MEAN CROSS-SECTION MEASURES OF HARMONIC MEANS OF CONVEX BODIES

WILLIAM J. FIREY

1. In [2] the notion of p-dot means of two convex bodies in Euclidean *n*-space was introduced and certain properties of these means investigated. For p = 1, the mean is more appropriately called the harmonic mean; here we restrict the discussion to this case. The harmonic mean of two convex bodies K_0 and K_1 , which will always be assumed to share a common interior point Q, is defined as follows. Let \hat{K} denote the polar reciprocal of K with respect to the unit sphere E centred at Q; let $(1 - \vartheta)\hat{K}_0 + \vartheta\hat{K}_1$, with $0 \leq \vartheta \leq 1$, be the usual arithmetic or Minkowski mean of \hat{K}_0 and \hat{K}_1 . The harmonic mean of K_0, K_1 is the convex body $[(1 - \vartheta)\hat{K}_0 + \vartheta\hat{K}_1]^{\uparrow}$. In more analytic terms, if $F_i(x)$ are the distance functions with respect to Q of K_i , for i = 0, 1, then the body whose distance function with respect to Q is $(1 - \vartheta)F_0(x) + \vartheta F_1(x)$ is the harmonic mean of K_0 and K_1 .

In the paper mentioned, a dual Brunn-Minkowski theorem was established, namely

$$(1) V^{1/n}([(1-\vartheta)\hat{K_0}+\vartheta\hat{K_1}]^{\star}) \leq 1 \Big/ \Big[\frac{(1-\vartheta)}{V^{1/n}(K_0)} + \frac{\vartheta}{V^{1/n}(K_1)}\Big]$$

where V(K) means the volume of K. There is equality if and only if K_0 and K_1 are homothetic with the centre of magnification at Q.

Here we develop a more inclusive theorem regarding the behaviour of each mean cross-section measure, ("Quermassintegral") $W_{\nu}(K)$, $\nu = 0, 1, \dots, n-1$, cf. [1]. The result is

$$(2) \qquad W_{\nu}^{1/(n-\nu)}([(1-\vartheta)\hat{K}_0+\vartheta\hat{K}_1]^{\wedge}) \leq 1 \Big/ \Big[\frac{(1-\vartheta)}{W_{\nu}^{1/(n-\nu)}(K_0)} + \frac{\vartheta}{W_{\nu}^{1/(n-\nu)}(K_1)}\Big].$$

The cases of equality are just those of the dual Brunn-Minkowski theorem, $(\nu = 0)$.

2. We first list some preliminary items used in the proof of (2). We shall use Minkowski's inequality in the form

$$(3) \qquad \int [(1-\vartheta)f_0^p + \vartheta f_1^p]^{1/p} dx \leq \left[(1-\vartheta) \Big(\int f_0 dx \Big)^p + \vartheta \Big(\int f_1 dx \Big)^p \right]^{1/p}.$$

Here the functions f_i are assumed to be positive and continuous over the closed and bounded domain of integration common to all the integrals,

Received September 29, 1960.

and, for our puposes, p satisfies $-1 \leq p < 0$. There is equality if and only if $f_0(x) \equiv \lambda f_1(x)$ for some constant λ . See [3], Theorem 201, coupled with the remark preceding Theorem 200.

Our second tool, which we shall refer to as the projection lemma, was established in [2]. Let K^* denote the projection of K onto a fixed, *m*-dimensional, linear subspace E_m through Q for $1 \leq m < n$. We have

(4)
$$[(1-\vartheta)\hat{K}_0^* + \vartheta\hat{K}_1^*]^{\widehat{}} \supseteq \{[(1-\vartheta)\hat{K}_0 + \vartheta\hat{K}_1]^{\widehat{}}\}^*$$

Since E_m contains Q and the polar reciprocation is with respect to sphere E centred at Q, in forming \hat{K}^* the order of operations is immaterial. This result is proved by a polar reciprocation argument from

$$(1-artheta)(\widehat{K}_{\scriptscriptstyle 0}\cap E_{\scriptscriptstyle m})+artheta(\widehat{K}_{\scriptscriptstyle 1}\cap E_{\scriptscriptstyle m})\subseteq [(1-artheta)\widehat{K}_{\scriptscriptstyle 0}+artheta\widehat{K}_{\scriptscriptstyle 1}]\cap E_{\scriptscriptstyle m}\ .$$

There is equality in either inclusion if K_0 and K_1 are homothetic with centre of magnification at Q.

The dual Brunn-Minkowski theorem (1) will be used.

Finally we shall make use of Kubota's formula and some of its consequences. This material is covered in [1]. An $(n - \nu)$ dimensional cross-section measure ("Quermass") of K is the $(n - \nu)$ dimensional volume of that convex body which is the vertical projection of K onto an $E_{n-\nu}$. The mean cross-section measures are usually defined as the coefficients in Steiner's polynomial which describes $V(K + \lambda E)$, that is

(5)
$$V(K + \lambda E) = \sum_{\nu=0}^{n} {n \choose \nu} W_{\nu}(K) \lambda^{\nu}.$$

If we denote the $(\nu - 1)^{\text{th}}$ mean cross-section measure of the projection of K onto that E_{n-1} through Q which is orthogonal to the vector u_1 by $W'_{\nu-1}(K, u_1)$, then Kubota's formula is

$$W_{\nu}(K) = \frac{1}{\kappa_{n-1}} \int_{\omega_n} W'_{\nu-1}(K, u_1) d\omega_n , \qquad \nu = 1, 2, \dots, \nu - 1 .$$

Here the integration with respect to the direction u_1 is extended over the surface Ω_n of E, $d\omega_n$ is the element of surface area on Ω_n and κ_{n-1} is the volume of the n-1 dimensional unit sphere.

Kubota's formula can be applied to the mean cross-section measure $W'_{\nu-1}(K, u_1)$ for fixed u_1 :

$$W'_{\nu-1}(K, u_1) = \frac{1}{\kappa_{n-2}} \int_{\mathcal{Q}_{n-1}} W''_{\nu-2}(K, u_1, u_2) d\omega_{n-1}$$

where $W_{\nu-2}^{\prime\prime}$ is the $(\nu - 2)$ th mean cross-section measure of the projection of κ onto the E_{n-2} through Q orthogonal to u_1 and u_2 with u_2 orthogonal to u_1 . After ν such steps we have as the extended form of Kubota's formula:

1264

$$W_{\nu}(K)$$

$$=\frac{1}{\kappa_{n-1}\kappa_{n-2}\cdots\kappa_{n-\nu}}\int_{\mathcal{Q}_n}\int_{\mathcal{Q}_{n-1}}\cdots\int_{\mathcal{Q}_{n-\nu}}W_0^{(\nu)}(K,u_1,u_2,\cdots,u_\nu)d\omega_{n-\nu}\cdots d\omega_{n-1}d\omega_n\ .$$

Each vector u_p is orthogonal to u_q for q < p and $W_0^{(\nu)}(K, u_1, u_2, \dots, u_{\nu})$ is the 0th mean cross-section measure of the projection of K onto that $E_{n-\nu}$ through Q which is the orthogonal complement of the subspace spanned by u_1, u_2, \dots, u_{ν} .

Steiner's formula (5) with $\lambda = 0$ shows that $W_0(K)$ is the volume of K and so $W_0^{(\nu)}$ is an $(n - \nu)$ dimensional cross-section measure of K. Thus, to within a numerical factor depending on n and ν , $W_{\nu}(K)$ is the arithmetic mean of the $(n - \nu)$ dimensional cross-section measures.

In §3 we shall use the following abbreviations: for $d\omega_{n-\nu}\cdots d\omega_{n-1}d\omega_n$ we write $d\bar{\omega}$ with sign of integration and omit reference to the domains of integration; for one $1/\kappa_{n-1}\kappa_{n-2}\cdots\kappa_{n-\nu}$ we write k; finally for $W_0^{(\nu)}(K, u_1, u_2, \cdots, u_{\nu})$ we write $\sigma(K^*)$. In this notation the extended Kubota formula reads

$$W(K)=k\!\int\!\sigma(K^*)dar{\omega}$$
 .

3. We now prove (2). By the extended form of Kubota's formula

$$\begin{array}{c} (6) \\ W^{1/(n-\nu)}([(1-\vartheta)\hat{K_0}+\vartheta\hat{K_1}]^{\wedge}) = \left[k\int\!\sigma(\{[(1-\vartheta)\hat{K_0}+\vartheta\hat{K_1}]^{\wedge}\}^*)d\bar{\omega}\right]^{1/(n-\nu)} \\ & \leq \left[k\int\!\sigma([(1-\vartheta)\hat{K_0}^*+\vartheta\hat{K_1}^*]^{\wedge})d\bar{\omega}\right]^{1/(n-\nu)} \end{array}$$

in virtue of the projection lemma and the set monotonicity of σ i.e., $\sigma(K^*) \leq \sigma(\bar{K}^*)$ if $K^* \subseteq \bar{K}^*$ with equality in the latter relation implying that in the former. We now apply (1), in $E_{n-\nu}$, to the integrand to obtain

$$\sigma([(1-artheta)\hat{K}_{\scriptscriptstyle 0}^*+artheta\hat{K}_{\scriptscriptstyle 1}^*]^\wedge) \leq \left\{1 ig/ \!\! \left[rac{(1-artheta)}{\sigma^{1/(n-
u)}(K_{\scriptscriptstyle 0}^*)} + rac{artheta}{\sigma^{1/(n-
u)}(K_{\scriptscriptstyle 1}^*)}
ight]\!
ight\}^{(n-
u)}.$$

Here we take advantage of the fact that

$$(\hat{K})^* = (K^*)^{\hat{}}$$
.

This gives

$$(7) \qquad W_{\nu}^{1/(n-\nu)}([(1-\vartheta)\hat{K}_{0}+\vartheta\hat{K}_{1}]^{\wedge}) \\ \leq \left[k\int\left\{1/\left[\frac{(1-\vartheta)}{\sigma^{1/(n-\nu)}(K_{0}^{*})}+\frac{\vartheta}{\sigma^{1/(n-\nu)}(K_{1}^{*})}\right]\right\}^{(n-\nu)}d\bar{\omega}\right]^{1/(n-\nu)}$$

There is equality if and only if all the projections K_0^* and K_1^* are homothetic with the centre of magnification at Q. This condition is

WILLIAM J. FIREY

sufficient for equality in (6); it is necessary and sufficient for (7).

We now use Minkowski's inequality (3) with $p = -1/n - \nu$. This yields

$$egin{aligned} W^{1/(n-
u)}_
u([1-artheta)\hat{K_0}+artheta\hat{K_1}) \ &\leq 1 igg/ igg[rac{(1-artheta)}{\left(k \int\! \sigma(K_0^*) dar{\omega}
ight)^{1/(n-
u)}} + rac{artheta}{\left(k \int\! \sigma(K_1^*) dar{\omega}
ight)^{1/(n-
u)}} igg] \ &= 1 ig/ igg[rac{(1-artheta)}{W^{1/(n-
u)}_
u(K_0)} + rac{artheta}{W^{1/(n-
u)}_
u(K_1)} igg] \,. \end{aligned}$$

The necessary and sufficient conditions for equality in (7) are sufficient for equality in (3) since $K_0 = \lambda K_1$ implies $\sigma(K_0^*) = \lambda^{n-\nu}\sigma(K_1^*)$. This establishes (2).

REFERENCES

1. T. Bonnesen and W. Fenchel, Konvexe Körper, Berlin, 1934, reprint N. Y. (1948), 48-50.

2. W. J. Firey, Polar Means of Convex Bodies and a Dual to the Brunn-Minkowski theorem. Canadian Math. J., **13** (1961), 444-453.

3. G. Hardy, J. Littlewood, and G. Pólya, Inequalities, Cambridge, (1934), 148.

WASHINGTON STATE UNIVERSITY

1266