CLOSED EXTENSIONS OF THE LAPLACE OPERATOR DETERMINED BY A GENERAL CLASS OF BOUNDARY CONDITIONS, FOR UNBOUNDED REGIONS

Robert S. Freeman

1. Introduction. In [1] certain closed operators in $L^{2}(G)$ were defined in terms of the Laplacian operator, and a class of generalized boundary conditions. There G was a bounded domain in E^{n} with $C^{1.1}$ boundary and the boundary conditions were of the form $\partial u / \partial n-L u=$ 0 , where L was an arbitrary bounded operator on $L^{2}(\partial G)$. The operator so defined was denoted by T_{L} and it was shown that T_{L} was a closed linear operator with compact resolvent. Its adjoint $\left(T_{L}\right)^{*}$ was shown to be $T_{I *}$ and its spectrum was shown to lie inside a parabola of the form

$$
y^{2}=a x+b \text { where } a, b>0
$$

It is the purpose of this paper to extend the results of [1] by removing the restriction that G be bounded. The previous history of the problem is adequately covered in [1]. It is worth noting here that the underlying idea of [1] derives from a theorem of Calkin [4] and relies on the compactness of the resolvent of an operator S on $L^{2}(G) \oplus L^{2}(\partial G)$. For certain of the results of [1] it is only necessary to assume the closedness of the range of S but many of the results explicitly used the compactness of the resolvent. If G is unbounded, the resolvent of S is no longer compact and the methods of [1] can no longer be used.

The approach taken here is to use localization methods to reduce the problem for unbounded regions to one for bounded regions. We observe that the Laplacian is an operator of local type in the sense of Hörmander [7]. However in applying these methods we must distinguish between two cases. If ∂G is bounded we can separate the behavior of functions near the boundary from their behavior near infinity by multiplying them by functions which vanish in a neighborhood of infinity and are identically one near the boundary. When ∂G is unbounded this can no longer be done and any such attempt at localization must affect the behavior of the function on portions of the boundary. It turns out to be necessary to require that any localization function, regarded as an operator on $L^{2}(\partial G)$, must commute with the boundary operator L. For this reason when ∂G is unbounded we restrict our attention to

[^0]multiplication operators on the boundary.
It is our hope for the future to extend these results to uniformly elliptic, second-order operators on $L^{p}(G)$ where $1<p<\infty$.

In § 1 we list some geometric preliminaries. In § 2 we list results centering about the Lax-Milgram theorem [8] and preliminary localization results. The main results are contained in §§ 3 and 4 . In § 3 we treat operators for unbounded regions with bounded boundaries and in $\S 4$ we treat the situation where the boundary is unbounded.

1. Preliminaries. In what follows G will be a possibly unbounded open connected set in E^{n}. Its boundary will be denoted by ∂G. Points in G will be denoted by x, y, \cdots and points in ∂G will be denoted by θ, ϕ, \cdots. We will denote by $d x, d y, \cdots$ and by $d \theta, d \phi, \cdots n$-dimensional and $n-1$ dimensional Lebesgue measures on G and ∂G, respectively. The exterior unit normal to ∂G at θ will be denoted by n_{θ}. As in [1] we will always assume that ∂G is an $n-1$ dimensional $C^{1,1}$ manifold. A detailed treatment of such manifolds may be found in Lucas [9]. For convenience we will state the fundamental
1.1. Theorem. Let Γ be a $C^{1,1}$ manifold, then there exists a positive number, r_{0}, called the minimal radius of Γ such that:
(i) All segments of length r_{0} centered at points of Γ and normal to Γ are mutually disjoint and exhaust a neighborhood of Γ^{\prime}, called an r_{0} neighborhood of Γ.
(ii) At each point θ in Γ, spheres interior and exterior to Γ of radius r_{0} may be drawn tangent to I at θ and containing no other points of Γ.
(iii) The normals to Γ satisfy a uniform Lipschitz condition with Lipschitz constant r_{0}^{-1}, i.e.,

$$
\left|n_{\theta}-n_{\phi}\right| \leqq r_{0}^{-1}|\theta-\phi|
$$

for $\phi, \theta \in \partial G$.
(iv) The set $\Gamma_{\rho}=\left\{\theta-\rho n_{\theta}: \theta \in \Gamma\right\}$ is a $C^{1,1}$ manifold for $\rho<r_{0}$ with minimal radius r_{ρ} satisfying $r_{0}-|\rho| \leqq r_{\rho} \leqq r_{0}+|\rho|$. Such surfaces will be called parallel surfaces to Γ and are denoted by Γ_{ρ}.
(v) The surface measures on Γ and Γ_{ρ} are mutually absolutely continuous with uniformly bounded Radon-Nikodym derivatives for $|\rho|<r_{0} / 2$.

We impose further restrictions on ∂G. We require that there exists a covering of every r neighborhood of ∂G, for $r<r_{0}$, by a possibly finite sequence of open sets $\left\{V_{k}\right\}$ such that
(a) For each k there exists a homeomorphism, T_{k} of V_{k} into E^{n} such that $T_{k}\left(V_{k} \cap G\right)=\Gamma \times\left\{0<x_{n}<r\right\}$ where Γ is an $n-1$ dimensional
sphere with center at the origin and diameter r.
(b) T_{k}, T_{k}^{-1} and their derivatives up to order j satisfy a uniform Lipschitz condition.
(c) There exists an integer N such that at most N of the sets $\left\{V_{k}\right\}$ have a nonempty intersection.
(d) $\bigcup_{k} T_{k}^{-1}\left\{1 / 2 \Gamma x\left[0<x_{n}<r / 2\right]\right\}$ covers an $r / 2$ neighborhood of ∂G.
1.2. Definition. If ∂G satisfies conditions (a) - (d) above we say that G is a uniformly $C^{j, 1}$ domain.

Usually j can be 1 , however later in $\S 4$ we shall need j to be two. If the derivatives up to order j of T_{k}, T_{k}^{-1} are merely continuous and bounded, we speak of a uniformly C^{j} domain.

In addition to the function space $L^{2}(G)$ we refer to certain other function spaces which are by now quite familiar. The space $C_{0}^{\infty}(G)$ is the set of all infinitely differentiable functions with compact support in G. We shall always consider complex valued functions unless stated to the contrary. In the notation of Browder [2], $W^{j, p}(G)$ is the set of all functions in $L^{p}(G)$ whose distribution valued derivatives up to order j are functions in $L^{p}(G)$. Using the familiar notation

$$
\alpha=\left\langle\alpha_{1}, \cdots, \alpha_{n}\right\rangle \text { and }|\alpha|=\sum_{i=1}^{n} \alpha_{i}
$$

where the α_{i} are nonnegative integers, we write

$$
D^{\alpha}=\frac{\partial^{\alpha_{1}}}{\partial x_{1}^{\alpha_{1}}} \cdots \frac{\partial^{\alpha_{n}}}{\partial x_{n}^{\alpha_{n}}}
$$

for the generic differential operator of order $|\alpha|$. For $u \in W^{\jmath, p}(G)$ we write

$$
\|u\|_{j, p}=\left(\sum_{|\alpha| \leqq j}\left\|D^{\alpha} u\right\|_{p}^{p}\right)^{1 / p}, \quad 1<p<\infty
$$

where $\|\cdot\|_{p}$ is the L^{p} norm. Here we shall mainly be concerned with the L^{2} norm which we shall write as $\|\cdot\|$. The following well known facts we state as a
1.3. Lemma. $W^{j, p}(G)$ is a Banach space in the norm $\|\cdot\|_{j, p}$, and a Hilbert space for $p=2 . \quad C_{0}^{\infty}\left(E^{n}\right)$ is dense in $W^{j, p}(G)$ in the $\|\cdot\|_{j, p}$ norm.

Let Γ be a subset of ∂G. For $0<\rho<r_{0}$ and for $\phi \in \Gamma$ define the set G_{ρ} to be $\left\{x \in G: x=\phi-\rho n_{\phi}\right\}$. For fixed $\rho<r_{0}$ let $\Gamma_{\rho}=\{x \in G: x=$ $\left.\phi-\rho n_{\phi}, \phi \in \Gamma\right\}$. If u is a function in $W^{1, p}\left(G_{\rho}\right)$ we write $u_{\rho}(\phi)=u(\phi-$ $\left.\rho m_{\phi}\right), \phi \in \Gamma$. Thus u_{ρ} is the restriction of u to Γ_{ρ}. We now make the following definition
1.4. Definition. u_{ρ} has an L^{p}-boundary value on Γ^{\prime} if
(i) $u_{\rho} \in L^{p}\left(\Gamma_{\rho}\right)$ for $\rho<r_{0}$.
(ii) There exists a function $\tilde{u} \in L^{p}(\Gamma)$ such that

$$
\lim _{\rho \rightarrow 0} \int_{\Gamma}\left|u_{\rho}(\phi)-\widetilde{u}(\phi)\right|^{p} d \phi=0 .
$$

We now introduce the class of functions with which we shall be dealing throughout the remainder of this paper.
1.5. Definition. $\mathscr{D}_{1}(G)$ is the set of all functions u in $W^{1.2}(G)$ such that
(i) $u \in W^{2,2}\left(G_{1}\right)$ for each open set G_{1} whose closure is compact and lies in G,
(ii) $\Delta u \in L^{2}(G)$,
(iii) u has an L^{2} boundary value \tilde{u} on ∂G, and $\partial u / \partial n$ has an L^{2} boundary value on every compact subset Γ of ∂G.

It is well known [5] that every function in $W^{1,2}$ has an L^{2} boundary value and an examination of harmonic functions on the unit circle shows that the inclusion $W^{2,2}(G) \cong D_{1}(G) \subseteq W^{1.2}(G)$ is proper.

Recall that the "minimal operator" associated with the Laplacian is the closure of the Laplacian restricted to $C_{0}^{\infty}(G)$ and the "maximal operator" is its adjoint. Its domain is the set of functions in $W^{2}(G)$ satisfying conditions (i) and (ii) of Definition 1.5.
2. Lax-Milgram theorem. We here present the Lax-Milgram theorem in a form suitable for our purposes. It is the generalization of the Friedrichs' extension theorem [6] to the nonsymmetric case.

Let \mathscr{C} and \mathscr{H}_{1} be two Hilbert spaces with norms $\|\cdot\|$ and $\|\cdot\|_{1}$, respectively. We suppose
(i) \mathscr{H}_{1} is densely contained in \mathscr{H}.
(ii) There exists a number $k>0$ such that for all u in \mathscr{K}_{1}

$$
k\|u\| \leqq\|u\|_{1} .
$$

Let B be a not necessarily Hermitian symmetric bilinear form whose domain is all of \mathscr{H}_{1} and suppose
(a)
$|B(u, v)| \leqq K\|u\|_{1}\|v\|_{1}$ for $u, v \in \mathscr{\mathscr { C }}_{1}$
(b)
$\operatorname{Re} B(u, u) \geqq C\|u\|_{1}^{2}$ for $u \in \mathscr{H}_{1}$.
Lax and Milgram dealt with real Hilbert spaces whereas here and throughout this paper we deal with complex Hilbert spaces. Condition (b) is the obvious modification of their condition, and the necessary changes to their proof resulting from (b) are of a trivial nature.
2.1. Theorem (Lax-Milgram). For any bounded linear functional l on \mathscr{H}_{1} there exist two vectors v, v^{*} in \mathscr{H}_{1} such that
(i) $l(u)=B(u, v)=B\left(v^{*}, u\right)$ for $u \in \mathscr{H}_{1}$.
(ii) If $w \in \mathscr{S}_{1}$ and $l=(\cdot, w)_{1}$ and $v=P_{1} w$, then P_{1} is a linear homeomorphism of \mathscr{H}_{1} onto \mathscr{C}_{1}.
(iii) If U is a proper closed subspace of \mathscr{C}_{1}, then there exists a $v \in \mathscr{C}_{1}$ such that for every $u \in U, B(u, v)=0$.
2.2. Theorem. There exists a closed densely defined linear transformation T of \mathscr{H} into itself such that T and its adjoint T^{*} have domains contained in \mathscr{H}_{1} and have bounded everywhere defined inverses in \mathscr{M}. Moreover

$$
B(u, v)=(u, T v) \text { for } u \in \mathscr{H}_{1}, v \in \mathscr{O}(T)
$$

and

$$
B(u, v) \quad\left(T^{*} u, v\right) \text { for } u \in \mathscr{C}\left(T^{*}\right), v \in \mathscr{H}_{1}
$$

The fact the T is densely defined in \mathscr{C}^{F} and closed as a map of \mathscr{H} into \mathscr{E} was not explicitly stated in Lax-Milgram. The density follows from the fact that T^{-1} is everywhere defined in \mathscr{C} and bounded. In fact if z is orthogonal to $\mathscr{O}(T)$ then for $u \in \mathscr{O}(T),(u, z)=0$ and since $(., z)$ is a bounded linear functional on \mathscr{H}_{1} and $\mathscr{D}(T) \cong \mathscr{C}_{1}$ it follows that $(u, z)=B\left(u, T^{-1} z\right)=0$ for $u \in \mathscr{O}(T)=\mathscr{R}\left(T^{-1}\right)$. Thus $B\left(T^{-1} u, T^{-1} z\right)=$ 0 and in particular $B\left(T^{-1} z\right)^{1}=0$ and thus $T^{-1} z=0$. Hence $z=0$. To show that T is closed as a map of \mathscr{C} into \mathscr{C}, let $\left\{v_{n}\right\}$ be a sequence in $\mathscr{O}(T)$ and suppose $v_{n} \rightarrow v \in \mathscr{C}$ and $T v_{n} \rightarrow w \in \mathscr{H}$. Now for each n and all $u \in \mathscr{C}_{1} B\left(u, v_{n}\right)=\left(u, T v_{n}\right)$ and thus $B\left(v_{n}\right)=\left(v_{n}, T v_{n}\right) \rightarrow(v, w)$. But then v_{n} converges in \mathscr{H}_{1} to say z and thus in \mathscr{H}. Hence $v=z$. Since T is closed as a map of \mathscr{L}_{1} into $\mathscr{H}, T z=w=T v$.

The facts about T^{*} follow easily if one recalls that T^{-1} is everywhere defined and bounded.

We shall now apply Theorem 2.2 to a study of the Laplacian operator, considered as an operator on $L^{2}(G)$. With the aid of Theorem 2.2 we shall prove the existence of a closed densely defined operator with domain in $W^{1,2}(G)$ and satisfying certain boundary conditions in a generalized sense. Since the domains lie in $W^{1,2}(G)$ we know that the functions have L^{2} boundary values. It will then be the task of the remainder of this paper to show in what sense the boundary conditions are satisfied. To begin we require the following
2.3. Lemma. Let G be a uniformly $C^{1.1}$ manifold. Then for any $u \in W^{1,2}(G), u$ has an L^{2} boundary value \widetilde{u} and for each $\varepsilon>0$, there exists a $C(\varepsilon)>0$ such that $\|\tilde{u}\|_{\partial}^{2} \leqq K\left[\varepsilon\|\nabla u\|^{2}+C(\varepsilon)\|u\|^{2}\right]$.

[^1]Here ∇ represents the gradient of u and $\|\cdot\|_{\partial}$ is the norm on $L^{2}(\partial G)$.
This lemma appears widely in the literature, see for example Ehrling [5] and Nirenberg [10] where G is assumed to be bounded. When G is unbounded the proof can be suitably modified without too much difficulty with the aid of a partition of unity. For an outline of this proof see Poulsen [11].

Suppose u is a smooth function and that L is a bounded linear operator on $L^{2}(\partial G)$ and that $\tilde{u}_{n}-L \tilde{u}=0$. Let

$$
\int_{G} \nabla u \cdot \bar{\nabla} v d x=\int_{G} \sum_{i=1}^{n} \frac{\partial u}{\partial x_{i}} \frac{\overline{\partial v}}{\partial x_{i}} d x
$$

and apply Green's formula to obtain

$$
(-\Delta u, u)=\|\nabla u\|^{2}-(L \widetilde{u}, \tilde{u})_{\partial} .
$$

2.4. Definition. For $u \in W^{1,2}(G)$ let

$$
\begin{gathered}
B_{G}(u)=\|\nabla u\|^{2}-(L \tilde{u}, \tilde{u})_{\partial} \\
B_{G}^{\gamma}(u)=B_{G}(u)+\gamma\|u\|^{2}
\end{gathered}
$$

where γ is any complex number. Let L be any bounded operator on a Hilbert space $\mathscr{\mathscr { C }}$. Form $L_{1}=1 / 2\left(L+L^{*}\right)$ and $L_{2}=1 / 2\left(L-L^{*}\right)$ so that $L_{1}^{*}=L_{1}, L_{2}^{*}=-L_{2}$ and $L=L_{1}+L_{2} . \quad$ Moreover, $R_{l}(L u, u)=\left(L_{1} u, u\right)$ and $\operatorname{Im}(L u, u)=1 / i\left(L_{2} u, u\right) . \quad L_{1}$ and L_{2} are respectively the symmetric and antisymmetric parts of L.
2.5. Lemma. If the real part of γ is sufficiently large, then for all $u \in W^{1,2}(G)$

$$
R_{l} B_{G}^{\gamma}(u) \geqq \frac{1}{2}\|u\|_{1,2}^{2}
$$

Proof. Let $R_{l} \gamma=\alpha$. Then

$$
\begin{aligned}
R_{l} B_{b}^{\gamma}(u) & =\|\nabla u\|^{2}+\alpha\|u\|^{2}-\left(L_{1} \tilde{u}, \tilde{u}\right)_{\partial} \\
& \geqq\|\nabla u\|^{2}+\alpha\|u\|^{2}-\left\|L_{1}\right\|\|\tilde{u}\|_{\partial}^{2} .
\end{aligned}
$$

Now by Lemma 2.3

$$
\begin{aligned}
R_{l} B_{G}^{\gamma}(u) & \geqq\|\nabla u\|^{2}+\alpha\|u\|^{2}-\left\|L_{1}\right\| K\left[\varepsilon\|\nabla u\|^{2}+C(\varepsilon)\|u\|^{2}\right] \\
& =\left(1-\left\|L_{1}\right\| K \varepsilon\right)\|\nabla u\|^{2}+\left(\alpha-\left\|L_{1}\right\| K C(\varepsilon)\right)\|u\|^{2}
\end{aligned}
$$

Choose ε so small that $1-\left\|L_{1}\right\| K \varepsilon>1 / 2$ and α so large that

$$
\alpha-\left\|L_{1}\right\| K C(\varepsilon)>\frac{1}{2}
$$

Note that when L is the zero operator γ may be taken to be real,
for the form B_{G} is symmetric.
2.6. Lemma. There exists a positive real number C such that for every u and $v \in W^{1,2}(G)$

$$
\begin{equation*}
\left|B_{F}^{\gamma}(u, v)\right| \leqq C\|u\|_{1}\|v\|_{1} . \tag{2.6.1}
\end{equation*}
$$

Proof.

$$
\begin{aligned}
\left|B_{G}^{\gamma}(u, v)\right| \leqq & \left|\int_{G} \nabla u \cdot \overline{\nabla v} d x\right|+|\gamma(u, v)|+\left|(L u, v)_{\partial}\right| \\
\leqq & \|\nabla u\|\|\nabla v\|+|\gamma|\|u\|\|v\|+\|L\|\|u\|_{\partial}\|v\|_{\partial} \\
\leqq & \|\nabla u\|\|\nabla v\|+|\gamma|\|u\|\|v\|+\|L\|\left[K \left(\varepsilon\|\nabla u\|^{2}\right.\right. \\
& \left.\left.\left.+C(\varepsilon)\|u\|^{2}\right)\right]^{1 / 2} \mid K\left(\varepsilon\|\nabla u\|^{2}+C(\varepsilon)\|v\|^{2}\right)\right]^{1 / 2}
\end{aligned}
$$

for any $\varepsilon>0$. Choose $\varepsilon>0$ and let $\delta=\max (\varepsilon, C(\varepsilon))$. Let $\eta=$ $\max (|\gamma|, 1)$ and $C=2 \eta+\delta\|L\|$. Then a simple computation yields (2.6.1).

Let $\mathscr{C}=L^{2}(G)$ and $\mathscr{C}_{1}=W^{1,2}(G)$ and apply the Lax-Milgram theorem to the form $B_{\dot{G}}^{\gamma}$. The result is the following:
2.7. Theorem. Let L be any bounded linear operator on $L^{2}(\partial G)$. Then there exists a closed, densely defined, linear operator M_{L} in $L^{2}(G)$ with domain in $W^{1,2}(G)$ such that for every $v \in \mathscr{D}\left(M_{L}\right)$ and $u \in W^{1,2}(G)$, $B_{G}(u, v)=\left(u, M_{L} v\right)$. Its adjoint M_{L}^{*} enjoys the relation $B_{G}(u, v)=$ $\left(M_{L}^{*} u, v\right)$ for $u \in \mathscr{D}\left(M_{L}^{*}\right)$ and $v \in W^{1,2}(G)$. Moreover, if γ is any complex number such that $R_{l} \gamma \leqq-\left(\delta+\left\|L_{1}\right\| K C(\varepsilon)\right)$ where $0<\delta<1$ and $C(\varepsilon)$ is the number of Lemma 2.3 with $\varepsilon<(1-\delta) /\left\|L_{1}\right\|$, then γ lies in the resolvent set of M_{L}.

Proof. When γ is as above, Theorem 2.2 shows that $M_{L}+\gamma I$ is closed and densely defined in $L^{2}(G)$ with domain in $W^{1,2}(G)$. Moreover, zero is in its resolvent sat.

We shall now give a characterization of $\mathscr{D}\left(M_{L}\right)$.
2.8. Theorem. Let $v \in W^{1,2}(G)$, then a necessary and sufficient condition that $v \in \mathscr{D}\left(M_{L}\right)\left(\mathscr{D}\left(M_{L}^{*}\right)\right)$ is that $-\Delta v$ is a distribution in $L^{2}(G)$, and for $u \in W^{12}(G),(u,-\Delta v)=B(u, v)((-\Delta v, u)=B(v, u))$.

Proof. We give the proof for M_{L}, the proof for M_{L}^{*} being virtually identical.

Let $v \in \mathscr{D}\left(M_{L}\right)$. Then for every $u \in W^{1,2}(G)$, and hence for every u in $C_{0}^{\infty}(G),\left(u, M_{L} v\right)=B(u, v)$. Recalling the definition of the derivative of a distribution, we have $\left(u, M_{L} v\right)=B(u, v)=\int_{G} \nabla u \cdot \overline{\nabla v} d x=(u,-\nabla v)$
for u in $C_{0}^{\infty}(G)$. Since $C_{0}^{\infty}(G)$ is dense in $L^{2}(G)$ it follows that $M_{L} v=$ $-\Delta v$. Now suppose v is in $W^{1,2}(G)$ and $-\Delta v$ is a distribution in $L^{2}(G)$ such that for $u \in W^{1,2}(G),(u, \Delta v)=B_{f}(u, v)$. Then for a suitable complex number γ the form B_{G}^{γ} defined by $(u,-\Delta v+\gamma v)=B_{G}^{\gamma}(u, v)$ is bounded in $W^{1,2}(G)$ and $R_{l} B_{G}^{\gamma}$ is bounded from below. It then follows from the proof of Theorem 2.2 that $v \in \mathscr{D}\left(M_{L}\right)$ and $M_{L} v=-\Delta v$.

We now present a series of localization lemmas which will be used in what follows. These results are by now quite common in the literature and we follow for the most part the presentation given in Poulsen [11].
2.9. Lemma. Let ω be in $C^{1}(G)$ and suppose K is an upper bound for ω and $|\nabla \omega|$. Then for every $u \in W^{1,2}(G)$, ωu is also in $W^{1,2}(G)$.

Proof. $W^{1,2}(G)$ is the closure of $C_{0}^{1}\left(E^{n}\right)$ in the $W^{1,2}$ norm. If $\left\{u^{j}\right\}$ is a sequence in $C_{0}^{1}\left(E^{n}\right)$ such that $\left\|u^{j}-u\right\|_{1,2} \rightarrow 0$. Then the inequalities $\left\|\omega u^{j}-\omega u\right\| \leqq K\left\|u^{j}-u\right\| \quad$ and $\quad\left\|\nabla\left(\omega u^{j}\right)-\nabla(\omega u)\right\| \leqq K\left(\left\|u^{j}-u\right\|+\right.$ $\left.\left\|\nabla u^{j}-\nabla u\right\|\right)$ show that $\left\|\omega u^{j}-\omega u\right\|_{1,2} \rightarrow 0$.
2.10. Lemma. Let $\omega \in C_{0}^{1,1}\left(E^{n}\right)$ be real valued and suppose that K is an upper bound for $|\omega|,|\nabla \omega|$, and $|-\Delta \omega|$ in G. If $u \in W^{1,2}(G)$ and $-\Delta u$ is a distribution in $L^{2}(G)$ then $\omega u \in W^{1,2}(G)$ and $-\Delta(\omega u)$ is a distribution in $L^{2}(G)$.

Proof. Let $S(u, \omega)=(-\Delta \omega) u-2 \nabla \omega \cdot \nabla u-\omega \Delta u$ and observe that

$$
\|S(u, \omega)\| \leqq K(\|u\|+2\|\nabla u\|+\|\Delta u\|)
$$

Thus $S(u, \omega)$ is clearly a distribution in $L^{2}(G)$ and by the definition of derivative of a distribution $S(\omega, u)=-\Delta(\omega u)$.
3. Regions with bounded boundaries. In the preceding section we have given a characterization of the operator M_{L} in terms of the Laplacian and the form $B_{G}(\cdot, \cdot)$. Hereafter the symbol M_{L} will always stand for this operator. Essentially these results concern themselves with regularity in the interior of G. It is the purpose of this section to study the boundary behavior of functions in $\mathscr{D}\left(M_{L}\right)$. Explicitly let $\mathscr{D}\left(T_{L}\right)$ be the set of $u \in \mathscr{D}_{1}(G)$ (cf. Definition 1.5) for which $\tilde{u}_{n}-L \tilde{u}=0$ and let T_{L} be $-\Delta$ with domain $\mathscr{D}\left(T_{L}\right)$, then we shall show $T_{L}=M_{L}$.
3.1. Definition. Let ϕ be a function in $C_{0}^{\infty}\left(E^{n}\right)$ satisfying

$$
\phi(x)= \begin{cases}1 & |x| \leqq 1 \\ 0 & |x| \geqq 2\end{cases}
$$

and $0 \leqq \phi(x) \leqq 1$. Let $\omega^{N}(x)=\phi(x / N)$ and let K be an upper bound for $|\nabla \phi|$ and $|\Delta \phi|$.
3.2. Lemma.

$$
\begin{aligned}
& \left|\nabla \omega^{N}\right| \leqq K / N \\
& \left|\Delta \omega^{N}\right| \leqq K / N^{2} .
\end{aligned}
$$

3.3. Lemma. Let $u \in W^{1,2}(G)$ and suppose $-\Delta u$ is a distribution in $L^{2}(G)$. Then as $N \rightarrow \infty$

$$
\begin{gathered}
\left\|\omega^{N} u-u\right\|_{1,2} \rightarrow 0 \\
\left\|-\Delta\left(\omega^{N} u\right)-(-\Delta u)\right\| \rightarrow 0 .
\end{gathered}
$$

Proof. For each $N, \omega^{N} u \in W^{1,2}$ and $-\Delta\left(\omega^{N} u\right)$ is a distribution in $L^{2}(G)$ by Lemma 2.10. The results follow from an obvious computation, Lemma 3.2, and the dominated convergence theorem.
3.4. Theorem (Green's Formulas). Let u and v be in $\mathscr{D}_{1}(G)$. Then

$$
\begin{gather*}
\int_{G}(-\Delta u) \bar{v} d x=\int_{G} \nabla u \cdot \overline{\nabla v}-\int_{G \partial} \widetilde{u}_{n} \bar{v} d \theta \tag{3.4.1}\\
\int_{G}(-\Delta u) \bar{v} d x-\int_{G} u(-\overline{\Delta v}) d x=\int_{\partial G}\left(\bar{u}_{\tilde{v}}-\widetilde{u}_{n} \overline{\widetilde{v}}\right) d \theta . \tag{3.4.2}
\end{gather*}
$$

Proof. Let B_{N} be the sphere with center at the origin and radius N and let ω^{N} be the function of Lemma 3.2. Define v^{N} to be $\omega^{N} v$ so that v vanishes outside of $B_{2 N}$. Then

$$
\begin{aligned}
\int_{G}(-\Delta u) \bar{v}^{N} d x= & \int_{B_{3 N} \cap G}(-\Delta u) \overline{\tilde{v}^{N}} d x=\int_{B_{3 N} N G} \nabla u \cdot \overline{\nabla v^{N}} d x \\
& -\int_{\partial B_{3} N \cup \partial G} \widetilde{u}_{n} \overline{\widetilde{v}^{N}} d \theta \\
= & \int_{G} \nabla u \cdot \overline{\nabla v^{N}} d x-\int_{\partial G} \widetilde{u}_{n} \overline{\tilde{v}^{N}} d \theta
\end{aligned}
$$

The last of the equalities follows from the fact that ω^{N} vanishes on and near $\partial B_{3 N} .^{2}$ Let $N \rightarrow \infty$ and apply Lemma 3.3 to obtain Eq. (3.4.1). Formula (3.4.2) can be obtained in a similar manner.
3.5. Theorem (Localization). Let ω^{N} be as in 3.1. If $v \in \mathscr{D}\left(M_{L}\right)\left(\mathscr{D}\left(M_{L}^{*}\right)\right)$, then $\omega^{N} v \in \mathscr{O}\left(M_{L}\right)\left(\mathscr{D}\left(M_{L}^{*}\right)\right)$.

Proof. We give the proof for M_{L}. By Theorem 2.8 and Lemma 2.10 it suffices to show that for $u \in W^{1,2}(G)$ or even for $u \in C_{0}^{2}(G)$

[^2]\[

$$
\begin{equation*}
\left(u,-\Delta\left(\omega^{N} v\right)\right)=B\left(u, \omega^{n} v\right) \tag{3.5.1}
\end{equation*}
$$

\]

Here of course N is assumed to be sufficiently large that $\partial G \cong B_{N}$. We note that $C_{0}^{2}\left(E^{n}\right)$ is dense in $W^{1,2}(G)$ and, moreover, that if $\left\{u^{v}\right\}$ is a sequence in $C_{0}^{2}\left(E^{n}\right)$ such that $\left\|u^{j}-u\right\|_{1,2} \rightarrow 0$ and if \widetilde{u}^{j} is the corresponding boundary value, then $\left\|\tilde{u}^{j}-\widetilde{u}\right\|_{a} \rightarrow 0$. Hence it suffices to prove (3.5.1) for $u \in C_{0}^{2}\left(E^{n}\right)$. Now by Lemma 2.10, for all $u \in W^{1,2}(G)$

$$
(u,-\Delta(\omega v))=(u, \omega(-\Delta v))+(u, v(-\Delta \omega))-2 \int_{G} u \nabla \overline{\omega \cdot \nabla v} d x
$$

since ω is real valued. Now

$$
(u, \omega(-\Delta v))=\int_{\theta} u \omega(-\overline{\Delta v}) d x=B_{\epsilon}(u \omega, v) .
$$

Moreover,

$$
(u, v(-\Delta \omega))=\int_{G} u \bar{v}(-\Delta \omega) d x=\int_{\Omega} u \bar{v}(-\Delta \omega) d x=\int_{\Omega} \nabla(u \bar{v}) \cdot \nabla \omega d x .
$$

Here $\Omega=G \cap B_{3 N}$ and we note that ω vanishes on and near $\partial B_{3 N}$. Thus

$$
(u,-\Delta(\omega v))=B_{G}(u \omega, v)+\int_{G} \nabla(u \bar{v}) \cdot \nabla \omega d x-2 \int_{G} u \nabla \omega \cdot \bar{\nabla} v d x .
$$

Since $B_{G}(u \omega, v)=\int_{G} \nabla(u \omega) \cdot \overline{\nabla v} d x-\int_{\partial \sigma} u \omega \overline{L v} d x$ and $\omega=1$ on ∂G and

$$
\begin{aligned}
\int_{G} \nabla(u \omega) \cdot \overline{\nabla v} d x & +\int_{G} \nabla(u \bar{v}) \cdot \nabla \omega d x-2 \int_{G} u \nabla \omega \cdot \overline{\nabla v} d x \\
= & \int_{G} \omega \nabla u \cdot \overline{\nabla v} d x+\int_{G} \nabla u \cdot \nabla \omega \bar{v} d x=\int_{G} \nabla u \cdot \nabla(\omega v) d x,
\end{aligned}
$$

we have finally

$$
(u,-\Delta(\omega v))=B(u, \omega v) \text { for } u \in C_{0}^{2}\left(E^{n}\right) .
$$

3.6. Definition. Let $\mathscr{D}\left(T_{L}\right)\left(\mathscr{D}\left(T_{L *}\right)\right)$ be the set of those $u \in \mathscr{D}_{1}(G)$ for which $\widetilde{u}_{n}-L \widetilde{u}=0\left(\widetilde{u}_{n}-L^{*} \widetilde{u}=0\right)$ and for u in $\mathscr{D}\left(T_{L}\right)\left(\mathscr{D}\left(T_{L *}\right)\right)$, let $T_{L} u\left(T_{L *} u\right)=-\Delta u$.

When G was bounded it was shown in [1] that T_{L} was closed and densely defined and that $\left(T_{L}\right)^{*}=T_{L *}$. In the remainder of this section we shall identify M_{L} with T_{L} and M_{L}^{*} with $T_{L *}$, thus proving that for G unbounded, but with ∂G bounded, we again have $\left(T_{L}\right)^{*}=T_{L *}$.

It is immediately clear by Green's formula that $T_{L} \subseteq M_{L}$ and $T_{L *} \subseteq$ M_{L}^{*}. The reverse inclusions will be obtained by localization. Consider a sphere $B_{3 N}$ with N so large that $\partial G \cong B_{N}$, and let $\Omega=G \cap B_{3 N}$, so that $\partial \Omega=\partial G \cup \partial B_{3 N}$. We define an operator, L_{0} on $L^{2}(\partial \Omega)$ by

$$
L_{0} \tilde{u}= \begin{cases}L \widetilde{u} & \tilde{u} \in L^{2}(\partial G) \\ 0 & \tilde{u} \in L^{2}\left(\partial B_{3 N}\right)\end{cases}
$$

and the operator $T_{L_{0}}$ analogously as in Definition 3.6 with L_{0} replacing L and Ω replacing G.

In what follows N will be chosen so large that B_{N} contains ∂G in its interior. The corresponding ω^{N} will be denoted by ω. Moreover, we define $M_{L_{0}}$, $\left(M_{L_{0}}^{*}\right)$ analogously as $M_{L}\left(M_{L}^{*}\right)$ with $\Omega=G \cap B_{3 N}$ replacing G and L_{0} replacing L. We need the following
3.7. Lemma. Let G be a bounded domain with a $C^{1,1}$ boundary. Then $M_{L}=T_{L}$ and $M_{L}^{*}=T_{L *}$.

Proof. By Green's formulas it is clear that $M_{L} \supseteq T_{L}$ and $M_{L}^{*} \supseteq T_{L *}$. But since all the operators in question are closed and $T_{L *}=\left(T_{L}\right)^{*} \supseteq$ $M_{L}^{*} \supseteqq T_{L}^{*}$ and as a consequence $T_{L *}=M_{L *}$, it also follows that $T_{L}=$ $\left(T_{L *}\right)^{*}=M_{L}^{* *}=M_{L}$.

We return now to unbounded regions.
3.8. Lemma. Let $v \in \mathscr{D}\left(M_{L}\right)\left(\mathscr{D}\left(M_{L}^{*}\right)\right)$, then ωv restricted to Ω is $\operatorname{in} \mathscr{D}\left(M_{L_{0}}\right)\left(\mathscr{D}\left(M_{L_{0}}^{*}\right)\right)$.

Proof. By Theorem 3.5, $\omega v \in W^{1,2}(G)$ and $-\Delta(\omega v)$ is a distribution in $L^{2}(G)$. The same is also true therefore if G is replaced by Ω. It suffices to show therefore that for $u \in C_{0}^{\infty}\left(E^{n}\right)$

$$
(u,-\Delta(\omega v))_{\Omega}=B_{\Omega}(u, \omega v)
$$

The proof of this is similar to that of the corresponding statement of Theorem 3.5 and will be omitted.
3.9. Theorem. $\quad M_{L}=T_{L}$ and $M_{L}^{*}=T_{L *}$. Thus $\left(T_{L}\right)^{*}=T_{L *}$.

Proof. By Lemma 3.8, $\omega v \in \mathscr{D}\left(M_{L_{0}}\right)$ whenever $v \in \mathscr{D}\left(M_{L}\right)$. Thus by Lemma 3.7, $\omega v \in \mathscr{D}\left(T_{L}\right)$. It then follows that $v \in \mathscr{D}_{1}(G)$ and $\widetilde{v}_{n}-$ $L \tilde{v}=0$, since $\omega=1$ on $B_{N} \cap G$. Thus $v \in \mathscr{O}\left(T_{L}\right)$ and $M_{L} v=T_{L} v$ and the result follows. The proof that $M_{L}^{*}=T_{L *}$ is similar and will be omitted. It is clear from Theorem 2.7 that the spectrum of T_{L} lies in a half plane. We can sharpen this estimate considerably to obtain the results of [1].
3.10. Theorem. The spectrum of T_{L} lies inside the the parabolic region $\tau^{2}=a \sigma+b$ with $a, b>0$ where a complex number $\lambda=\sigma+i \tau$.

Proof. We follow very closely the proof of Theorem 4.14 of [1]
first recalling the definition of the operators S, \hat{L} and $P(\lambda) . \quad \mathscr{D}(S)=$ $\left\{[u, \widetilde{u}]: u \in \mathscr{D}_{1}(G)\right\}$ and $S[u, \widetilde{u}]=\left[-\Delta u, \widetilde{u}_{n}\right]$ for $[u, \widetilde{u}] \in \mathscr{D}(S)$. \hat{L} and $P(\lambda)$ have all of $L^{2}(G) \oplus L^{2}(\partial G)$ as domains and $\hat{L}[f, g]=[0, L g), P(\lambda)[f, g]=$ [$\lambda f, 0]$. It was shown in [1] that when λ is such that

$$
\begin{equation*}
|([S-P(\lambda)][u, \tilde{u}],[u, \tilde{u}])|>\|L\|\|[u, \tilde{u}]\|^{2} \tag{3.10.1}
\end{equation*}
$$

then zero is in the resolvent set of $S-\hat{L}-P(\lambda)$, and, moreover, for $[u, \widetilde{u}] \in \mathscr{D}(S)$

$$
\begin{equation*}
|([S-\hat{L}-P(\lambda)][u, \widetilde{u}],[u, \widetilde{u}])| \geqq K(\lambda)\|[u, \widetilde{u}]\|^{2}, \tag{3.10.2}
\end{equation*}
$$

where $K(\lambda)$ is a positive number.
But for $[u, \widetilde{u}] \in \mathscr{D}(S)$

$$
([S-\hat{L}-P(\lambda)][u, \tilde{u}],[u, \widetilde{u}])=\|\nabla u\|^{2}-\lambda\|u\|^{2}-(L \tilde{u}, \tilde{u})_{\partial}
$$

and for $u \in \mathscr{D}\left(T_{L}\right)$

$$
\left(\left(T_{L}-\lambda\right) u, u\right)=\|\nabla u\|^{2}-\lambda\|u\|^{2}-(L \tilde{u}, \widetilde{u})_{\partial} .
$$

Thus if (3.10.2) holds for some $K(\lambda)$, then for the same $K(\lambda)$

$$
\left|\left(\left(T_{L}-\lambda I\right) u, u\right)\right| \geqq K(\lambda)\|u\|^{2}, \quad u \in \mathscr{D}\left(T_{L}\right)
$$

It only remains to determine conditions on λ such that (3.10.1) is valid. At this point we may proceed exactly as was done in [1] and we arrive at the same conclusions.
4. Regions with unbounded boundaries. As was remarked in the introduction we shall restrict L to be multiplication by a bounded measurable function. We shall then use a result of Poulsen [11] to obtain most of the results of the preceding section.
4.1. Definition. The operator M_{L}, when L is the zero operator, will be denoted by $N . N$ is the operator corresponding to the Neumann boundary condition.
4.2 Theorem. Suppose $\omega \in C_{0}^{1,1}\left(E^{n}\right)$ is real valued and such that $|\omega|,|\nabla \omega|$, and $|\Delta \omega|$ are all uniformly bounded on G by say K. Then if $\omega \in \mathscr{D}(N)$ and $v \in \mathscr{D}\left(M_{L}\right)\left(\mathscr{D}\left(M_{L *}\right)\right)$, if follows that ωv also in $\mathscr{D}\left(M_{L}\right)\left(\mathscr{D}\left(M_{L *}\right)\right)$.

Proof. Let B_{N} be a sphere with center at the origin and radius N so large that it contains the support of ω in the interior. $\Omega=G \cap B_{N}$ and observe that as in the proof of Theorem 3.5, it suffices to show that for all $u \in C_{0}^{2}\left(E^{n}\right)$

$$
\begin{equation*}
(u, \Delta(\omega v))=B(u, \omega v) \tag{4.2.1}
\end{equation*}
$$

The proof is almost identical to that of Theorem 3.5. We observe first that if the support of ω is contained in G we may simply apply Green's formulas. If the support of $\omega \cap \partial G$ is not empty we follow the arguments of Theorem 3.5. Note that since $\omega \in \mathscr{D}(N)$ and $u \in C_{0}^{2}\left(E^{n}\right)$ we find that $(u, v(-\Delta \omega))=\int_{\theta} \nabla(u \bar{v}) \cdot \nabla \omega d x$.

Following the computations in the proof of Theorem 3.5 yields (4.2.1). The proof for M_{L}^{*} is almost identical.
4.3. Lemma. (Poulsen [11]). Let G be a uniformly C^{3} domain and let θ be any point in ∂G. There exist neighborhoods A_{1} and A_{2} of θ with compact closures such that $\bar{A}_{1} \subseteq A_{2}$ Moreover, there exists a real valued function $\omega \in C_{0}^{2}\left(E^{n}\right)$ such that ω is identically 1 in $G \cap A_{1}$ and vanishes in $G \cap A_{2}^{c}$. Moreover, $\omega \in \mathscr{D}(N)$ and $|\omega|,|\nabla \omega|$, and $|\Delta \omega|$ are uniformly bounded on G.
4.4. Definition. Let $\mathscr{D}\left(T_{L}\right)$ be the set of those functions in $\mathscr{D}_{1}(G)$ for which $\widetilde{u}_{n}-L \tilde{u}=0$ on every compact subset of ∂G. For $u \in \mathscr{D}\left(T_{L}\right)$ let $T_{L} u=-\Delta u$.
4.5. Lemma. $T_{L} \subseteq M_{L}$ and $T_{L *} \subseteq M_{L *}$.

Proof. As usual we note that it suffices to show that for every $u \in C_{0}^{2}\left(E^{n}\right),(u,-\Delta v)=B_{G}(u, v)$.

We give the proof for T_{L}, the proof for $T_{L *}$ being similar. We note that G need only be a $C^{1,1}$ manifold for this proof. As usual let B_{N} be a sphere with center at the origin and with radius N sufficiently large that for a fixed $u \in C_{0}^{2}\left(E^{n}\right)$, support of u is contained in B_{N}. Let $\Omega=B_{N} \cap G$. Then

$$
\begin{aligned}
\int_{\theta} u(-\overline{\Delta v}) d x & =\int_{\Omega} u(-\overline{\Delta v}) d x=\int_{\Omega} \nabla u \cdot \overline{\nabla v} d x-\int_{\partial \Omega} \tilde{u}_{\tilde{v}_{n}} d \theta \\
& =\int_{\Omega} \nabla u \cdot \overline{\nabla v} d x-\int_{\partial \Omega \cap \partial \theta} \tilde{u} \overline{\widetilde{v}}_{n} d \theta \\
& =\int_{G} \nabla u \cdot \overline{\nabla v} d x-\int_{\partial \theta} \widetilde{u}_{\tilde{v}} d \theta .
\end{aligned}
$$

Since u was arbitrary in $C_{0}^{1,1}\left(E^{n}\right)$ the result follows.
Referring to Definition 1.2, let V_{k} be one of the covering neighborhoods so that $T_{k}\left(V_{k} \cap G\right)=\Gamma \times\left\{0<x_{n}<r\right\}$. Now let S_{1}, S_{2}, and S_{3} be three C^{3} manifolds such that

$$
S_{1} \supseteqq \frac{1}{2} \Gamma \times \overline{\left\{0<x_{n}<r / 2\right\}}
$$

$$
\begin{aligned}
& S_{2} \supseteq \bar{S}_{1} \\
& S_{3} \supseteq \bar{S}_{2} \\
& \Gamma \times\left\{0<x_{n}<r\right\} \supseteqq \bar{S}_{3} .
\end{aligned}
$$

Let $A_{i k}=T_{k}^{-1}\left(S_{i}\right)$ for $i=1,2,3$ and observe that $\bigcup_{k} A_{i k}$ contains an $r / 2$ neighborhood of ∂G. Now let ω be the function of Lemma 4.3 with $A_{1 k}$ and $A_{2 k}$ playing the roles of A_{1} and A_{2}.

Let $\partial A_{3 k} \cap \partial G=\Gamma_{1}$ and $\Gamma_{2}=\partial A_{3 k} \sim \Gamma_{1}$.
We define an operator on $\partial A_{3 k}$ by

$$
L_{0} f(\theta)= \begin{cases}L f(\theta) & \text { for } \theta \in \Gamma_{1} \\ 0 & \text { for } \theta \in \Gamma_{2}\end{cases}
$$

Let $M_{L_{0}} T_{L_{0}}$ be the operator corresponding to L_{0} and $A_{3 k}$ as M_{L} and T_{L} correspond to L and G. Then
4.6. Lemma. Let $v \in \mathscr{D}\left(M_{L}\right)\left(\mathscr{D}\left(M_{L *}\right)\right)$, then $\omega v \in \mathscr{D}\left(M_{L_{0}}\right)\left(\mathscr{D}\left(M_{L_{\jmath}^{*}}\right)\right)$

Proof. The proof is almost identical to that of Theorem 4.2. By ωv we mean of course ωv restricted to $A_{3 k}$.

Now $A_{3 k}$ is a bounded C^{3} manifold and thus by Lemma 3.8, $M_{L_{0}}=$ $T_{L_{0}}$ and $M_{L_{0}^{*}}=T_{L_{0}^{*}}$. Thus ωv is in $\mathscr{D}\left(T_{L_{0}}\right)$. Hence on $\Gamma_{1},(\omega v)_{n}-$ $L(\omega v)=0$. Thus in particular on $\partial G \cap \partial A_{i k}, \widetilde{v}_{n}-L \widetilde{v}=0$, since here ω is identically one. Since $\cup A_{i k}$ covers an $r / 2$ neighborhood of ∂G, it follows that $\widetilde{v}_{n}-L \widetilde{v}=0$ on every compact subset of ∂G. Combining these facts with Lemma 4.5 , we finally obtain
4.7. Theorem. If G is a uniformly C^{3} manifold then $T_{L}=M_{L}$ and $T_{L *}=M_{L *} . \quad$ Thus $\left(T_{L}\right)^{*}=T_{L *}$.

The fact that $T_{L *}=M_{L *}$ follows by using almost the same argument as the above.

References

1. W. G. Bade and R. S. Freeman, Closed extensions of the Laplace operator determined by a general class of boundary conditions. (Submitted for publication.)
2. F. E. Browder, On the regularity properties of elliptic differential equations, Comm. Pure Appl. Math., 9 (1956), 351-361.
3. -. (Forthcoming publication.)
4. J. W. Calkin, Abstract symmetric boundary conditions, Trans. Amer. Math. Soc., 45 (1939), 369-442.
5. G. Ehrling, On a type of eigenvalue problem for certain elliptic differential operators, Math. Scand., 2 (1954), 267-285.
6. K. O. Friedrichs, Spektraltheorie halbbeschränkter Operatoren und Anwendung auf
die Spektralzerlegung von Differentialoperatoren I, II, Math. Ann., 109 (1934), 465-486, 685-713.
7. Lars Hörmander, On the theory of general partial differential operators, Acta Math., 94 (1955), 161-248.
8. P. D. Lax and A. N. Milgram, Parabolic equations, contributions to the theory of partial differential equations, Ann. Math. Studies, No. 33, Princeton University Press (1954), 167-190.
9. K. R. Lucas. Submanifolds of dimension $n-1$ in E^{n} with normals satisfying a Lipschitz condition, Studies in eigenvalue problems, Technical Report 18, University of Kansas, 1957.
10. L. Nirenberg, Estimates and existence of solutions of elliptic equations, Comm. Pure Appl. Math., 9 (1956), 509-530.
11. E. T. Poulsen, Some results on degenerate linear elliptic differential operators of the second order, Technical Report No. 25, Contract Nonr-222 (37) University of California, Berkeley, 1958.

Lawrence Radiation Laboratory, University of California
Livermore, California

[^0]: Received February 20, 1961. This paper is a development of portions of the author's doctoral thesis done under the supervision of Professor W. G. Bade and submitted to the University of California, Berkeley, California. The author wishes at this time to express his gratitude to Professor Bade for his advice and encouragement and for reading and criticizing this manuscript.

[^1]: ${ }^{1}$ We write $B(x)$ for $B\left(x_{j}, x\right)$.

[^2]: ${ }^{2}$ Observe that $\tilde{v}^{N}=\tilde{v}$ on ∂G.

