{11}+eta E_{12}+\delta E_{21}+\delta E_{22}, \end{aligned}$$

we obtain $\alpha = 1$, $\beta = 1$, $\gamma = -1$, and $\delta = -1$. Hence

$$E_{\scriptscriptstyle 12}^* = E_{\scriptscriptstyle 11} + E_{\scriptscriptstyle 12} - E_{\scriptscriptstyle 21} - E_{\scriptscriptstyle 22}$$

and $-E_{12}E_{12}^*=E_{11}+E_{12}$ is then a non-trivial symmetric idempotent.

There remains the case in which $xx^* \neq 0$ for all $x \neq 0 \in A$. We note that in this situation there exist no nonzero nilpotent symmetric elements, for, if $s \neq 0$ is symmetric, then $s^2 = ss^* \neq 0$. If A is not already a division algebra then we can find an element $x \neq 0 \in A$ such that xA is a proper right ideal. It follows that $xx^*A \subseteq xA$ is also a proper right ideal, and so xx^* is a nonzero, and hence, non-nilpotent symmetric element which has no inverse. In case A is algebraic over Φ the subalgebra $[[xx^*]]$ generated by xx^* contains a non-trivial symmetric idempotent, by Remark 4.

4. Total matrix rings with involution. We begin by proving

THEOREM 4. Let A be the total matrix ring Δ_m with an involution *, where Δ is a division algebra over Φ . Then there exists a set of orthogonal symmetric elements $e_1, e_2, \dots, e_{m_1}, f_1 f_2, \dots, f_{m_2}$ such that:

(a) The e_i are non-nilpotent elements of rank 1. In case A is

algebraic over Φ , the e_i are idempotents of rank 1.

- (b) The f_j are idempotents of rank 2, and f_jAf_j is isomorphic to Δ_2 , with $E_{11}^* = E_{22}$ (see Theorem 3).
 - (c) $m_1 + 2m_2 = m$.

Proof. Let s_1, s_2, \dots, s_h be a set of nonzero orthogonal symmetric idempotents, with h maximal. By the maximality of h we have

$$s_1 + s_2 + \cdots + s_n = 1$$
.

Each s_iAs_i may itself be regarded as a total matrix ring Δ_{r_i} with an involution induced by *, where r_i is the rank of s_i . We first consider those s_iAs_i having the property: there exists an $x \neq 0 \in s_iAs_i$ such that $xx^* = 0$. Theorem 3, together with the maximality of h, then says that s_iAs_i is isomorphic to Δ_2 , with $E_{11}^* = E_{22}$. Relabeling these s_i as f_1, f_2, \dots, f_m , we have taken care of (b).

The remaining s_i , of course, have the property that $xx^* \neq 0$ for all As we have noted before, $s_i A s_i$ can have no nonzero nilpotent symmetric elements, since $xx^* \neq 0$. Consider a typical $s_i A s_i$ and select from it an element x_1 of rank 1. Then $y_1 = x_1 x_1^* \neq 0$ is a non-nilpotent symmetric element of rank 1. Now assume that $k(\langle r_i \rangle)$ orthogonal non-nilpotent symmetric elements y_1, y_2, \dots, y_k of rank 1 have been found. Since the dimension of $W = \sum_{i=1}^k Vy_i$ is less than r_i , we can find an element x_{k+1} of rank 1 such that $Wx_{k+1} = 0$. Then $y_{k+1} = 0$ $x_{k+1}x_{k+1}^*$ is a non-nilpotent symmetric element of rank 1 such that $Wy_{k+1} = 0$, that is, $y_iy_{k+1} = 0$, $i = 1, 2, \dots, k$. Also $y_{k+1}y_i = 0$, $i = 1, 2, \dots, k$. 1, 2, ..., k, since $(y_{k+1}y_i)^* = y_i^*y_{r+1}^* = y_iy_{k+1} = 0$. It follows that there exists in $s_i A s_i$ a set of r_i non-nilpotent orthogonal symmetric elements y_1, y_2, \dots, y_{r_i} , each of rank 1. If A is algebraic over \emptyset the subalgebra $[[y_j]]$ generated by each y_j contains a nonzero idempotent z_j (necessarily of rank 1), and so we have r_i orthogonal symmetric idempotents z_1, z_2, \dots, z_{r_s} , each of rank 1. Repeating the argument for all the $s_i A s_i$ and labeling either all the y_j or all the z_j as e_1, e_2, \dots, e_m , we have completed the proof of (a). (c) follows readily from the fact that rank $e_i = 1$, rank $f_j = 2$, and $\sum_i e_i + \sum_j f_j = 1$.

To illustrate Theorem 4 we consider the following simple example. Let $A = \Phi_2$, where Φ is a field, and define an involution * in A by:

$$egin{pmatrix} egin{pmatrix} lpha_1 & lpha_2 \ lpha_3 & lpha_4 \end{pmatrix}^* = egin{pmatrix} 0 & -1 \ 1 & 0 \end{pmatrix} egin{pmatrix} lpha_1 & lpha_3 \ lpha_2 & lpha_4 \end{pmatrix} egin{pmatrix} 0 & 1 \ -1 & 0 \end{pmatrix}\!, \;\; lpha_i \in arPhi \;\;.$$

The reader may verify that A contains no symmetric elements of rank 1. Similar examples of higher dimension can also be given.

In the remainder of this section we derive a result which will enable us, at least in the algebraic case, to "pass" from the total matrix ring

 Δ_m to the division algebra Δ itself.

LEMMA 2. Let A be the total matrix ring Δ_2 , algebraic over φ , with an involution *, where Δ is a division algebra over φ . Suppose $E_{11}^* = E_{22}$. Then one of the following two possibilities must hold:

- (a) A contains a symmetric idempotent of rank 1.
- (b) The involution * in Δ_2 is of the form:

$$\begin{pmatrix} \alpha_1 & \alpha_2 \\ \alpha_3 & \alpha_4 \end{pmatrix}^* = \begin{pmatrix} 0 & -\beta^{-1} \\ \beta^{-1} & 0 \end{pmatrix} \begin{pmatrix} \overline{\alpha}_1 & \overline{\alpha}_3 \\ \overline{\alpha}_2 & \overline{\alpha}_4 \end{pmatrix} \begin{pmatrix} 0 & \beta \\ -\beta & 0 \end{pmatrix}$$

for all $\alpha_i \in \Delta$, some $\beta \neq 0 \in \Delta$, where $\alpha \to \overline{\alpha}$ is an involution in Δ .

Proof. It is well known (see for example [2], p. 24, Theorem 9) that the involution * in A has the form:

$$egin{pmatrix} egin{pmatrix} lpha_1 & lpha_2 \ lpha_3 & lpha_4 \end{pmatrix}^* = \, U^{\scriptscriptstyle -1} egin{pmatrix} arlpha_1 & arlpha_3 \ arlpha_2 & arlpha_4 \end{pmatrix} \! U$$

where $U = \begin{pmatrix} \gamma & \beta \\ \pm \overline{\beta} & \delta \end{pmatrix}$ is a nonsingular element of Δ_2 and $\alpha \to \overline{\alpha}$ is an involution in Δ . Consider the equation $E_{22} = E_{11}^* = U^{-1}E_{11}U$, that is,

$$\begin{pmatrix} \gamma & \beta \\ \pm \overline{\beta} & \delta \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \gamma & \beta \\ + \overline{\beta} & \delta \end{pmatrix}.$$

It follows that $\gamma=\delta=0$, and hence $U=\begin{pmatrix}0&\beta\\\pm\overline{\beta}&0\end{pmatrix}$.

At this point we observe that an element $\begin{pmatrix} \gamma_1 & \gamma_2 \\ \gamma_1 & \gamma_2 \end{pmatrix} \in A$ is a non-nilpotent element of rank 1, unless $\gamma_1 + \gamma_2 = 0$. Now set $B = \begin{pmatrix} \pm \overline{\beta} & \beta \\ \pm \overline{\beta} & \beta \end{pmatrix}$. It is easy to check that $B^* = U^{-1} \begin{pmatrix} \pm \beta & \pm \beta \\ \overline{\beta} & \overline{\beta} \end{pmatrix} U = \pm B$, and hence B is either symmetric or skew. If $\beta \pm \overline{\beta} = 0$, i.e., $U = \begin{pmatrix} 0 & \beta \\ -\beta & 0 \end{pmatrix}$, we are finished. Therefore assume that $\beta \pm \overline{\beta} \neq 0$. We then apply the observation made at the beginning of this paragraph to conclude that B is a non-nilpotent element of rank 1. Since B is either symmetric or skew, it follows that B^2 is a non-nilpotent symmetric element of rank 1. The proof is complete when we note that, as A is algebraic over \mathcal{P} , the subalgebra $[[B^2]]$ generated by B^2 over \mathcal{P} contains a symmetric idempotent of rank 1.

THEOREM 5. Let A be the total matrix ring Δ_m , algebraic over Φ , with an involution *, where Δ is a division algebra over Φ . Then there exists a division subalgebra D of A such that $D^* = D$ and D is isomorphic to Δ .

Proof. Theorem 4 asserts the existence of either (a) a symmetric idempotent e of rank 1 or (b) a symmetric idempotent f of rank 2, where fAf is isomorphic to Δ_2 with the induced involution * such that $E_{11}^* = E_{22}$. In case (a) we merely set D = eAe and the required conclusion follows. In case (b) Δ_2 satisfies the hypothesis of Lemma 2. If Δ_2 contains a symmetric idempotent of rank 1 we proceed as in case (a). Otherwise we conclude from Lemma 2 that the involution * in Δ_2 is given by:

$$egin{pmatrix} igl(lpha_1 & lpha_2 igr)^* = igl(egin{pmatrix} 0 & -eta^{-1} igr) igl(ar{ar{lpha}}_1 & ar{ar{lpha}}_3 igr) igl(ar{lpha}_2 & ar{ar{lpha}}_4 igr) igl(egin{pmatrix} -eta & eta igr) & eta igr) \end{array}.$$

Let D be the division subalgebra of Δ_2 consisting of all elements of the form $\begin{pmatrix} \alpha & 0 \\ 0 & \alpha \end{pmatrix}$, $\alpha \in \Delta$. D is obviously isomorphic to Δ . Furthermore, one verifies that

$$\left. \left\{ \begin{matrix} \alpha & 0 \\ 0 & \alpha \end{matrix} \right\}^* = \left\{ \begin{matrix} \beta^{-1} \overline{\alpha} \beta & 0 \\ 0 & \beta^{-1} \overline{\alpha} \beta \end{matrix} \right\} \in D$$

and we see that $D^* = D$.

5. Division S_n -algebras. We begin this section by stating

LEMMA 3. Let Δ be an algebraic division algebra over its center Φ for which there exists a fixed integer h such that the dimension of $\Phi(x)$ over Φ is equal to or less than h for every separable element $x \in \Delta$. Then Δ is finite dimensional over Φ .

Except for the restriction of separability, this lemma is virtually the same as [1], p. 181, Theorem 1. The proof appearing in [1] carries over directly, and we therefore omit it.

Lemma 4. Let Δ be an algebraic S_n -division algebra of the first kind over its center Φ . Suppose E is a finite dimensional field extension of Φ . Then $E \bigotimes_{\sigma} \Delta$ is isomorphic to the total matrix ring Γ_m , where Γ is a division algebra and $m \leq 2n$.

Proof. $E \otimes \Delta$ is well known to be a simple algebra over Φ with minimum condition on right ideals. Hence $E \otimes \Delta$ is isomorphic to Γ_m , where Γ is a division algebra and m is a natural number.

An involution τ can be defined in $E \otimes \Delta$ as follows:

$$(\alpha \otimes x)^{\tau} = \alpha \otimes x^*$$

for $\alpha \in E$, $x \in A$. It can be verified that τ is a well-defined involution

and that every symmetric element (under τ) in $E \otimes \Delta$ can be written in the form:

$$(3)$$
 $\sum_i lpha_i igotimes s_i, \, lpha_i \in E, \, s_i \in S$.

Let $f(t_1, t_2, \dots, t_n) = 0$ be the multilinear polynomial identity of degree n satisfied by S. Because this identity is multilinear and because E is the center of $E \otimes \mathcal{A}$, it follows from (3) that the set of symmetric elements of $E \otimes \mathcal{A}$ under τ also satisfies $f(t_1, t_2, \dots, t_n) = 0$.

Now regard $E \otimes \varDelta$ as the total matrix ring Γ_m , with involution τ . By Theorem 4 there exists in Γ_m a set of at least k non-nilpotent orthogonal symmetric elements, where $2k \geq m$. Theorem 2 tells us that $k \leq n$, and hence $m \leq 2k \leq 2n$.

We are now able to prove

THEOREM 6. Let Δ be an algebraic S_n -division algebra. Then Δ is finite dimensional over its center.

Proof. By Theorem 1 we may assume that Δ is an S_n -algebra of the first kind over its center \emptyset . Suppose Δ is not finite dimensional over \emptyset . Then by Lemma 3 there exists a separable element $x \in \Delta$ whose minimal polynomial g(t) over \emptyset has degree r > 2n. Let E be a finite dimensional field extension of \emptyset containing the r distinct roots $\alpha_1, \alpha_2, \dots, \alpha_r$ of g(t).

We claim now that the element $x - \alpha_i$ is a zero divisor in $E \otimes A$, $i = 1, 2, \dots, r$. Indeed,

$$0=g(x)=\prod\limits_{j=1}^{r}\left(x-lpha_{j}
ight)=\left(x-lpha_{i}
ight)\prod\limits_{j
eq i}\left(x-lpha_{j}
ight)$$
 ,

and it suffices to show that $\prod_{j\neq i}(x-\alpha_j)$ is a nonzero element of $E\otimes A$. Suppose $\prod_{j\neq i}(x-\alpha_j)=0$, that is,

(4)
$$(x^{r-1}\otimes 1)-(x^{r-2}\otimes \sum\limits_{j\neq i}\alpha_j)+\cdots\pm (1\otimes \prod\limits_{j\neq i}\alpha_j)=0$$
 .

Since x^{r-1} , x^{r-2} , \cdots , 1 are linearly independent over \emptyset , all the corresponding terms of E in (4) must be zero, which is clearly impossible. Therefore $x - \alpha_i$ is a zero divisor in $E \otimes \Delta$.

According to Lemma $4 E \otimes \varDelta$ is isomorphic to the total matrix ring Γ_m , where $m \leq 2n$. We may therefore regard $E \otimes \varDelta$ as the complete ring of linear transformations of an m-dimensional vector space V over the division algebra Γ . Set $V_i = \{v \in V \mid v(x - \alpha_i) = 0\}, \ i = 1, 2, \cdots, r.$ V_i is a nonzero subspace of V since $x - \alpha_i$ is a zero divisor in $E \otimes \varDelta$. Using the fact that the α_i are distinct elements belonging to the center E, we have that V_i are independent subspaces of V. It follows that

$$m \geq \dim \sum\limits_{i=1}^r \, V_i = \sum\limits_{i=1}^r \, (\dim \, V_i) \geq r > 2n$$
 .

A contradiction now arises since $m \leq 2n$. We must therefore conclude that Δ is finite dimensional over its center.

6. Primitive S_n -algebras. We are now in a position to proceed with the proof of our main result.

THEOREM 7. Let A be a primitive algebraic S_n -algebra. Then the center of A is a field, and A is finite dimensional over its center.

Proof. Since A is primitive, A may be regarded as a dense ring of linear transformations of a vector space V over a division algebra Δ . According to Theorem 2 there exist at most n orthogonal symmetric idempotents. Let e_1, e_2, \dots, e_m be a set of m orthogonal symmetric idempotents, with $m(\leq n)$ maximal. For each i, e_iAe_i is again a primitive algebraic algebra with involution induced by *. The same is true for (1-e)A(1-e), where $e=e_1+e_2+\dots+e_m$, if A should not already happen to have an identity. We now use Theorem 3 in conjunction with the maximality of m to assert that the rank of each e_i is 1 or 2, and that A does have an identity $1=e_1+e_2+\dots+e_m$. It follows that the dimension k of $V \leq 2m$ and consequently that A is isomorphic to the total matrix ring A_k . The center of A is, of course, a subfield of A. Theorem 5 now says that A is an algebraic S_n -division algebra. By Theorem 6 A is finite dimensional over its center. Hence A is finite dimensional over its center.

COROLLARY. Let A be a primitive algebraic algebra with an involution * such that the set K of skew elements is a PI-subspace of degree n. Then A is finite dimensional over its center.

Proof. Let $f(t_1, t_2, \dots, t_n) = 0$ be the multilinear polynomial identity of degree n satisfied by K, according to Lemma 1. If $s_1, s_2 \in S$, where S is the set of symmetric elements of A, then $s_1s_2 - s_2s_1 \in K$. From this it follows that $f(u_1v_1 - v_1u_1, u_2v_2 - v_2u_2, \dots, u_nv_n - v_nu_n) = 0$ is a nontrivial polynomial identity of degree 2n satisfied by the elements of S. In other words, A is a primitive algebraic S_{2n} -algebra, and the conclusion follows from Theorem 7.

Note. Herstein's original conjecture was: if A is a simple ring (or algebra) with involution whose skew elements satisfy a polynomial identity, then A is finite dimensional over its center. In this paper we have verified his conjecture in the special case where A is a simple algebraic algebra which is not a nil algebra.

BIBLIOGRAPHY

- 1. N. Jacobson, Structure of rings, Amer. Math. Soc. Colloquium Publications, 37 (1956).
- 2. ———, The theory of rings, Amer. Math. Soc. Math. Surveys, vol. 2, New York 1943.

UNIVERSITY OF CHICAGO SMITH COLLEGE