MEAN CROSS-SECTION MEASURES OF HARMONIC MEANS OF CONVEX BODIES

William J. Firey

1. In [2] the notion of p-dot means of two convex bodies in Euclidean n-space was introduced and certain properties of these means investigated. For $p=1$, the mean is more appropriately called the harmonic mean; here we restrict the discussion to this case. The harmonic mean of two convex bodies K_{0} and K_{1}, which will always be assumed to share a common interior point Q, is defined as follows. Let \widehat{K} denote the polar reciprocal of K with respect to the unit sphere E centred at Q; let $(1-\vartheta) \widehat{K}_{0}+\vartheta \widehat{K}_{1}$, with $0 \leqq \vartheta \leqq 1$, be the usual arithmetic or Minkowski mean of \hat{K}_{0} and \hat{K}_{1}. The harmonic mean of K_{0}, K_{1} is the convex body $\left[(1-\vartheta) \hat{K}_{0}+\vartheta \widehat{K}_{1}\right]^{\wedge}$. In more analytic terms, if $F_{i}(x)$ are the distance functions with respect to Q of K_{i}, for $i=0,1$, then the body whose distance function with respect to Q is $(1-\vartheta) F_{0}(x)+\vartheta F_{1}(x)$ is the harmonic mean of K_{0} and K_{1}.

In the paper mentioned, a dual Brunn-Minkowski theorem was established, namely

$$
\begin{equation*}
V^{1 / n}\left(\left[(1-\vartheta) \hat{K}_{0}+\vartheta \hat{K}_{1}\right]^{\wedge}\right) \leqq 1 /\left[\frac{(1-\vartheta)}{V^{1 / n}\left(K_{0}\right)}+\frac{\vartheta}{V^{1 / n}\left(K_{1}\right)}\right] \tag{1}
\end{equation*}
$$

where $V(K)$ means the volume of K. There is equality if and only if K_{0} and K_{1} are homothetic with the centre of magnification at Q.

Here we develop a more inclusive theorem regarding the behaviour of each mean cross-section measure, ('Quermassintegral') $W_{\nu}(K), \nu=$ $0,1, \cdots, n-1$, cf. [1]. The result is

$$
\begin{equation*}
W_{\nu}^{1 /(n-\nu)}\left(\left[(1-\vartheta) \hat{K}_{0}+\vartheta \hat{K}_{1}\right]^{\wedge}\right) \leqq 1 /\left[\frac{(1-\vartheta)}{W_{\nu}^{1 /(n-\nu)}\left(K_{0}\right)}+\frac{\vartheta}{W_{\nu}^{1 /(n-\nu)}\left(K_{1}\right)}\right] . \tag{2}
\end{equation*}
$$

The cases of equality are just those of the dual Brunn-Minkowski theorem, ($\nu=0$).
2. We first list some preliminary items used in the proof of (2). We shall use Minkowski's inequality in the form

$$
\begin{equation*}
\int\left[(1-\vartheta) f_{0}^{p}+\vartheta f_{1}^{p}\right]^{1 / p} d x \leqq\left[(1-\vartheta)\left(\int f_{0} d x\right)^{p}+\vartheta\left(\int f_{1} d x\right)^{p}\right]^{1 / p} \tag{3}
\end{equation*}
$$

Here the functions f_{i} are assumed to be positive and continuous over the closed and bounded domain of integration common to all the integrals,

[^0]and, for our puposes, p satisfies $-1 \leqq p<0$. There is equality if and only if $f_{0}(x) \equiv \lambda f_{1}(x)$ for some constant λ. See [3], Theorem 201, coupled with the remark preceding Theorem 200.

Our second tool, which we shall refer to as the projection lemma, was established in [2]. Let K^{*} denote the projection of K onto a fixed, m-dimensional, linear subspace E_{m} through Q for $1 \leqq m<n$. We have

$$
\begin{equation*}
\left[(1-\vartheta) \hat{K}_{0}^{*}+\vartheta \hat{K}_{1}^{*}\right]^{\wedge} \supseteqq\left\{\left[(1-\vartheta) \hat{K}_{0}+\vartheta \hat{K}_{1}\right]^{\wedge}\right\}^{*} \tag{4}
\end{equation*}
$$

Since E_{m} contains Q and the polar reciprocation is with respect to sphere E centred at Q, in forming \hat{K}^{*} the order of operations is immaterial. This result is proved by a polar reciprocation argument from

$$
(1-\vartheta)\left(\hat{K}_{0} \cap E_{m}\right)+\vartheta\left(\hat{K}_{1} \cap E_{m}\right) \subseteq\left[(1-\vartheta) \hat{K}_{0}+\vartheta \hat{K}_{1}\right] \cap E_{m}
$$

There is equality in either inclusion if K_{0} and K_{1} are homothetic with centre of magnification at Q.

The dual Brunn-Minkowski theorem (1) will be used.
Finally we shall make use of Kubota's formula and some of its consequences. This material is covered in [1]. An ($n-\nu$) dimensional cross-section measure ("Quermass') of K is the ($n-\nu$) dimensional volume of that convex body which is the vertical projection of K onto an $E_{n-\nu}$. The mean cross-section measures are usually defined as the coefficients in Steiner's polynomial which describes $V(K+\lambda E)$, that is

$$
\begin{equation*}
V(K+\lambda E)=\sum_{\nu=0}^{n}\binom{n}{\nu} W_{\nu}(K) \lambda^{\nu} . \tag{5}
\end{equation*}
$$

If we denote the $(\nu-1)^{\text {th }}$ mean cross-section measure of the projection of K onto that E_{n-1} through Q which is orthogonal to the vector u_{1} by $W_{\nu-1}^{\prime}\left(K, u_{1}\right)$, then Kubota's formula is

$$
W_{\nu}(K)=\frac{1}{\kappa_{n-1}} \int_{\Omega_{n}} W_{\nu-1}^{\prime}\left(K, u_{1}\right) d \omega_{n}, \quad \nu=1,2, \cdots, \nu-1
$$

Here the integration with respect to the direction u_{1} is extended over the surface Ω_{n} of $E, d \omega_{n}$ is the element of surface area on Ω_{n} and κ_{n-1} is the volume of the $n-1$ dimensional unit sphere.

Kubota's formula can be applied to the mean cross-section measure $W_{\nu-1}^{\prime}\left(K, u_{1}\right)$ for fixed u_{1} :

$$
W_{\nu-1}^{\prime}\left(K, u_{1}\right)=\frac{1}{\kappa_{n-2}} \int_{\Omega_{n-1}} W_{\nu-2}^{\prime \prime}\left(K, u_{1}, u_{2}\right) d \omega_{n-1}
$$

where $W_{\nu-2}^{\prime \prime}$ is the ($\nu-2$)th mean cross-section measure of the projection of κ onto the E_{n-2} through Q orthogonal to u_{1} and u_{2} with u_{2} orthogonal to u_{1}. After ν such steps we have as the extended form of Kubota's formula:
$W_{\nu}(K)$
$=\frac{1}{\kappa_{n-1} \kappa_{n-2} \cdots \kappa_{n-\nu}} \int_{\Omega_{n}} \int_{\Omega_{n-1}} \cdots \int_{\Omega_{n-\nu}} W_{0}^{(\nu)}\left(K, u_{1}, u_{2}, \cdots, u_{\nu}\right) d \omega_{n-\nu} \cdots d \omega_{n-1} d \omega_{n}$.
Each vector u_{p} is orthogonal to u_{q} for $q<p$ and $W_{0}^{(\nu)}\left(K, u_{1}, u_{2}, \cdots, u_{\nu}\right)$ is the 0th mean cross-section measure of the projection of K onto that $E_{n-\nu}$ through Q which is the orthogonal complement of the subspace spanned by $u_{1}, u_{2}, \cdots, u_{\nu}$.

Steiner's formula (5) with $\lambda=0$ shows that $W_{0}(K)$ is the volume of K and so $W_{0}^{(\nu)}$ is an $(n-\nu)$ dimensional cross-section measure of K. Thus, to within a numerical factor depending on n and $\nu, W_{\nu}(K)$ is the arithmetic mean of the $(n-\nu)$ dimensional cross-section measures.

In §3 we shall use the following abbreviations: for $d \omega_{n-\nu} \cdots d \omega_{n-1} d \omega_{n}$ we write $d \bar{\omega}$ with sign of integration and omit reference to the domains of integration; for one $1 / \kappa_{n-1} \kappa_{n-2} \cdots \kappa_{n-\nu}$ we write k; finally for $W_{0}^{(\nu)}\left(K, u_{1}\right.$, u_{2}, \cdots, u_{ν}) we write $\sigma\left(K^{*}\right)$. In this notation the extended Kubota formula reads

$$
W(K)=k \int \sigma\left(K^{*}\right) d \bar{\omega}
$$

3. We now prove (2). By the extended form of Kubota's formula

$$
\begin{align*}
W_{\nu}^{1 /(n-\nu)}\left(\left[(1-\vartheta) \hat{K}_{0}+\vartheta \hat{K}_{1}\right]^{\wedge}\right) & =\left[k \int \sigma\left(\left\{\left[(1-\vartheta) \hat{K}_{0}+\vartheta \hat{K}_{1}\right]^{\wedge}\right\}^{*}\right) d \bar{\omega}\right]^{1 /(n-\nu)} \tag{6}\\
& \leqq\left[k \int \sigma\left(\left[(1-\vartheta) \hat{K}_{0}^{*}+\vartheta \hat{K}_{1}^{*}\right]^{\wedge}\right) d \bar{\omega}\right]^{1 /(n-\nu)}
\end{align*}
$$

in virtue of the projection lemma and the set monotonicity of σ i.e., $\sigma\left(K^{*}\right) \leqq \sigma\left(\bar{K}^{*}\right)$ if $K^{*} \subseteq \bar{K}^{*}$ with equality in the latter relation implying that in the former. We now apply (1), in $E_{n-\nu}$, to the integrand to obtain

$$
\sigma\left(\left[(1-\vartheta) \hat{K}_{0}^{*}+\vartheta \hat{K}_{1}^{*}\right]^{\wedge}\right) \leqq\left\{1 /\left[\frac{(1-\vartheta)}{\sigma^{1 /(n-\nu)}\left(K_{0}^{*}\right)}+\frac{\vartheta}{\sigma^{1 /(n-\nu)}\left(K_{1}^{*}\right)}\right]\right\}^{(n-\nu)}
$$

Here we take advantage of the fact that

$$
(\hat{K})^{*}=\left(K^{*}\right)^{\wedge} .
$$

This gives

$$
\begin{align*}
& W_{\nu}^{1 /(n-\nu)}\left(\left[(1-\vartheta) \hat{K}_{0}+\vartheta \hat{K}_{1}\right]^{\wedge}\right) \tag{7}\\
& \quad \leqq\left[k \int\left\{1 /\left[\frac{(1-\vartheta)}{\sigma^{1 /(n-\nu)}\left(K_{0}^{*}\right)}+\frac{\vartheta}{\sigma^{1 /(n-\nu)}\left(K_{1}^{*}\right)}\right]\right\}^{(n-\nu)} d \bar{\omega}\right]^{1 /(n-\nu)} .
\end{align*}
$$

There is equality if and only if all the projections K_{0}^{*} and K_{1}^{*} are homothetic with the centre of magnification at Q. This condition is
sufficient for equality in (6); it is necessary and sufficient for (7).
We now use Minkowski's inequality (3) with $p=-1 / n-\nu$. This yields

$$
\begin{aligned}
& W_{\nu}^{1 /(n-\nu)}\left(\left([1-\vartheta) \hat{K}_{0}+\vartheta \hat{K}_{1}\right)\right. \\
& \leqq 1 /\left[\frac{(1-\vartheta)}{\left(k \int \sigma\left(K_{0}^{*}\right) d \bar{\omega}\right)^{1 /(n-\nu)}}+\frac{\vartheta}{\left(k \int \sigma\left(K_{1}^{*}\right) d \bar{\omega}\right)^{1 /(n-\nu)}}\right] \\
& \quad=1 /\left[\frac{(1-\vartheta)}{W_{\nu}^{1 /(n-\nu)}\left(K_{0}\right)}+\frac{\vartheta}{W_{\nu}^{1 /(n-\nu)}\left(K_{1}\right)}\right] .
\end{aligned}
$$

The necessary and sufficient conditions for equality in (7) are sufficient for equality in (3) since $K_{0}=\lambda K_{1}$ implies $\sigma\left(K_{0}^{*}\right)=\lambda^{n-\nu} \sigma\left(K_{1}^{*}\right)$. This establishes (2).

References

1. T. Bonnesen and W. Fenchel, Konvexe Körper, Berlin, 1934, reprint N. Y. (1948), 48-50.
2. W. J. Firey, Polar Means of Convex Bodies and a Dual to the Brunn-Minkowski theorem. Canadian Math. J., 13 (1961), 444-453.
3. G. Hardy, J. Littlewood, and G. Pólya, Inequalities, Cambridge, (1934), 148.

[^0]: Received September 29, 1960.

