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l In an investigation concerning a certain type of Latin square, the
following problem arose:

Can the elements of a finite group G be arranged in a sequence
alf a2, •••,&„ so that the partial products alf aλa2f , axa2 an are all
distinct?

In the present paper a complete solution will be given for the case
of Abelian groups, and the application to Latin squares will be indicated.
Let us introduce the term sequenceable group to denote groups whose
elements can be arranged in a sequence with the property described
above. The main result is then contained in the following theorem.

THEOREM 1. A finite Abelian group G is sequenceable if and only
if G is the direct product of two groups A and B, where A is cyclic
of order 2* (k > 0), and B is of odd order.

Proof (i). To see the necessity of the condition, suppose that G is
sequenceable, and let alf a2, « , α w be an ordering of the elements of G
with αlf α^a, , aλa2 an all distinct. The notation b{ = axa2 a{ will
be used throughout the remainder of the paper. It is immediately seen
that aλ = bx = e, the identity element of G; for if α; = e for some i > 1,
then 6{_j = bif contrary to assumption. Hence bn Φ e, i.e., the product
of all the elements of G is not the identity. It is well known (cf [2])
that this implies that G has the form A x B with A cyclic of order
2k(k > 0) and B of odd order.

(ii) To prove sufficiency of the condition, suppose that G — A x B,
with A and B as above. We then show that G is sequenceable by
constructing an ordering a19 a2, , an of its elements with distinct partial
products. From the general theory of Abelian groups, it is known that
G has a basis of the form c0, c19 * , c w , where c0 is of order 2fc, and
where the orders 8lf δ2, , δm of c19 c2, , cm are odd positive integers
each of which divides the next, i.e., δ{ | δ i + 1 for 0 < ί < m. If j is any
positive integer, then there exist unique integers j o t j \ , , j m such that

( 1 ) i s i0(mod δx δ2 δm)

io = ii + iA + iAδ* + + jΛ sm^
0 ^ J\ < 8X
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0 g j 2 < δ2

o s jm < sm .

The proof of the existence and uniqueness of this expansion will be
omitted here; it is entirely analogous to the expansion of an integer in
powers of a number base.

We are now in a position to define the desired sequencing of G. It
is convenient to define the products blf b2, , bn directly, to prove they
are all distinct, and then to verify that the corresponding a{, as calcu-
lated from the formula ax — e,ai — bϊlfii, are all distinct. If i is of the
form 2j + 1(0 ^ j < %/2), let

where .j19j2, •••, j m are the integers defined in (1). On the other hand,
if i is of the form 2j + 2(0 ^ j < n/2), let

The elements 6^ 62, •••,&„ thus defined are all distinct. For if b8 = bt

with s = 2u + l,t = 2v + l, then

δ m ) .

From the inequalities in (1) we conclude that uλ = vlf , um == vm. Hence
w0 = ô» so that u Ξ= ^(mod δx δm); coupled with the first of equations
(2), this gives u = v (mod w), which implies u — v. Similarly b2u+2 = b2υ+2

implies u — v, so that the "even" ί>'s are distinct.
Next suppose

Then

—u = v + 1 (mod 2fc)

—u1 = v1 + l (mod δj

~^« = vm + l (mod δm)

or equivalently,

(3) u + v + 1 = 0 (mod 2fc)
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uλ + vλ + 1 ΞΞ 0 (mod Sx)

^ m + ^m + 1 = 0 (mod δ J .

Since 0<u1 + v1 + l^ 2(8, — 1) + 1 < 2δx, we must have u1 + v1 + l —
δx. Reasoning similarly for i = 2, , m we obtain

Multiplying the (i + l)'st equation of this system by δxδ2 δ< (1 ^ ί < m)
and adding, we get u0 + v0 + 1 = δx δm, which implies u + v + 1 Ξ=
o(δ2 δOT). Combining this with the first of equations (3), we find that
u + v + 1 == 0 (mod n), which, on account of the inequality 0 < u + v +
1 < n, is impossible. Hence bu 62, , bn are all distinct.

Next we calculate alf α2, , an. If i = 2j + 2 (0 ^ i < w/2), then

These are all different by the same argument as above. If % = 2j + 1,
and j \ Φ 0, then

If i = 2j + 1 and j \ = 0, but i 2 ^ 0, then α̂  = c^c^c^-1 . . . c; 2^" 1,
while if j \ = i 2 = 0 but j 3 φ 0, then α, = Co-^Cs"2^"2^"1 c~^-\ etc.
These α/s are obviously distinct from each other by the same reason-
ing as before. Because of the exponent of c0 they are also distinct
from the a{ with i even. This completes the proof of the theorem.

As an example of the construction of Theorem 1, consider the group
G — C2 x C3 x C3. We use basis elements c0, c19 c2 of orders 2, 3, 3 re-
spectively. Using the notation {a, β, γ) for the element <cfc2

Y, the
sequences α̂  and 6; are then the following:

(0 0 0) (0 0 0)
(1 1 1)(1
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(0 1 0)
(1 0 0)
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(1 2 2) ( 1 0 0)

2 Application to Latin squares. Consider the following Latin square:

1 2 3 4
2 4 1 3
3 1 4 2
4 3 2 1

Given any ordered pair (aβ) with a Φ β, it occurs as a pair of consecutive
entries in some row of this square. In general, an n x n Latin square
(cst) whose elements are the integers 1, « ,w will be called horizontally
complete if for every ordered pair (a, β) with 1 ^ a, β ^ n and a Φ β,
the equations

(4) c8t = a

C,.t.+i = β

are solvable. Similarly a vertically complete square is one for which

c8t = oc

Cs + l.t = β

can be solved for any such choice of a, β. A square which is both
horizontally and vertically complete is called complete.

Note that in a horizontally complete square, the solution of equa-
tions (4) is unique, since the total number of consecutive pairs ast, a8tt+i
is equal to the total number of order pairs (a, β) with a Φ β. Conversely,
uniqueness implies existence for the same reason.

Complete Latin squares are useful in the design of experiments in
which it is desired to investigate the interaction of nearest neighbors.

THEOREM 2. Suppose that G is a sequenceable group, and let alf

α2 , α n be an ordering of its elements such that blf b2, •••, bn are

distinct. Then the matrix (c9t) = (bτ%) is a complete Latin square.
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Proof. It is immediately seen that (c8t) is a Latin square, since
either b~xbt = b^bu or biλb8 — b~λb8 imply t = u by elementary properties
of groups. To show that (c8t) is horizontally complete, suppose

We must show that s — u and t = v. From the definition of c8t,

(5) b7% = K%

(6) b~λbt+1 = b~%+1 .

Inverting both sides of (5) yields br% = Kιbu. Combining this with (6)
we get (K1bs)(b;bt+1) = (fc^X&u^+i), or br%+1 = δ^^+i, i.e., α ί+1 = αβ+1.
This implies t — v. Substituting in (5) we obtain bϊ% = &"% from
which s = u follows immediately. The proof that (c8t) is vertically com-
plete is entirely similar and will be omitted.

This method enables one to construct a complete Latin square of
order n for any even n (note that B may be trivial in Theorem 1).
Whether or not complete, or even horizontally complete, squares exist
for odd n is an open question.

3 Extension to non-Abelian groups. The problem of determining
which non-Abelian groups G are sequencable is unsolved at the present
time. Considerable information about the nature of a sequence αlf •••,&«
with distinct partial products, if one exists, can be obtained by mapping
G onto the Abelian group G/C, where C is the commutator subgroup.
Using this technique, for example, it can be shown that the non-Abelian
group of order 6 and the two non-Abelian groups of order 8 are not
sequencable. On the other hand the non-Abelian group of order 10 is
sequencable. To see this, denote its elements by e, α, b, αb, bα, αbα, bαb,
αbαby bαbα, αbαbα, where α2 = b2 = (α&)5 = e. A suitable ordering is then
given by e, αb, αbαb, αbαbα, bαb, αbα, b, α, bαbα, bα, the partial products
being e, αb, bαbα, α, αbαb, bαb, bα, b, αbα, αbαbα. In view of Theorem 1
and the results of [2], one might conjecture that G is sequencable if
and only if it does not possess a complete mapping. However, the sym-
metric group S3 does not possess a complete mapping (cf [1]) and is also
not sequenceable. Whether or not the two properties are at least mutu-
ally exclusive is still an open question.
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