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1. Introduction. Let A be a family of real valued upper semi-
continuous functions defined on a compact Hausdorff space E.

A closed set F c E is called determining for A if every function
feA attains its maximum on F. If for the space E there exists one
and only one minimal determining F = F(E, A) (i.e., a determining set
such that no proper closed subset of it is determining), then F is called
the boundary of E with respect to the family A.

o

A function he A is called a barrier-function of A at & point x e F =
F(E, A) if and only if h(x) > h(x) for x Φ x, xeF.

A point x e F for which there is a barrier-function of A is called a
semiregulαr boundary point of E with respect to A. If for a point
xe F there exists a continuous (at the point x) barrier-function, then
x will be called a regular boundary point of E with respect to A.

Let D be a set contained in a topological space and let f(x) be a
real function defined on D. Then the function / * defined in the closure
D of D by means of

(1) f*(x) = lim sup/(a?') , x'eD, xeD ,
x'—>x

is called an upper regularization of /.
Let A1 be a subfamily of A. Then the function

(2) 9Ka) = {sup/(αO}*, * G # ,

is called the upper envelope of Ax.
Let / be an upper semicontinuous nonnegative function defined in

a compact set E. We shall denote by \\f\\E the maximum of / on E,
\\f\\E = max j 6 β /W.

We say that a family A of functions / defined on E is separating
(or A separates the points of E) if for any two points x1 Φ x2 of E
there is a function / e i such that /(xj Φ f(x2).

A well known theorem of Silov [5] asserts: If A is a family of
absolute values of all functions of a separating algebra of complex
continuous functions defined on a compact Hausdorff space E, then E
has the boundary F with respect to the family A.

This boundary is sometimes called a Silov boundary of E (with respect
to the given algebra).

E. Bishop [3] has recently proved that if E is metrizable and A is
a complete (with respect to the uniform convergence) Banach algebra
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of continuous function on E, then the Silov boundary of E is the closure
of regular points of E with respect to A.

Let us mention that the papers of S. Bergman [1], [2] on the domains
with a distinguished boundary surface are the first to indicate the
significance of the boundary of a domain D with respect to the algebra
of holomorphic functions of several complex variables in D.

Recently it appeared that the notion of the boundary of a set with
respect to the family of functions, which do not necessarily form an
algebra, may be useful. For instance, Bremermann [4], considering a
generalized solution of the Dirichlet boundary value problem within the
family of pluri-subharmonic functions in a domain D of the space Cn of
n complex variables, had to consider the boundary of D with respect to
the family of pluri-subharmonic functions in D. The boundary values,
in the procedure described by Bremermann, could be given just on the
Silov boundary of D and nowhere else. But the family of pluri-subharmonic
functions does not form any algebra. Also in the case of the first boundary
value problem for the heat conduction equation uxx — ut ~ 0 in a domain
Dy the boundary values can be given only on a part of the boundary of
D. That part is a Silov boundary of D with respect to the solutions of
the inequality uxx — ut i> 0. Those solutions do not form any algebra,
of course.

The aim of this paper is to prove the existence of the boundary
with respect to function families much more general than the algebras,
namely, for the families A which are closed only under the multiplication
or addition of functions of A.

This fact can be applied to a uniform treatment of a Perron procedure
of upper envelopes with respect to various function families having the
boundary. Suppose that for a function family A there exists a boundary
F = F(E, A). Then, by means of reasoning classical in potential theory,
we have the following theorem:

//, along with f and gy the family A contains af + βg, where
a ^ 0 and β ^ 0, if A contains all real constants, and if x e F is a
regular boundary point of E with respect to A then for any real function
b(x) defined and continuous on F we have

b(x) = lim φ(x) ,
x-^x

where φ(x) denotes the upper envelope of all functions feA such that
f(x) ^ b(x) for xeF.

Let any point of F be regular. Then φ(x) = b(x) for x e F, and it
is quite natural to look at such an upper envelope φ(x) as at a generalized
solution of the Dirichlet boundary value problem within the family A.
If the function family A is closed under the operation of taking the
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upper envelope, then the generalized solution is a function of A.
There are well known examples of function families (which are not

any algebra) within which the solution of the Dirichlet problem was
found just by means of the Perron procedure [4], [6].

2. Some general function families with boundary. We shall need
the following general

LEMMA 1 (Silov). For any family A of upper semicontinuous
functions defined on a compact Hausdorff space E there exists a minimal
determining set (one at least).

This lemma can be proved by means of transfinite induction (see
the proof by Silov [5]).

THEOREM 1. Let A be a family of nonnegative functions defined
and upper semicontinuous on a compact Hausdorff space E. If the
family A satisfies the following conditions:

1° // / and g are functions of A then the product f g e A;
2° If x is an arbitrary fixed point of E then for any neighborhood

U(x) of x and for any ε > 0 there exists a finite system of functions
fitfi " ,fk£ A such that the set

U* ={xeE\Mx)<ε, μ - 1, 2, .., kf

is contained in U(x) and Z7* contains a neighborhood U'(x) of x; then
the set E has a boundary with respect to A,2

Proof. Due to Lemma 1 it is sufficient to prove that E has only
one minimal determining set with respect to A. The proof of the
uniqueness may be given by a literal repetition of Silov's proof in [5].
This repetition is possible because Silov used only the assumptions formu-
lated in Theorem 1.

REMARK. If c is a positive real number and f(x) is any real function
upper semicontinuous on a closed set E, then the functions c f and /
attain their maxima at the same points of E. Therefore, E has a boundary
with respect to A if and only if E has a boundary with respect to Ά,
where Ά denotes the family of functions g which can be written in the
form g = c /, c > 0, fe A.

The function family A considered in Theorem 1 is closed under the
operation of multiplication of functions of A. A similar theorem holds

1 The integer k may depend on x. U'[xj or $.
2 The similar theorem has been proved in [7].
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for function families closed with respect to additions of functions of A.

THEOREM 1'. Let A be a family of upper semicontinuous functions
defined on a compact Hausdorff space E. If A satisfies conditions:

1° // f,g e A, then f + g e A;
2° If xe E and U(x) is a neighborhood of x and ε > 0, then there

exists a fi,nite system of functions fl9f2, ,fke A such thai

U* = { x \ e f ^ < e , μ = l , • • - , £ }

is contained in U(x) and U* contains a neighborhood U'(x) of x;
then E has a boundary with respect to A.

Proof. It is sufficient to observe that the family Ax of functions
h — ef, where / e A, satisfies the assumptions of Theorem 1. Therefore,
E has a boundary with respect to Aλ. But this is also a boundary of
E with respect to A.

REMARK 1. Any function family, which satisfies 2°, separates the
points of E, but the converse statement is not true. For instance, let
E be the segment [0,1] and let A be the family of all powers ccμ, μ —
1,2, •••. Then A satisfies 1° but it does not satisfy 2°, although A
separates the points of E. The boundary of E with respect to A is in
this case the only point x — 1.

Now we shall prove the existence of the boundary for function
families which are closed with respect to multiplication (or addition) and
which only, instead of 2° in Theorem 1, separate the points of E. But
we now must assume that the space E is metric and the functions
considered are continuous, while in Theorem 1 they could be only upper
semicontinuous.

THEOREM 2. Let Abe a family of nonnegative continuous functions
defined on a compact metric space E. If A satisfies the conditions:

1° Iff,geA, then f geA;
2° A separates the points of E;

then E has a boundary with respect to A.3

Proof. In virtue of Lemma 1 it is sufficient to prove only the
uniqueness of the minimal determining set for A. For the proof per
reductio ad absurdum let us assume that there exist two different minimal
determining sets Fx and F2 for A. The set Fλ\F2 is nonempty, since,
otherwise, we would have i*\ c F2 and F2 would not be a minimal
determining set. Let xΎe FX\F2 and let Ux(x^ — {xe E\p(x, xλ) < l/2tt1} be

3 After submitting this paper for publication, the author discovered that H. Bauer,
with different techniques, obtained more general results, see H. Bauer, Silovscher Rand
und Dirichletsches Problem, Ann. LΊnst. Fourier XI (1961), 89-136.
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a neighborhood of χlf where nλ is an integer so large that Ux{x^ Π F2 — φ.
Since F1 is a minimal determining set for A, there exists a function
feA which attains its maximum m = | | / | | F l on Fx in the set Ul9 and
such that m&xxeUif(x) = m > f(y), yzFΛ\ Uλ. In virtue of 1° and the
Remark on p. 377, we can assume that

Since F2 is determining and Uλ Π F2 = φ, there must be a point yxe F2

such that /(§i) - 1. The function f(x) is continuous. Thus, there is a
neighborhood V^yJ = {̂ /IpO/, ̂ ) < l/2mi} of §x, where τn1 is so large that

f(x) > A for x e V, and T ^ ) Π
4

Since F 2 is minimal there is a function #(#) such that | | # | | = g(yx) — 1,
yλ being a point of Vlf and g(a;) < 1/4 for x e F2\ Vλ. Now we put h(x) =
/(ίc)g(α ). We can easily verify that

h{yύ ^ — , Mx)< — for xeFx\U, or £ e F 2 | V ; .
4 4

Since h(y^ ^ 3/4, so maxxeUlh(x) = \\h\\E ^ 3/4. Therefore, the function
hx(x) — [h(x)l\\h\\E]k, where k is a sufficiently large integer, satisfies the
conditions,

H^IU - 1 K{x) < -1 f o r x e F J C / , or α e F J l ^ ,
4

and moreover there exists a point ĉ  e ^ and a point t/t e Vγ for which

This was the first step of our proof. To begin the next one, let
us observe that one can find an integer n2 > nx so large that

l|θ(a;, xλ) < - i-1 c Ux{x^) and hλ{x) ̂  — ίor xe U2 .

Since F x is a minimal determining set there exists foe A such that
H/olL == 1> /o(ff) < 1/4 for αseFJC/a and /0(S2) = 1 for a point xeU2.
We define /x(x) = fQ{x)hλ{x). We have /,(£) < 1/4 for x e ^ | U2 or x e F2 \ V,
and /i(S2) i^ 3/4. So H/JU ^ 3/4 and there is a point y2e Vλ such that
/i(^2) = H/ilU Therefore, the function/ = (/i/H/JU)*, Λ being a suitable
integer, satisfies the conditions

l/ll =/d/ s ) = l and / ( x ) < — for^GFJC/, or xeF2\Vγ.
4

The function /(cc) is continuous, so one can find an integer m2 > m1 so
large that V2(y2) = {y\ρ{yu y2) < Iβ**} c Vx and /(]/) ̂  3/4 for ye V2.
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Since F2 is minimal, there is a function g e A and a point y2 e V2(y2) such
that \\g\\js = flr(^2) = 1 and g(y) < 1/4 for F2\ V2. Therefore, the function
h(x) — f(x)g(x) has the following properties: he A, \\h\\ ̂  3/4, h(x) < 1/4
for xeFilUi or xeF2\V2. Hence, the function h2(x) = (h(x)l\\h\\B)*,
where k is a sufficiently large integer, satisfies

| | M * = 1 , K(x)<λ- for xeF{\U2 or xeF2\ V2 ,4

andr there is a point #2 e t/2 and a point t/2 e V2 for which Λ,2(a52) — M ^ ) — 1.
Continuing this procedure, we construct two sequences of points {xv}

and {yv}, two descending sequences of neighborhoods {Uv(xv)} and {V^(yv)}y

and a sequence of functions {hv(x)}. By their construction these sequences
satisfy the following conditions: The functions K(x), v ~ 1, 2, belong
to A (in fact, we have only hv(x) — cv h*(x), where h* e A and cv —
const > 0, but it does not matter because of the Remark on p. 377). The
neighborhoods Uv and Vv converge to points x and y, respectively. The
points x and y are also the limits of {xj and {yv}} respectively. For any
v = 1, 2, we have

ll̂ vIL' = K(xv) = hv(y») = 1 , K{x) < — for x e Fx\ Uv or x e F2\ Vv .
4

Since Ϊ7V+1 c Uv, Vy+1 c Vv and Uv Π Vv = ^, v = 1, 2, , we have
x Φ y. The family A separates the points of E. Thus, there is a function
he A such that h(x) Φ h(y). Without any loss of generality we may
assume that h(x) < h(y). Let h(y) — h(x) — 3ε. Since h(x) is continuous,
we may find two neighborhoods U(x) and V(y) such that

h(x) < /ι(&) + ε for # € U(x) and /ι(^) — ε < /t(τ/) for y e V(y) .

Since Uv and F v converge to x and |r, respectively, there is an integer
vQ such that UVQ C Ϊ7(α) and VVQ C F(^f). Let M = ||fc|U, and let m be
so large that M/2W < ε. Then the function b(x) = /i(x) [/̂ vo(̂ )]w satisfies
the conditions:

( i ) b(x) ^ ^ < ε , f or x e F, \ UVQ or x e F2 \ FVo

(ii) b(x) < h(x) + a , for a? e ί7Vo

(iii) b(x) ^ h(y)—ε h(x) + ε , for a? e Vv .

Thus the function b(x) attains its maximum \\b\\E on F2 and δ(α ) < \\u\\B

for x€ F^ Therefore, Fλ is not a determining set. This contradiction
completes our proof.

A simpla consequence of Theorem 2 is the following
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THEOREM 2'. Let A be a separating family of real continuous
functions defined on a compact metric space E, and let A be closed
under the addition operation. Then E has a boundary with respect
to A.

3 Regular boundary points. The following theorem is a reformula-
tion of the theorem by E. Bishop (see [3], p. 633) in a slightly more
general form.

THEOREM 3. If A is a separating family of nonnegative continuous
functions defined on a compact metric Hausdorff space E and if

1° A contains positive constants,

2° A is closed under addition and multiplication of functions of

A,
3° A contains limits of uniformly convergent sequences of functions

of A)
then E has a boundary F with respect to A, and F is the closure of
regular boundary points of E with respect to A.

Proof. The boundary F exists by Theorem 2. Let xΰ be a fixed
point of F and let U{) = U(x) be a neighborhood of Uo. It will now be our
task to find a regular point in the neighborhood Uo. By the definition of F
and in virtue of assumptions 1° and 2° of the theorem, there is a function
/o e A such that | |/0 \\E = 1, /0(Xi) = 1 for some point x1 e Uo, and fo(y) < 1/4
for y e F\ Uo. Let U1 c J70 be a neighborhood of xλ such that fo(x) > 3/4
for xe Ulm There is a function fλ(x)eA such that HΛIU = 1, /i(#2) = 1
for a point x2 e Ul9 and fx{y) < 1/4 for xe F\ Ulm Repeating this procedure,
we can define:

1° a sequence of neighborhoods {Ϊ7V}, C/v+i c Uv, whose product
contains a single point y0,

2° a sequence of functions fv(x) such that

Λ(»o)>-f, Uv)<\ ίoτyeF\Uy and ||/V|U = 1 , v = 1, 2, .. .
4 4

Now we can define a function g e A, which is a barrier function of A
at the point y0. Namely, in the same way as in the proof of Theorem 2
of [3], we at first construct, by induction, a sequence of functions gneA
such that

( l ) \\9n-n-gn\\E<2-n'H

(ii) HflfJL^ 3 ( 1 - 2 — )

(in) flUl/o) = 3(1 - 2"»)

(iv) I gn+1(v) - 9n(v) I < 2 — 1 for yeF\ U,n t χ ,
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where {Uμn+1} is a suitably chosen subsequence of {Un}.
We put gλ(x) = 3/2 [f1(yo)]~1fi(x) and check that gx satisfies (ii) and

(iii). Assuming that gl9 - — ,gk have been constructed, we define gk+1in
the following way. Since gk is continuous and gk(y0) = 3(1 — 2~fc), we
can find μk+1 > μk such that

gk(x) < 3(1 - 2~η + 2- f c- for x e U.k+1 .

Now we define gk+1(x) = gk(x) + 3 2"*"1 [ΛA.+1(2/0)]"1Λfc+1(») a n d check
t h a t flflf flf2, •••, gk9 gk+1 satisfy (i)-(iv) (for details see [3], p. 633). A
barrier function of A a t the point y is given by

g(x) = 3 Σ Afo> - lim gn(x) , g e # .
fc12*Λ()

Namely, we have g(y0) = 3, HsΊU ^ 3. Since

flr(a ) = gu(x) + 3 ^ {^(x)

and since f^.k(x) < 1/4 for x e F\ Uμ/c+l, we have

g(x) < 3(1 - 2""-1) + 3 Σ o t

1 / l , ί l = 3 - 2"""1 < 3 f o r * e * Ί ^ + ι

A=w+1 ώ O/4

Hence, flf(a ) < 3 for x Φ y0.

4. Applications, Let D be a bounded set in the Euclidean space
R'\ n^l. Let A = A(D) be a family of real functions defined on D.
We denote by A* the set of all the upper regularizations of functions
of A. We shall call the boundary of D with respect to A* also the
boundary of D with respect to A.

By means of Theorems 1 and 2, we can easily check that the following-
function families have boundaries:

(1) The family of moduli of all polynomials of n complex variables
for any bounded set D c Cn.

(2) The family of moduli of holomorphic functions of n complex
variables for any bounded set D c C \

(3) The family of pluri-subharmonic functions for any bounded set
Da C\

(4) The family of convex functions of n real variables for any
bounded domain D c Rn, n ^ 1.

(5) The family of solutions in a bounded domain D c Rn (continuous
in D) of the system of differential inequalities (or equalities)
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(6) The family of continuous solutions of the system of differential

inequalities

k ^ μ ^ 2 , bv = const ί = 1, 2, , Z

in any bounded domain DaRn+m contained in the set

\ < oo y.e [0, ε, oo)
S =

— oo <_ 0L

i — 1, 2, , w 7 i — 1, 2, , mJ

βj = sgn i

The statements of (1) and (2) follow from Theorem 1 with fμ(z) =
a \zμ — zϋ

lL\, μ = 1, 2, , n where a — const is suitably chosen. (3) follows
from Theorem 1' with fμ(z) — log |α(zμ — z°μ)\, μ — 1, , n.

The families (4)-(6) are closed with respect to addition of their
functions. The function f(x) = Σl ^ (ί»fc — x,?)2 is a universal separating
convex function. The functions fμ(%) — Xμ. — Xμ., μ — 1, 2, , n are
separating for (4) and (5). The functions fμ(x) = x^ — xμ, μ = 1, 2, , n,
£μ(2/) = εμ(i/μ — |rμ), /i = 1, 2, , m are separating for (6).

Let us observe that the family (5) involves as a special case the
family of double-harmonic functions. It is well known [1] that the
boundary of a bicylinder with respect to double-harmonic functions is
equal to the boundary of the bicylinder with respect to holomorphic
functions. A similar situation holds for strictly pseudo-convex domains.
But it is not known what is the situation for general domains. The
relation between the Silov boundary of a domain D c Cn with respect
to holomorphic functions and with respect to pluri-subharmonic functions
has been investigated in [4].

The family (6) involves as a special case the family of "subparabolic"
functions (compare [6]).

Any linear function f(x) = aλxλ + a2x2 + anxn + δ, where ak are
real numbers, satisfies the system of inequalities g7( ΐ ) [/] ^ 0 , i —
1,2, « ,Z. Let D be a strictly convex domain in the space Rn. This
means that for any point xeD\ Dm being a topological boundary of D,
there is a hyperplane aλxλ + + anxn + 6 — 0 which has no common
points with D, except the point x. Therefore, the function f(x) =
aλxx+ ••• + anxn + b (multiplied by —1, if necessary) is a continuous
barrier-function of family (5) at the point x. Hence, by the theorem
on p. 376, we have

COROLLARY. If D is a strictly convex domain, then for any
continuous function b(x) defined on D% there is a generalized solution
φ(x) of the Dirichlet boundary value problem inside any family (5).
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Particularly, if D is strictly convex and b(x) is continuous on Dm, then
there is a convex function φ(x), continuous in D, such that φ(x) ~ b(x)
for xe D\

THEOREM. If D is a bounded domain in Cn, then the boundary
of D with respect to the family A of pluri-subharmonic functions in
D, continuous in D, is the closure of regular points of D with respect
to A.

Proof. Let Aτ denote the family of all functions g such that there
exists a function fe A for which g(x) = e/U). We can easily check that
A1 c A and Aλ satisfies all the assumptions of Theorem 3. Indeed, if /
and g e Alf then by a computation of the Hermitian form

A 02 log (/+</) Γ

μ.v-i dzμdzv

we check that f + g e Aτ in the case of / and g being sufficiently regular.
The general case is attained by approximation. The other assumptions
follow directly from the known properties of pluri-subharmonic functions.
By Theorem 1 domain D has a boundary with respect to Alu By
Theorem 3 this boundary is the closure of the regular boundary points
with respect to Ax. Let us now observe that the boundary F of D
with respect to A is the same as the boundary Fx of D with respect to
Ax. Namely, since Ax c A, then Fλ c F. The function g and e9 attain
their maxima in the same points of D. If g e A, then e9 e Aλ. Thus
any function of A assumes its maximum on Fl9 whence F a Fλ. It
follows that F — Fl9 and the boundary of D with respect to A is the
closure of regular boundary points of D with respect to A.
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