BASES OF TENSOR PRODUCTS OF BANACH SPACES

B. R. Gelbaum and J. Gil de Lamadrid

1. Introduction. In this note we use the conventions and notations of Schatten [4] with the exception that we use B^{\prime} to indicate the dual (conjugate) space of a Banach space B and $\left\langle x, x^{\prime}\right\rangle$ as the action of an element x and a functional x^{\prime} on each other. Schatten defines the tensor product $B_{1} \otimes_{\alpha} B_{2}$ as the completion of the algebraic tensor product $B_{1} \otimes B_{2}$ of two Banach spaces B_{1} and B_{2}, on which the cross norm α has been imposed. We discuss the proposition, "If B_{1} and B_{2} have Schauder bases, then $B_{1} \otimes{ }_{\alpha} B_{2}$ has a Schauder basis." We prove this for $\alpha=\gamma$ ($B_{1} \otimes_{\gamma} B_{2}$ is the trace class of transformations of B_{1}^{\prime} into B_{2}). We also prove it for $\alpha=\lambda\left(B_{1} \otimes_{\lambda} B_{2}\right.$ is the class of all completely continuous linear transformations of B_{1}^{\prime} into B_{2}) in the case in which the bases of B_{1} and B_{2} satisfy an "isometry condition". This condition is not very restrictive. We know of no instance in which it is not satisfied. Next we show that unconditional bases of B_{1} and B_{2} do not necessarily yield an unconditional basis for the tensor product, even in the nicest conceivable infinite dimensional case, that in which $B_{1}=B_{2}=$ Hilbert space, and the bases are orthonormal and identical.

We recall certain facts about Schauder bases, and set some general notation that we use throughout the paper. We usually work with a biorthogonal set $\Omega=\left\{x_{i}, x_{i}^{\prime}\right\}_{i}$ associated with a Banach space B, so that $\chi=\left\{x_{i}\right\}_{i}$ is a basis for B with coefficients supplied by the corresponding sequence of functionals $\chi^{\prime}=\left\{x_{\imath}^{\prime}\right\}_{i}$. We will have to do with the closed linear manifold B^{2} of B^{\prime} generated by the elements of χ^{\prime}. Since B and B^{Ω} are in duality it is possible to embed B in $\left(B^{2}\right)^{\prime}$ by the same formula that effects the embedding of B in $B^{\prime \prime}$. We denote by ${ }_{n} P_{m}$ the projection of B defined by ${ }_{n} P_{m} x=\sum_{i=n}^{m}\left\langle x, x_{i}^{\prime}\right\rangle x_{i}$. The double sequence $\left\{_{n} P_{m}\right\}_{n, m}$ is uniformly bounded. We denote by T^{\prime} the transpose of any transformation T. The following lemma, given without proof, is but a trivial strengthening of $[2, \mathrm{p} .18$, Theorem 1].

Lemma 1. Let E be a dense vector subspace of B, Ω a biorthogonal set of B such that $\chi \subset E$, the vector space spanned by χ is dense in E and the sequence $\left\{_{n} P_{m}\right\}_{n, m}$ is uniformly bounded on E. Then Ω defines a basis for B.
2. The tensor product of two biorthogonal sets. Let $\Omega_{1}=\left\{x_{i}, x_{i}^{\prime}\right\}_{i}$ be a biorthogonal set of B_{1} and $\Omega_{2}=\left\{y_{i}, y_{i}^{\prime}\right\}_{i}$ a biorthogonal set of B_{2}.

[^0]The elements $x_{i}^{\prime} \otimes y_{j}^{\prime}$ can be considered as belonging to $\left(B_{1} \otimes_{\alpha} B_{2}\right)^{\prime}$ for any cross norm α [4 p. 43], and $\left\{x_{i} \otimes y_{j}, x_{i}^{\prime} \otimes y_{j}^{\prime}\right\}_{i, j}$ is clearly a biorthogonal set. We enumerate it, not by the diagonal method, i.e., as in the usual proof that the rationals are denumerable, but as follows: In the table

$$
\begin{array}{lll}
x_{1} \otimes y_{1} & x_{1} \otimes y_{2} & x_{1} \otimes y_{3} \ldots \ldots \\
x_{2} \otimes y_{1} & x_{2} \otimes y_{2} & x_{2} \otimes y_{3} \ldots \ldots \\
x_{3} \otimes y_{1} & x_{3} \otimes y_{2} & x_{3} \otimes y_{3} \ldots .
\end{array}
$$

we simply order the elements by listing the entries on the two inner sides of each successive upper left hand block to obtain $x_{1} \otimes y_{1}, x_{1} \otimes y_{2}$, $x_{2} \otimes y_{2}, x_{2} \otimes y_{1}, x_{1} \otimes y_{3}, x_{2} \otimes y_{3}, x_{3} \otimes y_{3}, x_{3} \otimes y_{2}, x_{3} \otimes y_{1}, \cdots, x_{1} \otimes y_{k}, x_{2} \otimes$ $y_{k} \cdots x_{k} \otimes y_{k}, x_{k} \otimes y_{k-1}, \cdots, x_{k} \otimes y_{2}, x_{k} \otimes y_{1}, \cdots$. This double sequence with the given order is called the tensor product of $\chi_{1}=\left\{x_{i}\right\}_{i}$ and $\chi_{2}=$ $\left\{y_{j}\right\}_{j}$ and is denoted by $\chi_{1} \otimes \chi_{2}$. Similarly $\chi_{1}^{\prime} \otimes \chi_{2}^{\prime}$ denotes the set $\left\{x_{i}^{\prime} \otimes y_{j}^{\prime}\right\}_{i, j}$ with the corresponding order. The biorthogonal set formed by $\chi_{1} \otimes \chi_{2}$ and $\chi_{1}^{\prime} \otimes \chi_{2}^{\prime}$ is called the tensor product of Ω_{1} and Ω_{2} and denoted by $\Omega_{1} \otimes \Omega_{2}$.

Theorem 1. If Ω_{1} defines a basis for B_{1} and Ω_{2} defines a basis for B_{2}, then $\Omega_{1} \otimes \Omega_{2}$ defines a basis for $B_{1} \otimes{ }_{\gamma} B_{2}$.

Proof. We show that the vector space spanned by $\chi_{1} \otimes \chi_{2}$ is dense in $B_{1} \otimes B_{2}$. To see this let ${ }_{n} P_{m}^{i}$ be the ${ }_{n} P_{m}$ defined in $\S 1$ for Ω_{i}, and define
(1) $A_{m}=x \otimes y-\sum_{k, j=1}^{m}\left\langle x, x_{k}^{\prime}\right\rangle\left\langle y, y_{j}^{\prime}\right\rangle x_{k} \otimes y_{j}=x \otimes y-\left[{ }_{1} P_{m}^{1} x\right] \otimes\left[{ }_{1} P_{m}^{2} y\right]$

$$
=x \otimes\left[y-{ }_{1} P_{m}^{2} y\right]+\left[x-{ }_{1} P_{m}^{1} x\right] \otimes_{1} P_{m}^{2} y
$$

Then

$$
\gamma\left(A_{m}\right) \leqq\|x\|\left\|y-{ }_{1} P_{m}^{2} y\right\|+\left\|x-{ }_{1} P_{m}^{1} x\right\|\left\|_{1} P_{m}^{2} y\right\| .
$$

The right hand side of (2) tends to zero with m^{-1}. This argument extends by linearity to sums of elements of the form $x \otimes y$.

Let now T_{q} be the ${ }_{1} P_{q}$ defined in $\S 1$ corresponding to $\Omega_{1} \otimes \Omega_{2}$. It remains to show that $\left\{T_{q}\right\}_{q}$ is uniformly bounded. It is easy to show that each T_{q} has one of the following three forms: ${ }_{1} P_{n}^{1} \otimes{ }_{1} P_{n}^{2},{ }_{1} P_{n}^{1} \otimes$ ${ }_{1} P_{n}^{2}+{ }_{n+1} P_{n+1}^{1} \otimes_{1} P_{m}^{2},{ }_{1} P_{m}^{1} \otimes_{n+1} P_{n+1}^{2}$. Hence, it suffices to show that $\left.{ }_{n} P_{m}^{1} \otimes_{q} P_{r}^{2}\right\}_{q, r n, m}$ is uniformly bounded. Let M be a common bound for all ${ }_{n} P_{m}^{1}$ and ${ }_{q} P_{r}^{2}$. For $\Sigma x \otimes y \in B_{1} \otimes B_{2}$

$$
\begin{align*}
& \gamma\left[{ }_{n} P_{m}^{1} \otimes_{q} P_{r}^{2}(\Sigma x \otimes y)\right]=\gamma\left[\Sigma\left({ }_{n} P_{m}^{1} x\right) \otimes\left({ }_{q} P_{r}^{2} y\right)\right] \tag{3}\\
& \leqq\left(\sum\|x\|\|y\|\right) M^{2}
\end{align*}
$$

Since (3) holds for any representation $\Sigma x \otimes y$ of a given tensor product element, we may replace in it the sum $\Sigma\|x\|\|y\|$ by $\gamma(\Sigma x \otimes y)$, thereby proving our assertion. From Lemma 1, we can conclude that $\Omega_{1} \otimes \Omega_{2}$ defines a basis for $B_{1} \otimes_{\gamma} B_{2}$.
3. The space of completely continuous transformations. We recall that there is a canonical imbedding of B, with a biorthogonal set Ω defining a basis of B, into $\left(B^{2}\right)^{\prime}$. The norm of the image of an element $x \in B$ is less than or equal to $\|x\|$. We say that Ω satisfies the condition of isometry if the imbedding is actually an isometery. For such an Ω, $\left(B^{2}\right)^{2}=B$, isometrically. We state first the following corollary of Theorem 1.

Corollary 1. If Ω_{k} is a biorthogonal set defining a basis for $B_{k}, k=1,2$, then $\Omega_{1} \otimes \Omega_{2}$ defines a basis for $B_{1}^{\Omega_{1}} \otimes_{\lambda} B_{2}^{\Omega_{2}}$.

Proof. Each $x_{i}^{\prime} \otimes y_{j}^{\prime}$ is an element of $B_{1}^{Q_{1}} \otimes B_{2}^{Q_{2}}$ which, as a subset of $B_{1}^{\prime} \otimes_{\lambda} B_{2}^{\prime}$, can be imbedded isometrically in $\left(B_{1} \otimes_{\gamma} B_{2}\right)^{\prime}$ [4, p.47, Theorem 3.2]. What is more, the vector space spanned by $\left\{x_{i}^{\prime} \otimes y_{j}^{\prime}\right\}_{i, j}$ is dense, with respect to λ, in $B_{1}^{\Omega_{1}} \otimes B_{2}^{\Omega_{2}}$, hence in $B_{1}^{\Omega_{1}} \otimes_{\lambda} B_{2}^{\Omega_{2}}$. This is true because

$$
\begin{gather*}
\lambda\left[x^{\prime} \otimes y^{\prime}-\left(\sum_{i=1}^{n}\left\langle x_{i}, x^{\prime}\right\rangle x_{i}^{\prime}\right) \otimes\left(\sum_{i=1}^{n}\left\langle y_{i}, y^{\prime}\right\rangle y_{i}^{\prime}\right)\right] \leqq \gamma\left[x^{\prime} \otimes y^{\prime}-\right. \tag{4}\\
\left.\left(\sum_{i=1}^{n}\left\langle x_{i}, x^{\prime}\right\rangle x_{i}^{\prime}\right) \otimes\left(\sum_{i=1}^{n}\left\langle y_{i}, y^{\prime}\right\rangle y_{i}^{\prime}\right)\right]
\end{gather*}
$$

and the latter quantity tends to 0 . Hence $B_{1}^{a_{1}} \otimes_{\lambda} B_{2}^{a_{2}}=\left(B_{1} \otimes_{\gamma} B_{2}\right)^{a_{1} \otimes a_{2}}$. Our result is a consequence of this.

The next theorem follows easily from this corollary.
Theorem 2. If both Ω_{1} and Ω_{2} satisfy the condition of isometry $\Omega_{1} \otimes \Omega_{2}$ defines a basis for $B_{1} \otimes_{\lambda} B_{2}$.

Proof. If in Corollary 1 we replace B_{1} by $B_{1}^{\Omega_{1}}$ and B_{2} by $B_{2}^{g_{2}}$, we conclude that $\Omega_{1} \otimes \Omega_{2}$ defines a basis for $\left(B_{1}^{\Omega_{1}}\right)^{\Omega_{1}} \otimes_{\lambda}\left(B_{2}^{\Omega_{2}}\right)^{\Omega_{2}}$. When the condition of isometry is satisfied the last tensor product can be identified with $B_{1} \otimes_{\lambda} B_{2}$, owing to the relations $B_{k}=\left(B_{k}^{\rho_{k}}\right)^{\Omega_{k}}$ for $k=1,2$, and the universal character of λ, [4, p.35, Lemma 2.12].

Theorem 2 can be considered as a sharpening of the well known fact that if B_{1} and B_{2} have bases, then every completely continuous linear transformation of B_{1}^{\prime} into B_{2} can be uniformly approximated by finite dimensional linear transformations. Our theorem goes further to state that if Ω_{1} and Ω_{2} satisfy the condition of isometry, the space of all completely continuous linear transformations of B_{1}^{\prime} into B_{2} has a
basis consisting of one-dimensional linear transformations.
The condition of isometry deserves some explanation. It is satisfied by a large class of bases, which includes every base for which

$$
\begin{equation*}
B^{a}=B^{\prime} \tag{5}
\end{equation*}
$$

The equation (5) holds always for reflexive spaces. It also holds for certain bases of non-reflexive spaces.

A non-reflexive example of (5) is exhibited in [2, p. 188, Example 1], involving the usual basis of $c_{0}, x_{i}=\left\{\delta_{j}^{i}\right\}_{j}$, with $x_{i}^{\prime}=\left\{\delta_{j}^{i}\right\}_{j} \in l^{1}$. An example of the condition of isometry, in the absence (5), is obtained from this first example, by setting [2, p. 188, Example 2] $y_{1}=x_{1}$, and $y_{i}=$ $x_{i}-x_{i-1}+\cdots+(-1)^{i-1} x_{1}$, for $i>1$, and $y_{i}^{\prime}=x_{i}^{\prime}+x_{i+1}^{\prime}$. For $\Omega=\left\{y_{i}, y_{i}^{\prime}\right\}_{i}$, $x_{1}^{\prime} \in B^{\prime} \backslash B^{\Omega} . \quad \Omega$ satisfies the condition of isometry for, if $x \in c_{0}$, then

$$
\left\|\sum_{k=1}^{n}\left\langle x, y_{k}^{\prime}\right\rangle y_{k}\right\|=\left\|\sum_{k=1}^{n}\left\langle x, x_{k}^{\prime}\right\rangle x_{k}\right\| \leqq\|x\| .
$$

The conclusion is now a consequence of the following theorem and its corollary.

Theorem 3. If for every $x^{\prime} \in B^{\prime},\left\|{ }_{1} P_{n}^{\prime} x^{\prime}\right\| \rightarrow\left\|x^{\prime}\right\|$, then Ω satisfies the condition of isometry.

Proof. Let $x_{0} \in B$ and $x_{0}^{\prime} \in B^{\prime}$ such that $\left\|x_{0}^{\prime}\right\|=1$ and $\left\langle x_{0}, x_{0}^{\prime}\right\rangle=\left\|x_{0}\right\|$. Then

$$
\lim _{n \rightarrow \infty} \frac{\left\langle x_{0}, P_{1}^{\prime} P_{n}^{\prime} x_{0}^{\prime}\right\rangle}{\left\|P_{1}^{\prime} P_{n}^{\prime} x_{0}^{\prime}\right\|}=\left\|x_{0}\right\|
$$

Corollary 2. If $\left\|_{1} P_{n}\right\| \leqq 1$ for every n, then Ω satisfies the condition of isometry.

Proof. We show the above hypothesis implies the hypothesis of Theorem 3. To see this, let $x_{0}^{\prime} \in B^{\prime}$, and $\varepsilon>0$. There is $x_{0} \in B$ so that $\left\|x_{0}\right\|=1$ and $\left\langle x_{0}, x_{0}^{\prime}\right\rangle>\left\|x_{0}\right\|-\varepsilon / 2$ and an integer $N>0$ so that

$$
\begin{array}{cc}
\left\|x_{0}^{\prime}\right\| \geqq\left\|_{1} P_{n}^{\prime} x_{0}^{\prime}\right\| \geqq\left\langle x_{0}, 1\right. & \left.P_{n}^{\prime} x_{0}^{\prime}\right\rangle=\left\langle{ }_{1} P_{n} x_{0}, x_{0}^{\prime}\right\rangle>\left\langle x_{0}, x_{0}^{\prime}\right\rangle-\varepsilon / 2 \\
>\left\|x_{0}^{\prime}\right\|-\varepsilon, & \text { Q.E.D. }
\end{array}
$$

As we have seen, the two biorthogonal sets described above for c_{0} satisfy the hypothesis of Corollary 1.

An example of the isometry condition in which B^{\prime} is not separable is furnished by Schauder's basis for $C([0,1])$, given by the biorthogonal system $\Omega=\left\{x_{i}, x_{i}^{\prime}\right\}_{i}$ described in [1, p. 69]. We consider [0,1] imbedded

[^1]in B^{\prime} and treat its points as functionals. The space B^{2} of this example contains the set D of all dyadic fractions. Consequently Ω satisfies the condition of isometry, since, for $f \in B,\|f\|=\sup _{a \in D}|f(d)|$.

We know of no biorthogonal set defining a basis which does not satisfy the condition of isometry. Neither do we know if $B_{1} \otimes_{\alpha} B_{2}$ has a basis for an arbitrary cross norm α, even if B_{1} and B_{2} have bases. It is clear that for any element of $B_{1} \otimes B_{2}$, the formal expansion of Theorem 1 converges to that element with respect to α, since it does with respect to $\gamma \geqq \alpha$. The difficulty lies in establishing that the set $\left\{{ }_{p} P_{q}^{1} \otimes{ }_{r} P_{s}^{2}\right\}_{p, q}$ r,s uniformly bounded with respect to α.
4. Hilbert spaces and unconditional bases. The problem of approximation of compact operators by finite dimensional operators in a Banach space, can, after elaborate rearrangement, lead to the following question: Can there exist a matrix $C=\left(c_{i j}\right)_{i, j=1}^{\infty}$ satisfying the following conditions:
(a) For some $a_{i} \geqq 0, \sum_{i=1}^{\infty} a_{i}^{2}<\infty,\left|c_{i j}\right| \leqq a_{i} a_{j}$;
(b) $C^{2}=0$;
(c) $\sum_{i=1}^{\infty} c_{i i}=1$?

Of course, (b) and (c) are incompatible if C is in the trace class. Thus there arises the question: Does (a) imply that C is in the trace class? To this we can give a definite negative answer via the following theorems.

Therem 4. Let $\Omega=\left\{x_{i}, x_{i}^{\prime}\right\}_{i}, x_{i}=\left\{\delta_{j}^{i}\right\}_{j}, x_{i}^{\prime}=\left\{\delta_{j}^{i}\right\}_{j}$ be the canonical orthonormal basis in l_{2}. Then $\Omega \otimes \Omega$ defines an unconditional basis in $l_{2} \otimes_{\gamma} l_{2}$ if and only of condition (a) implies C is in the trace class.

Proof. Let $\Omega \otimes \Omega$ define an unconditional basis for $l_{2} \otimes_{\gamma} l_{2}$. Then we note that (a) may be rephrased by stating: $c_{i j}=\varepsilon_{i j} a_{i} a_{j},\left|\varepsilon_{i j}\right| \leqq 1$. Since $l_{2} \otimes_{\gamma} l_{2}$ is precisely the trace class of operators [4] it follows that $\sum_{i, j=1}^{\infty} \varepsilon_{i j} a_{i} a_{j}\left(x_{i} \otimes x_{j}\right)$ exists in $l_{2} \otimes_{\gamma} l_{2}$ and is therefore in the trace class.

On the other hand, if (a) implies that C is in the trace class, then for $a \otimes a$ in $l_{2} \otimes_{\gamma} l_{2}\left(a=\left(a_{1}, a_{2}, \cdots\right)\right), \quad a \otimes a=\sum_{i, j=1}^{\infty} a_{i} a_{j}\left(x_{i} \otimes x_{j}\right)$. If $B=\left(\varepsilon_{j j} a_{i} a_{j}\right)$ is in the trace class, then B has an expansion $\sum_{i, j=1}^{\infty} \varepsilon_{i j} a_{i} a_{j}$ ($x_{i} \otimes x_{j}$), which shows $\Omega \otimes \Omega$ defines an unconditional basis for $l_{2} \otimes_{\gamma} l_{2}$.

Theorem 5. $\Omega \otimes \Omega$ does not define an unconditional basis for $l_{2} \otimes_{\gamma} l_{2}$.

Proof. Let $A_{1}=\left(a_{i j}\right)$ be a 2×2 matrix with $a_{11}=a_{12}=a_{22}=-a_{21}=1$, and A_{n} the $2^{n} \times 2^{n}$ matrix $\left(A_{i j}\right) i, j=1,2$, with $A_{11}=A_{12}=A_{22}=-A_{21}$ $=A_{n-1}$. Let B be the direct sum of the matrices $\left\{1 / 2^{n / 2} A_{n}\right\}_{n}$. Then a direct computation reveals that B is unitary. Let $B=\left(b_{i j}\right)$, and let
$C=\left(\left|b_{i j}\right|\right)$. If $\Omega \otimes \Omega$ were an unconditional basis for $l_{2} \otimes_{\gamma} l_{2}$, then for B, regarded as a member of $\left(l_{2} \otimes_{\gamma} l_{2}\right)^{\prime}$ [4, p. 47, Theorem 3.2] and arbitrary $u \otimes v$ in $l_{2} \otimes_{\gamma} l_{2}, \sum_{i, j=1}^{\infty} u_{i} v_{j}\left\langle x_{i}, B x_{j}\right\rangle$ would converge unconditionally, i.e. $\sum_{i, j=1}^{\infty} u_{k} v_{j}\left|b_{j i}\right|$ would converge. In particular, let $u=v$, where u is given by the vector: $\sum_{n=1}^{\infty}(1 / n) x_{n},\left(\sqrt{2^{n}}\right) x_{n}=\underbrace{(0,0, \cdots 0}_{22^{n-1-1)}}$ $\overbrace{1,1}^{1, \cdots, 1} \underbrace{2^{n}}, 0, \cdots)$. A simple verification shows that u exists in l_{2}. On the other hand, more calculation shows $\sum_{i, j=1}^{\infty}\left|b_{i j}\right| u_{i} u_{j}=\infty$. The contradiction implies the theorem.

Theorem 5 remains valid when γ is replaced by λ, since $l_{2} \otimes_{\gamma} l_{2}=$ ($\left.l_{2} \otimes_{\lambda} l_{2}\right)^{\prime}$, and unconditionality of $\Omega \otimes \Omega$ in $l_{2} \otimes_{\lambda} l_{2}$ implies the same in $l_{2} \otimes{ }_{\gamma} l_{2}$.

Note. We owe to the referee the remark that a space B with a biorthogonal set Ω which defines a basis for B can always be renormed, preserving the topology of B [1, Theorem 1, p.67], in such a way that Ω satisfies the condition of isometry (section 3) with respect to the resulting norm of B and the corresponding norm of B^{\prime}. This makes possible the following completely general form of Theorem 2.

Theorem 2^{\prime}. If Ω_{i} defines a basis for B_{i}, for $i=1,2$, then $\Omega_{1} \otimes \Omega_{2}$ defines a basis for $B_{1} \otimes_{\lambda} B_{2}$.

Proof. Renorm B_{1} and B_{2} as indicated above. Then, if λ^{\prime} denotes the operator norm with respect to the new norms of B_{1} and $B_{2}, B_{1} \otimes_{\lambda^{\prime}} B_{2}$ has a basis defined by $\Omega_{1} \otimes \Omega_{2}$ (Theorem 2). But $B_{1} \otimes_{\lambda^{\prime}} B_{2}=B_{1} \otimes{ }_{\lambda} B_{2}$ both point-set-wise and topologically. Hence our conclusion.

Bibliography

1. M. M. Day, Normed linear spaces, Ergebnisse der Math. und ihre Grenzgebiete, N. F. 28, 1958.
2. B. R. Gelbaum, Expansions in Banach Spaces, Duke Math. J., 17 (1950), 187-196.
3. A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc. No. 16, (1955).
4. R. Schatten, A theory of cross spaces, Ann. Math. Studies. No. 26, Princeton UnivPress, Princeton 1950.

[^0]: Received November 15, 1960. This research was supported in part by NSF research grant No. NSFG 14137 and in part by NSF research grant No. NSFG 11048.

[^1]: ${ }^{1}$ This equation may be described by saying that $\left\{x_{i}^{\prime}\right\}_{i}$ is a retrobasis for $B^{\prime},[\mathbf{2}, \mathbf{p} .188$, Definition 1].

