
NONSYMMETRIC PROJECTIONS IN HILBERT SPACE

V. J. MIZEL1 AND M. M. RAO2

O Introduction. An initial investigation into the kind of operators
which can be obtained as the difference of two projections led to the
study presented below. In this paper a characterization is given for the
general (not necessarily symmetric) bounded linear idempotent operator,
or projection, on Hubert space. These results are applied to the inves-
tigation of a projection problem and to a " weak" ordering of such
operators. The paper falls naturally into two parts. In the first we
give two theorems and several more or less direct consequences which
together provide the characterization. In the second part we apply
these results to the investigation and solution of a problem which is of
importance in probability and statistics. A sketch of the role of this
problem in statistical theory and an examination of how our results fit in
with previous conclusions complete the present study.

We mention that Dixmier [3] has done work related to the first
part, obtaining results of an entirely different nature from ours. So
far as we know the point of view presented here does not appear in
the literature.

1Φ Characterization theorems. We utilize the following com-
pressed notation : " positive " for " positive semi-definite ", " s.a." for
" self adjoint", " skew " for " skew-adjoint". A^-Έ indicates that A
and B commute, A | 5^ stands for the restriction of the (always linear)
operator A to the subspace % and &A, Λ2 respectively denote the
range and the null space of A. The terminology used below is that of
complex Hubert space but as is made clear in the proofs our results
apply to the real case as well. In other respects, notation is mostly
patterned after that of Riesz and Sz.-Nagy [9].

THEOREM 1. An operator P on a Hubert space H is a projection
(bounded idempotent linear operator) if, and only if, there exist
(I) a bounded s. a. operator S such that S2 — S is positive

(II) a unitary operator U, with U{^s^-s) c &s*-s, whose restriction

to &&-s satisfies

(i) U*=-I
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(ii) SU= U(I- S) ,

in terms of which the following representation holds :

( * ) P=S+ U(S2 - S)ai2)

Proof.* We first recall the relation &Λ — &Λ2 for a bounded s.a.

operator A (the ' bar' indicates closure). This is utilized, with A = (S2

— S)(1/2), both in the present proof and later. To show sufficiency we

note that since S^(S2 - S) and ( I - S) — (S2 - S) there follows from

(II) (ii) the relation U^ S2 — S on ^ 2 _ 5 . Thus by the preceding

remark U^(S2-S){1I2) on ί%a*-8. In this way we obtain:

[s + u(s2- syil2)γ = s2 + (su + us) (s2 - syil2]

+ U2(S2 - S) = S+ U(S2 - S)(1/2).

Therefore idempotence of the bounded operator P is proved.
To prove necessity we decompose the projection P into its s.a. and

skew parts, S and W respectively. Then idempotence of P leads to the
equation (S + W)2 — S + W, which on rearrangement gives

(1.1) S2 + W2 - S = W - SW - WS .

The left hand side is s.a. while the right hand side is skew. Hence

(1.1) is equivalent to the pair of equations

(1.2) S2 - S = - W2 = WW*

(1.3) SW= W(I-S) .

From (1.2) we conclude that the polar decomposition of W is of the form

(1.4) W= U{S2 - S)(1/2) .

Since Wis normal it is well-known ([9], p. 286) that the partially isometric
operator U is in fact unitary and that U^ (S2 — S)(1/2). Since W is
skew we have in addition the relation

(1.5) U(S2 - S ) ( 1 / 2 ) - - [U(S2 - S Y m Γ = - (S2 - S)ιί2lU-1 .

These facts ensure that

(i.6) u\s2 - syil2) = - (s 2 - s)α / 2 )

and so by our previous remark yield (II) ( i ) . Finally, (1.3) gives the
relation, since S^(S2 - S)(1/2),

- syil2) = u(i - s)(s2 - syii2)

which, for the same reason, yields (II) (ii). Q.E.D.

3 We are grateful to Professor P.R.Halmos for bringing to our attention this simplified
form of our original proof.
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An equivalent form of the preceding result, which explicitly involves
the spectral theorem, follows :

THEOREM Γ. An operator P on a Hilbert space H is a projection
if, and only if, there exist

(Γ) a resolution of the identity {Eλ} varying only for X in the set
[— a, 0] U [1,1 + a] for some a ^ 0 and having the property that X Φ 0
or 1 is a point of continuous [discontinuous] growth precisely when
1 — X is such a point,

(IF) a unitary operator U satisfying

( i ) U\Eλ — Eμ) = Eμ — Eλ when [λ, μ] and (0, 1) are disjoint

(ii) UEλ = (I- Ea-λ)J)U when X 0 [0,1],

in terms of which the following representation holds :

<*') p = Γ α xdEλ + Γ " (λ2 - xyiιr'dUEλ.
J J(—α;)—

REMARK. These hypotheses are essentially direct translations, with
use of the spectral theorem, of the hypotheses of Theorem 1. The
only feature of this equivalence which is not straightforward is (IF)
(ii). The point here is that when a decreasing sequence of polynomials
{Pn(λ)} is such that the operators {pn(S)} converge strongly to the pro-
jection Eλ> then the operators {pn(I — S)} formed of the same polyno-
mials converge strongly to the projection I — i?(1_λΊ_.

It is of interest to state explicitly what the implications of Theorem
V are for the finite dimensional case. In a finite dimensional vector
space the notion of projection is of course a purely algebraic one so that
any description involving an inner product is in a sense over-elaborate.

The term " partition of the identity" as used below refers to a
family {Hu , Hm) of idempotent operators whose sum is / and which
satisfy HiHά — 0 for iφj. The partition is "symmetric" if all the Hi

are symmetric, or s.a.

COROLLARY. An operator Pona finite dimensional vector space 5̂ * is
a projection if, and only if, there exists for^each inner product ^ on 5^

(I") a symmetric partition of the identity £P = {Go, Gl9 Fl9 , F2k)
and a set of constants {λt } with \ > >Xk > 1 > O > 1 — λΛ > • >
l - λ 1 ?

(II") an isometry U satisfying

( i ) U*FJ=-FJ i = l, ...,2fc

(ii) UFJ = Flk-JU i = l , . . . , 2 f c F

in terms of which the following equation holds :
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3=1

+ Σ (λj - xnUFi + UFΛ.j) .
3=1

REMARKS 1. The symmetric partition ^ the numbers \i9 and the
isometry U all vary with the choice of the inner product ^Λ Even
the integer k depends on this choice. In particular, since there exist
inner products in which &P and *Λ^ are orthogonal subspaces so that
P is symmetric, we see that min^ {k} = 0. On the other hand max^
{k} = km = min{dim^p, dim^p}. The reasoning is as follows, where
we suppose, say, km = dim f̂̂  ^ dim ^ P . To each independent family
{vu , ί^} c ^ p and {ϋ&i, , wk,} c ^/> there are inner products in
which the subspaces 5f spanned by the pairs v3, ϊυ3, j = 1, ••, &', are
orthogonal to one another and to mutually orthogonal subspaces 5 f̂c &P,
and ^ c ^ p , where % + ^ + 9Γ + . . . + 3£ = ^Γ Each 5^r

i = 1, , &', is then an invariant two-dimensional manifold for the
projections P and P*, and it is a matter of computation to show that
these manifolds correspond to distinct sets of values {λ, 1 — λ} provided
that the inner product ^ is so chosen that the pairs vjf w5 determine
distinct angles θά < (π/2), j = 1, , fc\ Thus for each such choice of ^
we have k — kf. The equation km ̂  max ̂  {k} is in keeping with the fact
that km as defined is the largest kf value. We omit the proof of the
reversed inequality. These matters are related to some work of Seidel
[12].

2. Another feature brought out by the corollary is that, no matter
which inner product is utilized, the symmetric part of P will have a
spectrum symmetrically located outside [0,1], if the possible eigenvalues
X = 0, λ = 1 are excluded. Moreover X3 and 1 — λy will have equal
multiplicity. Theorem 2 will show that these are the only conditions-
needed on S.

3. A further consequence of the corollary is the following result
on canonical forms: if P is an N x N idempotent matrix then P is
unitarily equivalent to a matrix of the following form (J3 denotes the
j x j identity matrix, O3 denotes the j x j zero matrix):

where the matrix Z3 is of size 2s3 x 2sjf with s3- — dim ^ ? F j — dim
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o i = 1, ' , k, and has the form

It follows from (II) (ii) of Theorem 1 that S\&s*-S and ( / - S)\
Ί-S are unitarily equivalent operators. A natural question is what

further knowledge about a bounded s.a. operator is needed in order to
conclude that it is the s.a. part of a projection. This is answered by

THEOREM 2. A bounded s.a. operator S on a Hubert space £ is
the s.a. part of a projection if, and only if,

(I2) S2 — S is positive

(II2) S\J&s*-s and (I — S) \ JZPS2-S are unitarily equivalent.

Discussion. We adhere to the practice of using the term " unitary "
to refer to an onto isometric operator even for real Hubert space. With
this understanding Theorem 2 is true whether £ is real or complex.
However, since we will utilize the spectral theorem for unitary opera-
tors in our proof, it will be necessary in the former case to deal with

a complexification I of ϊ and, more particularly, with ,<5%&-Sy the closed

subspace of X generated by ^ 2 _ s . When £ is itself complex we have

Proof. In one direction the statement is a consequence of Theorem

1. For the other direction we proceed as follows. The hypothesis (II2)

ensures that there is a unitary operator V on &8Ί-S such that

(1.8) SV= V(I-S) ,

but it need not be true that V2 = — I as is required in Theorem 1.

Using V to denote operator V extended to M&-s but retaining "S"

rather than S for the extension of S, we have (argument also applies

for complex 3c):

(L8) SV= V(I-S) .

Moreover, there follows from (1.8)

(1.9) F 2 - S on M^-s .

Now use of the functional calculus for the unitary operator V2

u(\)< >u{V2)=\ u(eίφ)dEφ\ permits us to deal with the operator
Jo J



348 V. J. MIZEL AND M. M. RAO

V — {— F2) { 1 / 2 ) corresponding to the periodic function u{eiφ) = (—eίφ)α/2)

= eί{φl2+πl2), 0 < φ ̂  2π (Eφ is taken to be continuous from the right at
φ = 0). As is well known ([9], p. 343) V then has the property that
V ^ A for every bounded operator A such that A w F 2 , and the same
property holds for F * . In particular

(1.10) F * — S ; F * — F ; F * — F * .

Moreover V and F * are unitary since VV* corresponds to the function

u(eiφ)ΰ(eίφ)ill2) = ( - e< φ) ( 1 / 2 )(- eίφ){ll2) = 1. Finally, it can be easily verified

that u(eίφ) = (— e ίφ) ί l /2) is a limit of reαZ polynomials in e iφ and e~~iφ, so

that V and F * are limits of real polynomials in F 2 and (F 2 )*. It

therefore follows, even when X is real, that V \ -^s'—s and F *

are unitary transformations of this subspace.

Define U on ^si-8 as follows :

(1.11) U= V*V .

Then U is unitary and in addition satisfies :

(1.12) U2 - (V*)2V2 = (- ΫγV2 - - I, and

(1.13) Stf = F*SF - F* F(/ - S) = C/(/ - S) .

Extend t/ to X by choosing an arbitrary unitary operator on ^f\s^sn?ί

and extending linearly.
The conditions of Theorem 1 are all met by the operator S + U

(S2 — Sym, so a projection whose s.a. part is the given operator S has
been constructed.

The class of s.a. parts of projections is a rather large one, as is
seen from the following.

COROLLARY. Let σ0 denote a compact subset of (— oo, 0] U[l, °°)
which, except possibly for λ — 0 or λ = 1, is invariant under the trans-
formation λ —> 1 — λ. Then there exists a projection P, defined on some
Hilbert space X, whose s.a. part S has spectrum σ0. Furthermore, if
T denotes any s.a. operator with spectrum σo~ = σ0 Π (— «>, 0] then
the projection P may be chosen so that S~, the negative part of S, is
unitarily equivalent to — T.

REMARK, ϊ may be chosen as the product Hilbert space &τ x &τ.
S is defined to be — T on one copy of &τ and to be ί + Γ on its
orthogonal complement and U is defined on the first copy to be the
negative of the canonical mapping between these subspaces while on the
orthogonal complement it is taken equal to this mapping.

2. An ordering. We begin this section by introducing a partial
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ordering whose properties we propose to investigate.

DEFINITION 1. The relation P1 > P2 between two projections on a
real Hubert space ϋ signifies that the quadratic form based on the (not
necessarily symmetric) operator A = Px — P2 is nonnegative : Using
inner product notation, this means (x, Ax) ^ 0, for all xeX.

On a complex Hubert space P1 > P2 signifies : Re {(x, Ax)} ^ 0 for
all x G 3c.

We mention that > is a partial ordering in a " weak " sense, for
it is transitive but not anti-symmetric :

( 2 1 } P χ > P 2 , P , > P 8 = φ P i > P ,

This ordering further differs from the usual partial ordering for projec-
tion operators ([7]) in that the relation 0 < P < I is not universal: it
holds only when P is symmetric. Our interest in this analytically—
rather than geometrically—motivated ordering arises from considerations
in probability which will be discussed later.

For reasons which will soon appear we find it convenient to single
out a certain subclass of the projection operators as follows.

DEFINITION 2. ^ denotes that class of projections P in the Hubert
space X whose members posess the property

(c.c.) S = ( P + P * ) / 2 has a compact (also called completely
continuous) negative part.

We now discuss certain consequences of membership in the class <g=%
We find by utilizing the decomposition S = S + — S~ that the positive-
ness of S2 — S is equivalent to that of (S+f — S+. Denote by E+ the
symmetric projection onto S+(&8*-s) and by E_ the symmetric projection
onto ^ - 5 0 S + ( * J . Then on ^ 2 _ , : (S+)2 - S+ = (S+ - E+)S+,
from which it follows that S+ — E+ is positive on (S+)(1

and therefore that S+ — E+ is positive on &S2_S. In addition, the above

decomposition for S leads on &s

2-s to the relation I — S = (E+ — S+)

+ (£7_ + S~). Therefore we can also conclude that on UV_s, ( I — S)~

— S+ — E+. Now S and I — S are unitarily equivalent on &S2-S, so

it follows in particular that S~ and (I — S)~~ are unitarily equivalent on

this subspace. Hence, the decomposition

(2.3) S = (S+ - E+) + E+ - S- , on &s*_s ,

is a decomposition into positive operators, with S+ — E± and S~ being
unitarily equivalent. On the other hand S behaves on *sV&-s as a sym-
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metric projection since Sx — S2x when x e ̂ V^-s- Hence *Λ&-S is the
direct sum of orthogonal subspaces (possibly trivial) on which S has the
eigenvalues λ = 0 and λ = 1, respectively.

Now when Pe<^, S~ is compact as well as positive so that, with
the possible exception of λ = 0, S~ has a pure point spectrum consist-
ing of distinct positive eigenvalues μλ > μ2 > , and the corresponding
eigenspaces 5£ ̂  " * axe finite dimensional. In addition, the eigen-
values μdι occur as successive maxima of the quadratic form (x, S~x),
([9], p. 233). From the decomposition (2.3) we therefore can conclude
that, with the possible exception of λ = 0 and λ = 1, S itself has a pure
point spectrum consisting of the distinct eigenvalues — μ1 < — μ2 <
(negative) and 1 + μx > 1 + μ2 > (positive), and the corresponding
eigenspaces 5£ 3£, and 5^ 5^ are finite dimensional subspaces
of &s*-s- Moreover the eigenvalues {— μ3) and {1 + μ3) occur as suc-
cessive minima and successive maxima, respectively, of the quadratic
form (x, Sx). A further consequence of the unitary equivalence on
JiV_s of S~ and S+ — E+ is the relation

(2.4) dim 5 ^ = dim % j = 1, 2, . .

Denoting by S3 the s.a. part of P3 , j = 1,2, and by {E[j)} the
spectral family of Sj, we have

THEOREM 3. IfP11P2e
<^p then the following conditions are equivalent:

(I,
(Π.

(in.

)
)

.)

P,

si

7TT(
/y \

> P2

- S i

( i )

(ϋ)
s1
O /

2 Cf _
2 *->2 —

= S2 or

λ d [0,1)

I ^

*^2\'

1

with

&*,&) C ^

Proo/. The proof will be given in the order (I3) => (II3) φ (ΠI3) =^ (I3).

a. (73) 4> (/I3). The hypothesis Re {{x, (P1 - P2)x)} ^ 0 for all x is
equivalent to

(2.5) (x, S,x) ^ {x, S2x) for all x.

We apply (2.5) to show that the eigenvalues {— μf>} , {1 + μf>) and

eigenspaces {^(1)} , {^(1)} for Si are respectively identical to the

eigenvalues {- μf) , {1 + μf) and eigenspaces { ̂ f(2)} , { 5^(2)} for S2.

First, it is an immediate consequence of (2.5) that the following

relation holds between the maximum eigenvalues of Sλ and S2.

(2.60 i + μ{ι] ̂  i + μί2)

(simply consider (2.5) when xe 7>?2)). On the other hand, by taking
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•x 6 5^ (1) we conclude :

<2.6[) - μίι) ^ - μ? .

These inequalities ensure that μ{1} = μ{2). What is more, we then ob-

serve by means of the argument used in deriving these inequalities

that 5^(2) is a subspace of 5^(1) and that c ^ ( 1 ) is a subspace of 5^(2).

Reference to (2.4) now leads to : 3^(1) = 5^(2), 2^α ) = 5^(2), and there-

fore all the desired relations between {- μf}y {1 + μV}, { 5^(1)}, { ^ ( 1 )}

.and {- μ?}, {1 + μf}, {5^ (2)}, { 5^(2)} have been established for the

case j = 1.

In general, 1 + μ^ (i = 1, 2) is the maximum of the quadratic form

{x, Six) among unit vectors x orthogonal to the subspaces 5^ ω , , ί^ίίi,

while — μf is the minimum of the quadratic form among unit vectors

x orthogonal to the subspaces 5^( ί ), •••, 5£ί.?, so we can reproduce the

argument of the preceding paragraph to obtain the inequalities

(2.6,) 1 + μf ^ 1 + μf

<2.6}) - μf ^ - μf

(for the first inequality take xe 5^(2\ for the second take xe 5^ ( υ).
The desired relations of eigenspaces and eigenvalues then follow in the
,same manner as before.

The results obtained above lead by application of the spectral the-
orem to the conclusion SI - S, = SI - S2 = Q. Since { 5^ (ί)}, { 5^(i)},
% — 1, 2, span Hr^, it remains only to consider the behavior of S^i = 1, 2)
on <Λζ. The fact that Si is a symmetric projection on ^VQ taken to-
gether with (2.5) yields the final relation (II3) (ii). This completes the
proof of a.

b. (Jig) =φ (///3). We have seen earlier that the spectrum of S<
(i = 1, 2) lies outside (0,1). Therefore, since the spectrum of S; on Λζ
•consists at most of the points λ = 0 and λ = 1, the relation (II3) ( i )
has as an immediate consequence E^ =E£\ λ0[0,1] . The normali-
zation of the E{{] as right-continuous families then gives the desired
relation : E[1] = E[2), λ 0 [0, 1), i.e., λ = 1 is included.

As a consequence of the above result we have E^ — E^l — £7{2) —
ESI. Since E[i] - E^ = {E[i] - E?l) + (E^ - Ejfl) we see that the
relation (II3) (ii) for ^τQ9 which requires that &B^-i$l ^ &B[*-B?2>

implies &Bψ-E™ c ^4 2 ) -4??. Combining this with Efl - E?l yields
&Bψ c &£*>, as desired.

fθ fl + μCO

c. (//I3) =Φ (/3). The relation (x, Six) = I c o λd(x, j&i*^) + I x λ

(x, E^x), i — 1,2 leads, in view of the hypothesis, to the equation :
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(x, (S1 - S2)x) = 0 (x, l(EP - E?l) - (E™ - E£L)]x)

+ 1 (x, [(E™ - Eίιl) - {E? - Eί2l)]x) .

Since the hypothesis guarantees 2?i1} — E$l = E[2) — E^l, as well as
&EΨ-E^1^ &EΨ-E%1, we may conclude that &mψ-Eψ 3 &E™-E[22 which
shows that (x, (& - S2)x) ^ 0 for all x.

This completes c , and with it the proof of the theorem.

REMARKS. The proof given of a. (73) =Φ (I/3) was very clearly tied
up with the hypothesis, P{ e <g% whereas the other steps in the chain
of equivalences are valid without this hypothesis. This brings up the
question as to whether the hypothesis is an artificial one tied up only
with the particular method of proof given. The following example
demonstrates that some such restriction on the operators P{ is necessary
in order that the theorem be true.

A Counterexample. Let 36 be the space l2 of sequences of reals.
Denote by ev, v — 1, 2, the sequence consisting solely of zeros except
for a one in the vth place. Let {τw}, {Sn} denote an arbitrary pair of
strictly decreasing real sequences converging to zero and satisfying :

(2.7)

(e.g., f1 = S1 = 1, 7n + 1 = — , δ n + 1 = - , n^l)

We define operators Si ahd S2 as follows :

(2.8)

(2.9)

(1 + 7θev

1(1 + 7 * 4 J K

(1

(1

v =

v =

v =

That is, Si and S2 have the form :

* )

— (* * ' > 7i^4A;+l)

+ 1
+ 2
+ 3
+ 4
+ 1
+ 2
+ 3
+ 4

f * * * )

Then Slt S2 are bounded symmetric operators with SI

fc ^

f 4, * * * )

and SI — S?
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both positive definite. Moreover I — S± is equivalent to S± under the
unitary transformation E7i: e4k+j<—>e4k+7CiU), k ^ 0, with the permutation

w ^ e I ~ S2 is equivalent to S2 under theτx given by πx - | g ^ χ 2 | ,

unitary transformation Z72: e4 i +,

,'4fc + 7

- 4Jk

Λk + 6

7

3

2

6

> e^jfe+i,, ^ ^ 0, with

v = 4Λ + 2

v = 4fc + 3

v = 4fc + 4

v = 2

k ^ 1 ,

(A; = 0) .

Hence Su S2 are symmetric parts of projections, by Theorem 2. A
computation shows that (x, (Sλ — S2)x) ^ 0 for all x e X, whereas SI — SiΦ
SI - S2 and & =£ S2 on ._3?s»_β4 = ϊ ( ^ ^ ^ - ^ = 0, i = 1, 2). Hence for
this case the conclusion of Theorem 3 fails—in fact (I3) holds but both
(//3) and (III,) are false.

Note that the above example even makes use of operators Si, S2

which have, except for λ = 0 and λ = 1, pure point spectra.

3. Convergence of ordered sequences. We now give a brief dis-
cussion of the convergence problem for families of projections which
are ordered by the relation -<. In view of the difficulties encountered
with Theorem 3 it is not surprising that, in general, an arbitrary family
of projections ordered by -< does not converge. However by imposing
further restrictions one arrives at

THEOREM 4. Lei {Pn} c ^ denote a sequence of projections such
that Pn<Pn+1, w = l , 2 , . . . [or eZse Pn>Pn+1, w = l ,2, . . - ] . Sup-
pose further that PnPm = PWPW, i.e. ίfeerβ is pair-wise commutativity.
Tfeen {PJ converges (strongly) to a projection operator P.

Before proving this result we establish a convenient

LEMMA. If PlfP2e^ and Pλ>P2 then the following conditions
are equivalent:

(i) P ^ P

(ii) TPi = W2, w^ere W4 = — (P4 - Pf) , i = 1, 2
Li

(iii) I7j = £72 o?ι . ^ J _ S J ,
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where Ui (i = 1, 2) denotes the unitary operator appearing in equation
( * ) of Theorem 1. [P2 > Pλ gives the same conclusion.]

Proof of lemma. As usual, denote the s.a. and skew parts of P4

by Si and Wiy respectively. The given hypothesis leads, by Theorem 3,
to the conclusion : SI — Sλ = SI — S2 — Q with Sλ = S2 on έ%?Q, and on
<sKQ Su S2 are s.a. projections satisfying S^^VQ) 3 S2(^VQ). Since
Wi = I/iίSJ - Sί)(1/2), i = 1, 2, TΓί annihilates _Λ^ and so we may re-
strict our attention to ϋ>ρ. We show first that ( i ) <̂ => (ii). Since
JSI = S2 = S on this subspace, (ii)==>(i) is trivial so we only have to
consider (i)=φ(ii). Now PλP2 = P2Pi gives

(3.i) sw2 - w2s - sw, + w s = w2w, - w,w2.

Since the left and right sides of (3.1) are s. a. and skew respectively,
we deduce

(3.2) S(W2 - Wλ) - (W2 - W1)S [and

Applying the relation (1.3) in the form Wi:S = (I — S)ΐ7 {, i = 1, 2, we
obtain

(3.3) 2(S-H)(W2- W1) = 0.

Since λ = \ is not in the spectrum of S we conclude W2 — ίΓi, as was
to be proved. The proof that (ii)<#==#>(iii) is an immediate consequence
of the representation W< = ^(S2, - Sy(1/2), since S : = S2 on ϋ?β. This
completes the proof of the lemma.

Proof of Theorem 4. Suppose for definiteness Pn -< PΛ + 1. Then
the operators SI — Sn are all the same. Denote this operator by Q.
On J^Q not only do all the {Sn} coincide, but according to the lemma
the {Wn} coincide, too. Therefore on the subspace ϋ ^ we have the
relation :

(3.4) p, = p, = . . . = p . = . . . = p .

On the other hand as in the proof of the lemma we see that, restrict-
ed to ^i^Qy the Pn are s.a. projections forming a monotone sequence.
Since every monotone sequence of s.a. projections converges to such a
projection ([9], p. 268 and 263), we see that on ^KQi Pn-+P, whereas
on j^fρ, Pn = P. Hence Pn~-± P strongly on X, as was to be proved.

REMARK. According to the lemma, the conditions P{ e ^ P1> P2

and P± w P2 together imply that Έ%Pι 3 ϋ ^ and ^4^Pl c ^VP^ SO that
Pi ^ P2 in the sense of Lorch [7]. Therefore this result is also a con-
sequence of a result due to Lorch, once the lemma is established.
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4. Applications. We consider first in this section one simple appli-
cation of the preceding work to a problem in probability and statistics.
Our results help to clarify the situation.

The operators considered operate on finite dimensional real spaces,
and as is customary we consider them as matrices. Let (x, Ax) be the
quadratic form of the symmetric, positive operator A on Euclidean n-

IXΛ
space, where x = is an w-vector of random variables (r.v.'s) x{

W/
which are Gaussian distributed. We write x ~ N[μ, Σ] to signify that
x is Gaussian distributed with mean vector μ and covariance matrix Σ
(i.e. Σ is symmetric and positive definite). The following facts can be
directly verified, or may be found, for instance, in [4],

PROPOSITION. If x ~ N[μ, Σ] then the quadratic form (x, Ax) with
A positive symmetric, is distributed as a noncentral Chi-square r.v.
if, and only if, AΣ is a projection. If (x, Ax) is another such form then
they are independently distributed if, and only if, AΣB = 0. (The non-
negative number i(μ, Aμ) is called the noncentrality parameter.)

As a consequence of Theorem 3 we have

THEOREM 5. Let A, B = Σ*ii Bif and C = Σ;=i Cs be n x n sym-
metric operators. Suppose x ~ N[μ, Σ] and (xf Ax) = (x, Bx) + (x, Cx).
Further suppose that (x, Ax) and (x, Bx) are distributed as noncentral
Chi-square r.v.'s. Then (x, Cx) is also distributed as a noncentral
Chi-square r.v. independently of (x, Bx) if, and only if, CΣ — ΣC ^ 0,
i.e. is positive. If further BiBv = 0 and C3 C3 > = 0, i φ %' ε{l, , fcj},
j Φ jf ε{l, , h}, then all (x, B{x) and (x, Cάx) are mutually independ-
ently distributed as noncentral Chi-square r.v.'s. {The noncentrality
parameters can be calculated very simply in each case.)

Proof. Since (x, Ax) = (x, Bx) + (x, Cx), we have

(4.1) AΣ - BΣ + CΣ .

The r.v.'s. (x, Ax) and (x, Bx) are distributed as Chi-square, by hy-
pothesis, so that using the proposition stated above, AΣ and BΣ are
projections. If CΣ = ΣC ^ 0, so that CΣ is symmetric, then by Theorem
3 it follows that CΣ is a symmetric projection. By the proposition,
(xt Cx) is then distributed as a Chi-square r.v. independently of (x, Bx)
since (4.1) also implies, when CΣ is a projection, that BΣC = 0 ([2], [4]).

Conversely, suppose that CΣ Φ ΣC. Then even if CΣ ^ 0, (II3) of
Theorem 3 ensures that CΣ — S + W where S is a symmetric projection
and W is a skew operator. Wφ 0 by our supposition, so (1.2) shows
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that CΣ is not itself a projection. It follows that (x, Cx) is not even
distributed as a Chi-square r.v. [Theorem 1.8 of [2]]. This proves the
first part. The second part follows from the proposition above and the
fact that, under the stated condition, B{Σ and C3 Σ are all projections.

Q.E.D.

REMARK 1. If Σ = 7, the above result is a simple corollary of
results on orthogonal projections, e.g., Theorem 2, §76 in Halmos [5].
A special case of the above result was proved in an entirely different
way in [6].

REMARK 2. Results of the type given in Theorem 5 are useful in
extending some " Analysis of Variance " techniques to correlated Gaus-
sian r.v.'s.

As a second application of our results we point out an analogy
between our Theorem 1 (or 1') and somewhat deeper results on averag-
ing (or conditional expectation) operators. There are several studies in
this direction and, for instance, reference may be made to the papers
[1], [8], [10].

A bounded linear operator A defined on Lv{£/*, Σ, μ), where μ is a
probability measure, is said to be a generalized averaging operator if
for /, g in L%9*, Σ, μ) we have (Σ is a σ -field on ..$*; here)

(4.2) A(gAf) = (Ag)(Af)

(4.3) Ae - e

where e is the identity function on &. If further A is a contraction
(i.e. || A| | ^ 1), then A is an (ordinary) averaging operator as considered
by the above named authors.

From the definition it follows that A is a projection in either case
and, if 1 ^ p < oo then A is also s.a.4 whenever it is a contraction,
while this latter statement need not be true if A is merely bounded.
For an averaging operator, recently Rota [10] has given the following
representation: If / is in LP(S^, Σ, μ), p fixed, and Af — / ' , then
there exists a unique sub σ-field Σ1 of Σ relative to which / ' is the
Radon-Nikodym derivative of / . On the other hand, if A is any bounded
projection in L\S^ Σ, μ) and / is in L\S^ Σ, μ), then, without any
further restrictions, our result (Theorem 1') gives Af — f where

(4.4) / ' - Γ " [XI + (λ2 - λ ) ^ U]dfλ ,
J-Λ-

for some a ^ 0, and where fκ(s) is the image of f(s) under the orthogo-
nal projection Eκ. The further requirement that a bounded projection
be an average clearly restricts the spectral family {Eλ} related to A

4 i.e., A and its adjoint coincide on ess. bded. functions ([10]).
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<(cf. Theorem 1') in an essential way.
Because of the unifying influence on some fields of mathematics, par-

ticularly probability and ergodic theory, the spectral theory of ' averaging
type ' operators is of considerable interest. Rota [11] has initiated the
study of spectra of operators which satisfy the 'Reynold's Identity' (not
all such operators need be projections). On the other hand, the point of
view expressed in Theorems Γ and 3 above constitutes a different attack.
It is to be hoped that a specialization to the ' averaging type' operators
will contribute to a deeper understanding of their structure. We wish
to deal with it separately.
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