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The results in this paper were part of a doctor's thesis completed
in February 1960 under Professor W. R. Scott at the University of
Kansas. The author wishes to express his gratitude to Professor Scott
for his advice and for checking the results.

In what follows, all groups considered are Abelian. Let G1 be the
subgroup of elements of infinite height in an Abelian group G (see [2]).
A subgroup H of G maximal with respect to disjointness from G1 will
be called a high subgroup of G. If N is a subgroup of G, H will be
called N-high if and only if H is a subgroup of G maximal with respect
to disjointness from N. Zorn's lemma guarantees the existence of N-
high subgroups for any subgroup N of G. A group E minimal divisible
among those groups containing G will be called a divisible hull of G.
Unless otherwise specified, the notation and terminology will be essentially
that of L. Fuchs in [1].

The main theorem says that high subgroups of Abelian torsion groups
are pure. After proving some preparatory lemmas, we will prove the
main theorem. Then we will discuss Fuchs' Problem 4 and list some of
the more important properties of high subgroups. Finally we will state
some generalizations.

A lemma describing iV-high subgroups is

LEMMA 1. Let G be a primary group with H an N-high subgroup
of G, Da divisible hull of G, A any divisible hull of H in D (this
means that A c D), and B any divisible hull of N in D.

Then
(a) D = A®B.
(b) A Π G = if, and H and B Π G are neat in G.
(c) Any complementary direct summand of A in D containing N is

a divisible hull of N.
(d) Any complementary direct summand of B in D containing H is

a divisible hull of H.
(e) D is a divisible hull of any subgroup M with (H φ N)[p] c

IcG.
(f) D[p] = (H® N)[p] = H[p] 0 N[p] = G[p] .
(g) All iV-high subgroups H of G may be obtained as E Π G, where

E is a complementary direct summand of a divisible hull F of N in. D.

Proof. When N — 0 there is nothing to prove, so suppose N Φ 0.
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(a) To see this, we first show that A f] B — 0. lί 0 Φ x e A f) B,
then by Kulikov's lemma ([1], p.66) there exist positive integers r and
s such that prx φ 0 Φ psx and prx e H, psx e N. But 0 ^ ί) m a x ( r s)a; e H Π N
= 0, which is impossible. The divisibility of A © B provides a decom-
position D = 4 © β © C . lί C Γ)GΦO, H will not be iV-high in G,
whence C Π G = 0. By Kulikov's lemma, C = 0, and we have D = A φ 23
as stated.

(b) That A (Ί G = H is clear. The neatness follows from [l], p. 92, h,
(c) and (d) follow from (a) and the definition of H,
(e) and (f) follow from Kulikov's lemma,
(g) follows from (a) and (b). This concludes the proof of Lemma 1.
In what follows <(#> will denote the cyclic subgroup of G generated by

xeG. An interesting and helpful lemma is

LEMMA 2. Let N be a subgroup of a primary group G, H an N-
high subgroup of G, and let H contain a basic subgroup B of G. Then
H is pure in G.

Proof. The group G/B is divisible since B is basic in G. Now
H/B c G)B, and by [1], p. 66, Theorem 20.2, there exists a divisible hull
E\B of HJB in GIB. Suppose EjB > HjB. Then E > H, and hence
E n N φ 0. Thus there exists a nonzero element g e N with 0 Φ
ζg + By c E\B. Now <̂ r + J5> Π (H/B) = 0. To see this, suppose 0 Φ
m(g + B) = mg + B = h + B. Then mg -h = beB, and 0 =£ rag =
h + beH, contradicting i ί Π N = 0. Thus we have <# + £> π (#/£) =
0. By Kulikov's lemma, <# + 2?> = 0, and therefore g eB, which implies
that g — 0, contrary to the choice of g. Thus E'/JB = ί ί / 5 is divisible,
and therefore is pure in G/B. Then the purity of B in G together with
[1], p. 78, M imply that H is pure in G.

A useful lemma with a standard proof is

LEMMA 3. If G = S ® T, wftere eαcΛ element of S has finite height,
then G1 a T and T1 = G1.

A lemma which displays an inheritance property is

LEMMA 4. // G = S © Γ, wftere S c i ί αraZ i ί is /α#/z, in G,
H=S(&H Π Γ, αwd H Π T is high in T. (Note: This implies that
i ί Π Γ is maximal with respect to disjointness from G1 in T by Lemma 3.)

Proof. Put ikf = i ϊ Π T, and suppose that there exists 0 Φ t e T\H,
with {M, t} Π T1 = 0. But this means that {Λf, £} Π G1 = 0, and hence
[S © {M, ί}] Π G1 = 0; for otherwise we would have s + (m + fcί) = g Φ 0
with seS,me M, g e G1. Then s = 0 and m + fcί = g Φ 0. But m +
kte{M,t}, which is not possible. Thus [ S ® {Jlf, t}] Π G1 = 0 and
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[S φ {M, t}] > H, contrary to the assumption that H is high in G.
A lemma on making new basic subgroups out of old ones is

LEMMA 5. Let Bx 0 0 Bn 0 Gn = G, where B = ΣBn is basic in
G. Let Tn = B'n+1 0 B'n+2 0 be basic in Gn. Then C = j ^ φ ©
5» 0 T% is basic in G.

Proof [1], p. 109, Exercise 9a.
An x eG will be called a pure element of G if and only if (xy is a

pure subgroup (and therefore is a direct summand) of G.
The next lemma is the kingpin in the proof that if H is high in

G, then H contains B basic in G. It is not altogether obvious that H
contains nonzero pure subgroups of G. The proof of the next lemma
will be carried out in several steps. We will consider special cases which
are perhaps unnecessary, but which will help to clarify the method of
proof.

LEMMA 6. Let H be a high subgroup of a primary group G. If
G contains nonzero pure elements of order pn

y but not of smaller order,
then H contains pure elements of G of order pn.

Proof.

Case 1. n = 1. Let b e G be pure of order p with bφH. Then
there exists he H such that h + 6 = g Φ 0, where g e G1. Clearly this
means that the orders of h and b are the same. Now h and b both
have finite height, and hence their heights must be equal (since their
sum is an element of infinite height in G). Here we are making use
of the fact that if o(h) = p and h(h) = 0, then <lί) is pure in G. The
fact that b is a pure element of order p in G necessarily means that
h(b) = 0; whence ft(A) = 0, and h is a pure element of G.

Case 2. n > 1. Let 6 be a pure element of G of order pn such
that b $ H. Then there exists an h e H such that h + pjb = g ψ 0, where
geG1 and 0^j < n.

Case 2.1. j = 0. Then we have h + b = g and pn~ιh + pn~ιb =
pn~ιg e G1. Clearly p7 1"1^ has order p and height n — 1 in G and in <Λ>.
Thus by [1], p. 78, Jf we have that h is a pure element of G.

Case 2.2. 1 ^ j < n. Now the equation h + pjb = g Φ 0 clearly
implies that the height of h in G is j . If the height of h in if were
also i, that is if fe = pJh' for some /*/ e H, then ft' would be a pure
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element of G of order pn. To see this simply consider the equation
pn~Ψ + pn~ιb = vn-j-χg e G\ o{pn-χh') = p and obviously h{pn~ιh') =
n - 1. The height of pn~λh' in <h'> = n - 1, so that by [1], p. 78, J,
h' is a pure element of G of order pn in i ϊ . Thus it remains to verify
that the height of h in H is j .

From the neatness of H and the fact that g eG\ it follows that
h = phλ for some hx e H. Now if h(h±) > 0, we again have by the neatness
of H that hx — ph2 for some h2 e H. Continuing in this way, we must
eventually arrive at h = pJ~khk, hke H where the height of hk in G is 0.
If k > 0, then let m be the least positive integer such that pmhk = p *4"1*;
for zeG (if worst comes to worst m — j — k will do). Then clearly
0 < m ^ j — k < j < n, pm(hk — pz) — 0, and p^iK - pz) Φ 0 has
height m — 1 in G by the choice of m and /^. Thus since o{pm-\hk — φz))
= p, and the height of p™'1^ — pz) is m — 1 in <7^ — pzy, we have
by [1], p. 78, J, that hk — pz is a pure element of G of order pm < 2>n.
This contradicts the hypotheses on G. Hence we must have k = 0,
^ = P'Λfc, and hk is a pure element of G in i ί of order pn.

If B = ΣBn is a basic subgroup of G where Bn is a direct sum of
cyclic groups of order pn, then such a subgroup Bn which does not consist
of 0 alone will be referred to as a J?n of G.

LEMMA 7. Let G be a primary group, H a high subgroup of G,
and n the least positive integer such that G contains a Bn. Then H
contains a Bn of G.

Proof, By Lemma 6, H contains pure elements of G of order pn.
The fact that the union of an ascending chain of pure subgroups is pure
together with [1], p. 80, Theorem 24.5 allows us to apply Zorn's lemma
to obtain a ^-bounded direct summand Hn of G, maximal with respect
to the property of being contained in H. We wish to show that Hn is
a Bn for G. To see this write G = Hn@Rn and H = Hn © H Π Rn

where by Lemma 4, H Π Rn is high in Rn. Suppose that Hn is not a
maximal ^-bounded direct summand (a Bn) of G. Then there exists a
Bn of G with Hn < Bn. Now G = Hn 0 RnJ so that Bn - Hn © Bn n #n
Now the transitivity of purity tells us that J5π Π i2n ^ 0 is pure in G.
Thus #„ contains pure elements of order pn since G contains no pure
elements of order less than pn. This means by Lemma 6 that H Π Rn

as a high subgroup of Rn must contain a pure element h of order ίΛ
Then G = fl. 0 Λ» = H © <*> θ # - a n d (#• θ <^» > # * implies that
Hn is not a maximal ^-bounded direct summand of G contained in H,
contrary to the choice of Hn. This means that Hn is a Bn of G contained
in H after all, and this concludes the proof.

LEMMA 8. Let G be a primary group, and let H be a high sub-
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group of G. Then H contains a basic subgroup of G.

Proof. By a theorem of Baer ([1], p.62), it suffices to consider the
reduced case. Lemma 7 provides a start for the induction. Let B'%1 be
a first Bn of G. By lemma 7, H contains a Bni and G = Bni 0 Rx with
H= BniφH f] Rτ. Let Bn2 be the next B5 of G. By Szele's theorem
([1], p. 99) and Lemma 5, J?2 contains a Bn2 but no preceding i?y. We
apply Lemma 7 to H Π # ! as a high subgroup of i^ to see that H Γί #i
contains a i?W2 of G. By successive application of this procedure, we
have by induction, Szele's theorem, Lemmas 5 and 7 that H contains a
basic subgroup of G.

We are now ready to state and prove our main theorem.

THEOREM 1. Let G be a primary group and H a high subgroup of
G. Then H is pure in G.

Proof. As in the proof of Lemma 8, it suffices to consider the case
where G is reduced. Lemmas 2 and 8 complete the proof.

In his book [1], L. Fuchs asks the following question: "Let G be
a primary group and H an infinite subgroup without elements of infinite
height. Under what conditions can H be imbedded in a pure subgroup
of the same power and again without elements of infinite height ?"
Theorem 1 allows us to give the best possible solution to this problem.

THEOREM 2. Let G be an Abelian primary group. If S is any
infinite subgroup of G with S Π G1 = 0, then S can be embedded in a
pure subgroup K of G so that K Π G1 = 0 and \K\ = \S\.

Proof. By Zorn's lemma, there exists a subgroup H high in G with
H D S. By Theorem 1, H is pure in G. Szele has shown that every
infinite subgroup can be embedded in a pure subgroup of the same power
([1], p. 78). So let if be a pure subgroup of H containing S and of the
same power as S. Then by the transitivity of purity, we have that K
is pure in G. Since K c Hf it follows that K Π G1 = 0. This concludes
the proof.

The following discussion yields the solution to Fuchs' question in the
torsion case. The proofs of the next two lemmas are standard and con-
sequently will be omitted.

LEMMA 9. Let G be a torsion group. If G = ΣGa, then G1 = ΣGι

a.

LEMMA 10. Let G be a torsion group. Then an internal direct
sum of pure subgroups of the direct summands of a given direct de-
composition of G is a pure subgroup of G.

Concerning the primary decomposition of a torsion group G, we have,
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LEMMA 11. If H is a high subgroup of a torsion group G, then
writing G and H in terms of their primary components G = ΣGP and
H= ΣHP =ΣH Π Gp, we have that Hp is a high subgroup of Gp for
each relevant prime p in the primary decomposition of G.

Proof. Clearly Hp Π G\ = 0. So suppose for some p, Hp is not high
in Gp. Then there exists an x e GP\HP with {HPJ x) Π G\ = 0. Replacing
HP by Sp = {Hp, x] in H = ΣHP, we obtain from Lemma 9 a subgroup
S > H with S Π G1 = 0. But this is contrary to H high in G.

A generalization of Theorem 1 is

THEOREM 3. If H is a high subgroup of a torsion group G, then
H is pure in G.

Proof. Write G = ΣGP and H= ΣHP and by Lemma 11, we have
that Up is high in Gp so that by Theorem 1 we have Hp is pure in Gp.
Now by Lemma 10, if is pure in G.

The generalization of the solution to Fuchs' question to torsion groups
is

THEOREM 4. Any infinite subgroup S of a torsion group G with
S n G1 = 0 can be embedded in a pure subgroup K of G so that \ K \ =
\S\ and K Π G1 = 0.

Proof. Use Theorem 3 and the proof of Theorem 2.
We mention for completeness that Lemma 8 has a suitable generali-

zation to torsion groups.

LEMMA. 12. Let G be a torsion group and let H be a high sub-
group of G. Then H contains a basic subgroup of G.

Proof. Use Lemma 8, the primary decomposition of H, and [1],
p. 109, Exercise 9a.

Some of the more interesting properties of high subgroups are con-
tained in

THEOREM 5. Let G be a reduced primary group with G1 Φ 0, and
let H and K be high subgroups of G. Then

(a) H contains B basic in G
(b) H is pure in G
(c) GjH is a divisible hull of (G1 0 H)jH ̂  G1

(d) GIK^GjH
(e) pnH is high in pnG for all ne I (7 is the set of positive in-

tegers.)
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(f) pnH is pure in pnG for all nel
(g) G = {H, pnG} for all nel
(h) H is infinite
(i) H is of unbounded height in G
(j) p"G = \p»H, pn+lcG} for all n,kel
( k ) pnH/pn+1cH ^ pnGlpn+kG for all n,hel.
(1) pnG/pnH ~ GIH for all nel.
(m) G is minimal pure containing H 0 G1

(n)
(o)
(p) |GM < \G\implies \H\ = | G |
(q) [ϋΓ| = [JEZΊ (This also holds for iV-high subgroups of infinite

rank.)
(r) \G\ S \H\*o
(s) G/puίί = HjpnH® pnGlpnH for all nel.
(t) i J is not always basic
(u) / / H is countable, then H is basic in G, and H = K.

Proof, (a) and (b) have already been proved.
(c) Is easy.
(d) Follows from (c) and the fact that isomorphic groups have

isomorphic divisible hulls (see [1], p. 66, Theorem 20.2).
(e) To see that pnH is high in pnG, suppose that there exists x e G

with {pnH, pnx} Π G1 — 0 and pnx 0 pnH. (Here we are using the fact
that (pnGf = G\). Now by purity of H, pnx $ pnH implies pnx 0 H. Thus
we have some he H with h + mpnx — g Φ 0, g eG1. But then h must
be in pnH contrary to {pnH> pnx} Π G1 = 0.

(f) The purity of pnH in pnG follows from (e), and Theorem 1
applied to pnG.

(g) This is an immedite consequence of (c).
(h) And ( i ) both follow from (g) and the fact that a high subgroup

of a reduced group is not a direct summand.
(j) Follows from (e) and (g).
(k) Follows from (j), the second isomorphism theorem, and (f).
(1) Is an immediate consequence of the fact that both quotient

groups are divisible hulls of G1. This is also a straightforward applica-
tion of (g).

(m) This follows from Lemma 1 (f) and [1], p. 78, K.
(n) Follows from the fact that (c) holds and hence H is not a direct

summand of G.
(o) Follows from Lemma 1 (f) and an easy set theoretic argument,
(p) Is an easy consequence of (o).
(q) Here some cases are taken care of by (d), but a proof for the

general case is not difficult. To show that \H\ = \K\, it suffices (by an
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easy set theoretic argument) to verify that H[p] ~ K[p], For this
purpose let D be a divisible hull of G, and C be a divisible hull of Gι

in D. By Lemma 1, if A and B are divisible hulls in D of H and K
respectively, then A and B are complementary direct summands of C in
D. Finally A ^ D/C = B and iϊ[p] = A[p] ~ B[p] = K[p]. The same
argument shows the result for TV-high subgroups of infinite rank.

( r ) Follows trivially from (a) and [1], p. 102, Theorem 30.1.
(s) To see this, use (g) and the purity of H.
( t ) Let G be the direct sum of an unbounded closed primary group

and any primary group with nonzero elements of infinite height.
(u) This follows from (b), (c), (q), the fact that a countable H is

a direct sum of cyclic groups, and that any two basic subgroups of G
are isomorphic.

For a comparison with the properties of basic subgroups see [1],
p. 101. The reader will notice that (d) is an interesting property of high
subgroups which basic subgroups do not possess.

We are now ready to discuss the question of whether or not any
two high subgroups of a reduced primary group are isomorphic. Let A
be a subgroup of G, and let A be the image under the natural homo-
morphism from G onto G/G1. It is a simple matter to verify that G is
a reduced primary group without elements of infinite height. Thus if
H is a high subgroup of G, we have that H = H. This provides "us a
natural way to study the properties of high subgroups without actually
looking at these subgroups themselves.

A result concerning Ulm invariants as defined by Kaplansky in [2],
and providing another proof that two countable high subgroups of a
group G are isomorphic is the following

THEOREM 6. Let H and K be high subgroups of a primary group
G. Then (pnH)[p]l(pn+1ϊϊ)[p] = (pnK)[p]l(pn+1K)[p]. In particular, H
and K have the same Ulm invariants. Moreover, their nth Ulm invar-
iants are the same as the nth Ulm invariant of G.

Proof. Consider H and K. First we notice
(i) H[p]=K[p].
To see this we observe that o(h) = o(h + G1). Suppose h e H[p]\H Π

K. Then there exists ke K with h — k = g Φ 0 where g e G1. Clearly
o(k) = p and we have h = k + g. This proves that H[p] c K[p]. Thus
by symmetery H[p\ = K[p]. Next we have

(ii) pnH[p] = pnK[p] for nel.
To see this use Theorem 5 (e), and the foregoing ( i ) .

Now from (ii) we have that (pnβ)[p]\(pn+1H)[p] = (pnK)[p]l(pn+1K)[p]
since the numerators are equal and the denominators are equal, and
hence the Ulm invariants of H and K are equal. Finally the fact that



HIGH SUBGROUPS OF ABELIAN TORSION GROUPS 1383

H = H gives us that H and K have the same nth Ulm invariants. The last
part of the theorem follows from (pnG)[v]l(pm+1G)[p] = (pnH)[p]l(pn+Ή)[p]
which is obtained with the help of Lemma 1 (f), Theorem 5 (e), and the
second isomorphism theorem.

We will now mention a few generalizations to modules. In what
follows, R will denote a principal ideal ring. This means that R is an
integral domain (commutative ring with an identity and no divisors of
zero) in which every ideal is principal. By an iϋ-module we mean a
unitary left iϋ-module, and by submodule of an i?-module we mean a
sub-i?-module. An i?-module M is called primary if and only if the
order ideal of every element of M is generated by a power of the same
prime element p of R. We shall be content with a generalization to
primary modules of our main results for primary groups. We rely heavily
on the generalizations of Theorems 1 to 14 in [2].

We make a blanket assertion: All of our lemmas and theorems for
primary groups are true for primary modules. Only minor, straight-
forward modifications of the definitions and proofs are necessary, and
these can be easily carried out by imitating all the previous definitions
and proofs. When referring to orders of elements in a primary module,
we say that o(x) is smaller than o(y) if and only if the generator of the
order ideal of x divides the generator of the order ideal of y.

In conclusion we state without proof the most worthwhile lemmas
and theorems.

LEMMA 13. Let M be a primary R-module. Let L, N be sub-
modules of M with L containing a basic submodule B of M, and L
maximal with respect to disjointness from N. Then L is pure in M.

THEOREM 7. Let H be a high submodule of a primary R-module
M. Then H is pure in M.

The solution of Fuchs' question for primary modules is

THEOREM 8. Let S be an infinitely generated submodule of the
"primary R-module M with R countable and S Π M1 = 0. Then S can
be embedded in a pure submodule K of M such that K Π M1 = 0 and
\K\ = \S\.

The only essential difference between this theorem and Theorem 2
is that the word infinite has been replaced by the words infinitely
generated to make |J5Γ| = \S\ true in all cases. The proof is the same
as before. The countability assumption on R makes the proof of [1]
p. 78 N easy.

The author conjectures that all high subgroups of a given primary
group are isomorphic, and also wishes to pose the questions:
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For what subgroups N of a primary group G is it true that
(a) all iV-high subgroups are pure
(b) all JV-high subgroups are isomorphic
(c) all iV-high subgroups are endomorphic images of G
(d) GIN divisible implies N contains B basic in G?
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