AN INEQUALITY FOR CLOSED SPACE CURVES

G. D. Chakerian

1. Among a number of interesting results in a paper of I. Fáry (see [2]) appears the following. Let C be a rectifiable closed curve of length $L(C)$ and total curvature $\kappa(C)$ enclosed by a sphere S of radius r in Euclidean 3-space. Then

$$
\begin{equation*}
L(C) \leqq \frac{4}{\pi} r \kappa(C) \tag{1}
\end{equation*}
$$

The proof of (1) rests upon the corresponding inequality for plane closed curves, which states that if C is enclosed by a circle of radius r, then

$$
\begin{equation*}
L(C) \leqq r \kappa(C) \tag{2}
\end{equation*}
$$

The latter inequality gives a sharp result, with equality obtained in case C is a circle of radius r.

In this paper we sharpen (1) to the following result. Let C be a rectifiable closed curve enclosed by a $k-1$ dimensional sphere S of radius r in Euclidean k-space, $k \geqq 2$. Then

$$
\begin{equation*}
L(C) \leqq r \kappa(C) . \tag{3}
\end{equation*}
$$

The proof of (3) again depends on the plane case and is motivated by the following construction. We form the cone T over the curve C with apex at the center of S, slit along a longest generator and develop the result in a plane. The resulting plane arc C^{\prime} is completed to a closed plane curve $C^{\prime \prime}$ by attaching an arc of a circle. It is noted that the curvature of C^{\prime} is equal pointwise to the geodesic curvature of C with respect to T, which in turn is not greater, pointwise, than the curvature of C. The length of C^{\prime} is the same as that of C. The inequality (2) applied to $C^{\prime \prime}$ now gives (3).
2. In this section we prove some lemmas which lead directly to the main theorem.

Lemma 1. Let C be a rectifiable plane arc of length L. For any line G, let $n(p, \theta)$ be the number of intersections of G with C, where $(p, \theta), p \geqq 0,0 \leqq \theta<2 \pi$, are the normal coordinates of G. Then

$$
\begin{equation*}
L=\frac{1}{2} \int_{0}^{2 \pi} \int_{0}^{\infty} n(p, \theta) d p d \theta \tag{4}
\end{equation*}
$$

Received March 9, 1961.

This striking formula of Crofton is proved by Blaschke, [1], page 46.
Lemma 2. Let C be a closed plane curve parametrized by arc length s. Let $\vec{r}=\vec{r}(s), 0 \leqq s \leqq L$, be the tracing vector of, C, and assume $\vec{r}^{\prime \prime}$ exists and is continuous except at a finite number of points $\vec{r}\left(s_{1}\right), \cdots, \vec{r}\left(s_{m}\right)$, where there are corners with "exterior" angles $\alpha_{1}, \cdots, \alpha_{m}$ respectively. Given any direction $\theta, 0 \leqq \theta<2 \pi$, let $n(\theta)$ be the number of tangents to C orthogonal to that direction, where a tangent to C' at $\vec{r}\left(s_{i}\right), i=1,2, \cdots, m$, means a line through the point but not crossing C at that point. Then
(5) $\frac{1}{2} \int_{0}^{2 \pi} n(\theta) d \theta=\int\left|\vec{r}^{\prime \prime}(s)\right| d s+\sum_{i=1}^{m} \alpha_{i}=$ total curvature of C,
where the integral on the right is extended over the smooth part of C.

Proof. We may write $n(\theta)=\sum_{i=0}^{m} n_{i}(\theta)$, where $n_{0}(\theta)$ counts the number of tangents to the smooth part of C and $n_{i}(\theta), i \neq 0$, counts the number of tangents at $\vec{r}\left(s_{i}\right)$. Clearly n_{i} takes only the values 0 or 1 , for $i \neq 0$, and

$$
\begin{equation*}
\frac{1}{2} \int_{0}^{2 \pi} n_{i}(\theta) d \theta=\alpha_{i}, i \neq 0 \tag{6}
\end{equation*}
$$

Finally, we have that

$$
\begin{equation*}
\frac{1}{2} \int_{0}^{2 \pi} n_{0}(\theta) d \theta=\int\left|\vec{r}^{\prime \prime}(s)\right| d s \tag{7}
\end{equation*}
$$

since the left hand side is just the measure of the spherical image (counting multiplicity) of the smooth part of C.

Lemma 3. Let $\vec{x}_{0}, \vec{x}_{1}, \cdots, \vec{x}_{n}$, be the successive vertices of a plane polygon \bar{P} enclosed by a circle S of radius r_{0}. Suppose further that the " initial" and " end" points, \vec{x}_{0} and \vec{x}_{n} respectively, lie on S. Let $\alpha_{i}, 0 \leqq \alpha_{i} \leqq \pi$, be the angle between $\vec{x}_{i+1}-\vec{x}_{i}$ and $\vec{x}_{i}-\vec{x}_{i-1}, i=1, \cdots$, $n-1$. If $\vec{x}_{0} \neq \vec{x}_{n}$, let $\alpha_{0}, 0 \leqq \alpha_{0} \leqq \pi$, be the angle between $\vec{x}_{1}-\vec{x}_{0}$ and the unit tangent vector to S (with counterclockwise orientation) at \vec{x}_{0}, and let $\alpha_{n}, 0 \leqq \alpha_{n} \leqq \pi$, be the angle between $\vec{x}_{n}-\vec{x}_{n-1}$ and the unit tangent vector to S (with counterclockwise orientation) at \vec{x}_{n}. If $\vec{x}_{0}=\vec{x}_{n}$, then simply let $\alpha_{0}\left(=\alpha_{n}\right), 0 \leqq \alpha_{0} \leqq \pi$, be the angle between $\vec{x}_{1}-\vec{x}_{0}$ and $\vec{x}_{0}-\vec{x}_{n-1}$. Let $L(\bar{P})$ be the length of \bar{P}.

Then if $\vec{x}_{0} \neq \vec{x}_{n}$, we have that

$$
\begin{equation*}
L(\bar{P}) \leqq r_{0} \sum_{i=0}^{n} \alpha_{i} \tag{8}
\end{equation*}
$$

If $\vec{x}_{0}=\vec{x}_{n}$, we have

$$
L(\bar{P}) \leqq r_{0} \sum_{i=0}^{n-1} \alpha_{i}
$$

(This lemma is a special case of Fáry's theorem for the plane. See [2], page 121. The proof we give here is essentially that of Fáry.)

Proof. We consider first the case where $\vec{x}_{0} \neq \vec{x}_{n}$. Let \bar{S} be the arc of S traversed in a counterclockwise direction in going along S from \vec{x}_{n} to \vec{x}_{0}. Let $C=\bar{P} \cup \bar{S}$. Let δ be the angle subtended at the center of S by \bar{S}. Then Lemma 1 gives,

$$
\begin{equation*}
L(\bar{P})+r_{0} \delta=L(C)=\frac{1}{2} \int_{0}^{2 \pi} \int_{0}^{r_{0}} n(p, \theta) d p d \theta . \tag{9}
\end{equation*}
$$

It is easy to see, however, that $n(p, \theta) \leqq n(\theta)$ for $0 \leqq \theta<2 \pi$. Hence, by (9) and (5), we have

$$
\begin{equation*}
L(\bar{P})+r_{0} \delta \leqq \frac{1}{2} r_{0} \int_{0}^{2 \pi} n(\theta) d \theta=r_{0}\left(\sum_{i=0}^{n} \alpha_{i}+\delta\right) \tag{10}
\end{equation*}
$$

This gives the assertion for $\vec{x}_{0} \neq \vec{x}_{n}$. The case $\vec{x}_{0}=\vec{x}_{n}$ is now clear.
Lemma 4. Let P be a closed polygon enclosed by a $k-1$ dimensional sphere S of radius r in Euclidean k-space. Let $\vec{y}_{0}, \vec{y}_{1}, \cdots, \vec{y}_{n}=\vec{y}_{0}$, be the successive vertices of P. Let $\beta_{i}, 0 \leqq \beta_{i} \leqq \pi$, be the angle between $\vec{y}_{i+1}-\vec{y}_{i}$ and $\vec{y}_{i}-\vec{y}_{i-1}, i=0,1, \cdots, n-1$, where \vec{y}_{-1} is defined to be \vec{y}_{n-1}. Define the total curvature, $\kappa(P)$, of P, by

$$
\begin{equation*}
\kappa(P)=\sum_{i=0}^{n-1} \beta_{i}, \quad \text { (See Milnor, [3], p. 249.) } \tag{11}
\end{equation*}
$$

Let $L(P)$ be the length of P. Then

$$
\begin{equation*}
L(P) \leqq r \kappa(P) \tag{12}
\end{equation*}
$$

Proof. Let \vec{o} be the center of S. Assume that the vertices of P are labeled so that \vec{y}_{0} is no closer to \vec{o} than any other vertex. Let β_{i}^{\prime}, $0 \leqq \beta_{i}^{\prime} \leqq \pi$, be the angle between $\vec{y}_{i}-\vec{o}$ and $\vec{y}_{i}-\vec{y}_{i+1}$; let $\beta_{i}^{\prime \prime}, 0 \leqq \beta_{i}^{\prime \prime} \leqq \pi$, be the angle between $\vec{y}_{i}-\vec{o}$ and $\vec{y}_{i}-\vec{y}_{i-1}, i=0,1, \cdots, n-1$. The triangle inequality applied to a spherical triangle cut out of a sphere centered at \vec{y}_{i} shows that

$$
\beta_{i}^{\prime}+\beta_{i}^{\prime \prime} \geqq \pi-\beta_{i}, \text { and }\left(\pi-\beta_{i}^{\prime}\right)+\left(\pi-\beta_{i}^{\prime \prime}\right) \geqq \pi-\beta_{i}
$$

Hence,

$$
\begin{equation*}
\left|\pi-\left(\beta_{i}^{\prime}+\beta_{i}^{\prime \prime}\right)\right| \leqq \beta_{i}, \quad i=0,1, \cdots, n-1 \tag{13}
\end{equation*}
$$

We now form the cone over P with apex at \vec{o}, cut along the edge connecting \vec{o} to \vec{y}_{0} and develop the result in a plane as follows. Let \vec{p} be a fixed point in the plane R^{2}. We map \vec{y}_{0} into any point $\vec{x}_{0} \in R^{2}$ satisfying $\left|\vec{x}_{0}-\vec{p}\right|=\left|\vec{y}_{0}-\vec{o}\right|=r_{0}$. We next map \vec{y}_{1} into a point $\vec{x}_{1} \in R^{2}$ satisfying $\left|\vec{x}_{1}-\vec{p}\right|=\left|\vec{y}_{1}-\vec{o}\right|=r_{1}$, and such that the angle δ_{1}, from $\vec{x}_{0}-\vec{p}$ to $\vec{x}_{1}-\vec{p}$, measured in a counterclockwise direction, is equal to the angle $\delta_{1}, 0 \leqq \delta_{1} \leqq \pi$, between $\vec{y}_{0}-\vec{o}$ and $\vec{y}_{1}-\vec{o}$. In general we $\operatorname{map} \vec{y}_{i}$ into $\vec{x}_{i} \in R^{2}$ so that $\left|\vec{x}_{i}-\vec{p}\right|=\left|\vec{y}_{i}-\vec{o}\right|=r_{i}$ and the angle δ_{i} from $\vec{x}_{i-1}-\vec{p}$ to $\vec{x}_{i}-\vec{p}$, measured counterclockwise, is equal to the angle $\delta_{i}, 0 \leqq \delta_{i} \leqq \pi$, between $\vec{y}_{i-1}-\vec{o}$ and $\vec{y}_{i}-\vec{o}$. This construction gives us a polygon \bar{P} in R^{2}. Construct the circle S^{\prime} of radius r_{0} centered at \vec{p}. Then \bar{P} is enclosed by S^{\prime}, and \vec{x}_{0} and \vec{x}_{n} (in general $\vec{x}_{0} \neq \vec{x}_{n}$) are on S^{\prime}. It is easily seen that the angle $\alpha_{i}, 0 \leqq \alpha_{i} \leqq \pi$, between $\vec{x},-\vec{x}_{\imath-1}$ and $\vec{x}_{i+1}-\vec{x}_{i}$, is $\left|\pi-\left(\beta_{i}^{\prime}+\beta_{i}^{\prime \prime}\right)\right|, i=1,2, \cdots, n-1$. It is also seen that the angles α_{0} and α_{n} described in Lemma 3 are equal to ($\pi / 2$) $\beta_{0}^{\prime}>0$ and ($\pi / 2$) - $\beta_{0}^{\prime \prime}>0$ respectively if $\vec{x}_{0} \neq \vec{x}_{n}$ and are both equal to $\pi-\left(\beta_{0}^{\prime}+\beta_{0}^{\prime \prime}\right)>0$ if $\vec{x}_{0}=\vec{x}_{n}$. Hence if $\vec{x}_{0} \neq \vec{x}_{n}$,

$$
\begin{align*}
\sum_{i=0}^{n} \alpha_{i} & =\frac{\pi}{2}-\beta_{0}^{\prime}+\sum_{i=1}^{n-1}\left|\pi-\left(\beta_{i}^{\prime}+\beta_{i}^{\prime \prime}\right)\right|+\frac{\pi}{2}-\beta_{0}^{\prime \prime} \tag{14}\\
& =\sum_{i=0}^{n-1}\left|\pi-\left(\beta_{i}^{\prime}+\beta_{i}^{\prime \prime}\right)\right|
\end{align*}
$$

and if $\vec{x}_{0}=\vec{x}_{n}$,

$$
\begin{equation*}
\sum_{i=0}^{n-1} \alpha_{i}=\sum_{i=0}^{n-1}\left|\pi-\left(\beta_{i}^{\prime}+\beta_{i}^{\prime \prime}\right)\right| \tag{14'}
\end{equation*}
$$

Therefore, by (8), (8'), (14), and (14'),

$$
L(P)=L(\bar{P}) \leqq r_{0} \sum_{i=0}^{n-1}\left|\pi-\left(\beta_{i}^{\prime}+\beta_{i}^{\prime \prime}\right)\right| \leqq r_{0} \sum_{i=0}^{n-1} \beta_{i}=r_{0} \kappa(P) \leqq r \kappa(P)
$$

3. THEOREM 1. Let C be a rectifiable closed curve enclosed by a $k-1$ dimensional sphere S of radius r in Euclidean k-space, $k \geqq 2$. Let $L(C)$ be the length of C and $\kappa(C)$ be the total curvature of C. $(\kappa(C)=1$. u.b. $\kappa(P)$, where P runs over all polygons inscribed in C. See Milnor, [3].) Then

$$
L(C) \leqq r \kappa(C)
$$

Proof. Given any $\varepsilon>0$, there is a polygon P inscribed in C such that $L(C)-L(P) \leqq \varepsilon$. We have that $\kappa(P) \leqq \kappa(C)$. Hence

$$
L(C)-\varepsilon \leqq L(P) \leqq r \kappa(P) \leqq r \kappa(C)
$$

The theorem follows.

Corollary. Let C be a closed curve of class $C^{\prime \prime}$ enclosed by a unit $k-1$ dimensional sphere in Euclidean k-space. Let $\kappa(s)=\left|\vec{r}^{\prime \prime}(s)\right|=$ curvature of C at $\vec{r}(s), 0 \leqq s \leqq L(C)$. Then

$$
\begin{equation*}
\max \kappa \geqq 1 \tag{15}
\end{equation*}
$$

Proof.

$$
L(C) \leqq \kappa(C)=\int_{0}^{L(C)} \kappa(s) d s \leqq \max \kappa \cdot L(C)
$$

Note that we have used the fact that the above integral form for the total curvature coincides with the previous definition. This is proved by Milnor in [3].

References

1. W. Blaschke, Vorlesungen über Integralgeometrie, Chelsea, 1949.
2. I. Fáry, Sur certaines inégalités géométriques, Acta Sci. Math., Szeged, 12 (1950), 117-124.
3. J. W. Milnor, On the total curvature of knots, Ann. of Math., 52 (1950), 248-257.
