A NOTE ON COOK'S WAVE-MATRIX THEOREM

F. H. Brownell

1. Introduction. Consider the linear operator H_{0} defined by

$$
\begin{equation*}
\left[H_{0} u\right](\overrightarrow{\boldsymbol{x}})=-\nabla^{2} u(\overrightarrow{\boldsymbol{x}})+V(\overrightarrow{\boldsymbol{x}}) u(\overrightarrow{\boldsymbol{x}}) \tag{1.1}
\end{equation*}
$$

over all $\overrightarrow{\boldsymbol{x}} \in R_{n}, n$-dimensional Euclidean space, for each $u \in \mathscr{D}_{0}$. Here ∇^{2} is the Laplacian and we take \mathscr{D}_{0} as the set of all complex valued functions u over R_{n} which everywhere possess continuous partials of all orders $\leqq 2$ and which together with these partials are in absolute value $\leqq Q(|\overrightarrow{\boldsymbol{x}}|) \exp \left(-2^{-1}|\overrightarrow{\boldsymbol{x}}|^{2}\right)$ over R_{n} for some polynomial Q depending on u. Here V is a fixed, real valued, measurable function over R_{n} subject to additional assumptions below which will assure that H_{0} takes \mathscr{D}_{0} into $X=L_{2}\left(R_{n}\right)$ as a symmetric operator in the Hilbert space X.

Assuming that $V \in L_{2}\left(R_{n}\right)$ for $n=3$, Cook [2] has shown that the unique existent (see Theorem I following) self-adjoint extension H of H_{0} has the unitary operator

$$
\begin{equation*}
W(t)=e^{i t H} e^{-i t \tilde{H}}, \tag{1.2}
\end{equation*}
$$

where \widetilde{H} is the similar extension of \widetilde{H}_{0} and \widetilde{H}_{0} differs from H_{0} only by replacing $V(\overrightarrow{\boldsymbol{x}})$ by zero in (1.1), to have existent isometric operators $W_{ \pm}$ on X which are the strong limits of $W(t)$ as $t \rightarrow \pm \infty$. Moreover, $W_{ \pm} \tilde{H}=$ $H W_{ \pm}$, the range spaces $Y_{ \pm}=W_{ \pm} X$ reduce H, and each H eigenvector is orthogonal to $Y_{ \pm}$. In Theorem II bellow we give a significant sharpening of these results by weakening the restrictions upon V at ∞. Thus, with arbitrary $\rho>0$, any function of the form $C|\overrightarrow{\boldsymbol{x}}|^{-1-\rho}$ over $|\overrightarrow{\boldsymbol{x}}| \geqq b$ will qualify under our assumptions (the Coulomb case $C|\overrightarrow{\boldsymbol{x}}|^{-1}$ thus being borderline), while only such of form $C|\overrightarrow{\boldsymbol{x}}|^{-3 / 2-\rho}$ there will do so under Cook's assumptions. In Theorem III we also generalize to dimension $n \geqq 3$. Cook's results are used by Ikebe [4] in showing $S=W_{+}^{*} W_{-}$, the " S-matrix", to be unitary with $Y_{+}=Y_{-}$and in showing the expected connection of the positive part of the spectrum of H with scattering theory under considerably more stringent conditions upon V. Our $n=3$ existence result II for $W_{ \pm}$also includes that of Jauch \& Zinnes ([5], p. 566), who assume $V(\overrightarrow{\boldsymbol{x}})=C|\overrightarrow{\boldsymbol{x}}|^{-\beta}$ with $1<\beta<3 / 2$, and that of Hack [3], who replaces $+\|V\|_{\gamma}<+\infty$ for some $\gamma \in[2,3)$ by the above noted stronger assumption that $|V(\overrightarrow{\boldsymbol{x}})| \leqq M|\overrightarrow{\boldsymbol{x}}|^{-1-\rho}$ over $|\overrightarrow{\boldsymbol{x}}| \geqq b$ for some $\rho>0$.*
2. Statements. As notation for our theorems, denote $D_{b}^{+}=\left\{\overrightarrow{\boldsymbol{x}} \in R_{n}| | \overrightarrow{\boldsymbol{x}} \mid \geqq b\right\}$

[^0]and $D_{b}^{-}=\left\{\overrightarrow{\boldsymbol{x}} \in R_{n}| | \overrightarrow{\boldsymbol{x}} \mid \leqq b\right\},|\overrightarrow{\boldsymbol{x}}|=\left[\sum_{j=1}^{n} x_{j}^{2}\right]^{1 / 2}$. Also for real $r \geqq 1$ and measurable u over D, let $f_{r}(u, D)=\left[\int_{D}|u|^{r} d \mu_{n}\right]^{1 / r}$ with $\mu_{n} n$-dimensional Lebesgue measure, and define $\|u\|_{r}=f_{r}\left(u, \vec{R}_{n}\right)$ and $+\|u\|_{r}=f_{r}\left(u, D_{b}^{+}\right)$ and ${ }_{-}\|u\|_{r}=f_{r}\left(u, D_{b}^{-}\right)$for specified real $b>0$. Likewise $f_{\infty}(u, D)=$ (ess sup $|u(\vec{x})|)$ for measurable u over D defines $\|u\|_{\infty}$ and ${ }_{ \pm}\|u\|_{\infty}$ similarly. If $\begin{gathered}\vec{x} \in D \\ r\end{gathered}$ is suppressed, this denotes $\gamma=2$, so that $\|u\|$ and ${ }_{ \pm}\|u\|$ are the $L_{2}\left(R_{n}\right)$ and $L_{2}\left(D_{b}^{ \pm}\right)$Hilbert space norms.

We also define on $X=L_{2}\left(R_{n}\right)$ the unitary Fourier-Plancherel transform operators U and \widetilde{U}, having $\widetilde{U}=U^{*}=U^{-1}$, by

$$
\begin{align*}
& {[\tilde{U} w](\overrightarrow{\mathbf{y}})=\lim _{r \rightarrow+\infty}(2 \pi)^{-n / 2} \int_{D \bar{r}} w(\overrightarrow{\boldsymbol{x}}) e^{-i(\overrightarrow{\boldsymbol{x}} \cdot \overrightarrow{\boldsymbol{y}})} d \mu_{n}(\overrightarrow{\boldsymbol{x}}),} \tag{2.1}\\
& {[U w](\overrightarrow{\mathbf{x}})=\lim _{r \rightarrow+\infty}(2 \pi)^{-n / 2} \int_{D \bar{r}} w(\overrightarrow{\boldsymbol{y}}) e^{i(\vec{x} \cdot \overrightarrow{\boldsymbol{y}})} d \mu_{n}(\overrightarrow{\boldsymbol{y}}),} \tag{2.2}
\end{align*}
$$

for all $w \in X$, the limits being X norm limits. Here $(\overrightarrow{\boldsymbol{x}} \cdot \overrightarrow{\boldsymbol{y}})=\sum_{j=1}^{n} x_{j} y_{f}$ is the R_{n} inner product. We also will need to consider the set G of all functions u of the form

$$
\begin{equation*}
u=U w, w(\overrightarrow{\boldsymbol{y}})=\exp \left(-a^{2}|\overrightarrow{\boldsymbol{y}}-\overrightarrow{\boldsymbol{z}}|^{2}\right) \tag{2.3}
\end{equation*}
$$

for some $\overrightarrow{\boldsymbol{z}} \in R_{n}$ and real $a>0$ depending upon u. With this notation our theorems are as follows.

Theorem I. Let real $b>0$ and let η and γ be extended real satisfying $2 \leqq \eta, n / 2<\eta, \eta \leqq+\infty$ and $2 \leqq \gamma, n / 2<\gamma, \gamma \leqq+\infty$ for integer $n \geqq 1$, the dimension of R_{n}. Let real valued, measurable V over R_{n} satisfy both
(i) $-\|V\|_{\eta}<+\infty$,
(ii) ${ }_{+}\|V\|_{\gamma}<+\infty$.

Then H_{0} in (1.1) takes \mathscr{D}_{0} into $X=L_{2}\left(R_{n}\right)$ as a symmetric operator, and H_{0} possesses a unique self-adjoint extension operator H in X.

The special case of I where $\gamma=+\infty$ is our previous Theorem (T.1) of [1], except for the enlargement of the initial domain there to \mathscr{D}_{0} here; the modification needed to take care of general γ is very slight. As there define $[A w](\overrightarrow{\boldsymbol{y}})=|\overrightarrow{\boldsymbol{y}}|^{2} w(\overrightarrow{\boldsymbol{y}})$ over $\overrightarrow{\boldsymbol{y}} \in R_{n}$, the domain \mathscr{D}_{A} of A being all $w \in X$ for which $|\overrightarrow{\boldsymbol{y}}|^{2} w(\overrightarrow{\boldsymbol{y}})$ is also finitely square integrable. Then A is easily seen selfadjoint in X, and hence so is $\widetilde{H}=U A \widetilde{U}$ with domain $\mathscr{D}=U \mathscr{D}_{A} ;$ moreover, $\widetilde{H}_{0} \subseteq \widetilde{H}$ is now a consequence of standard Fourier transform theorems (or a simple use of Green's formula). With $\mathscr{D}=$ $U \mathscr{D}_{A}$, and defining $[V u](\overrightarrow{\boldsymbol{x}})=V(\overrightarrow{\boldsymbol{x}}) u(\overrightarrow{\boldsymbol{x}})$, we have the following lemma.

Lemma 2.4. Let V satisfy the hypotheses of Theorem I. Then
the function $V u$ is in X for all $u \in \mathscr{D}$. Moreover, for each real $\alpha>0$ there exists real $\beta_{\alpha}>0$ such that

$$
\begin{equation*}
\|V u\| \leqq \alpha\|\tilde{H} u\|+\beta_{\alpha}\|u\| \tag{2.5}
\end{equation*}
$$

over $u \in \mathscr{D}$.
Since $\widetilde{H}_{0} \subseteq \widetilde{H}$ has $\mathscr{D}_{0} \subseteq \mathscr{D}$, from this lemma it follows that H_{0} takes \mathscr{D}_{0} into X, and Green's formula with the \mathscr{D}_{0} exponential bound at ∞ shows that H_{0} is symmetric. Also $H u=\widetilde{H} u+V u$ for $u \in \mathscr{D}$ defines H from \mathscr{O} into X, and $H_{0} \subseteq H$ follows from $\widetilde{H}_{0} \subseteq \widetilde{H}$. Also our Lemma 2.4 (replacing Lemma T. 2 in [1]) shows H self-adjoint in X without any further change ([1], p.957). Likewise the previous approximation argument ([1], p.958) with Lemma 2.4 shows that H is the closure of $H_{1} \subseteq H_{0} \subseteq H$ and hence of H_{0}, and likewise \widetilde{H} is the closure of $\widetilde{H}_{1} \subseteq \widetilde{H}_{0} \subseteq \widetilde{H}$ and hence of \widetilde{H}_{0}. Thus H is the unique selfadjoint extension of H_{0} and \widetilde{H} likewise of \widetilde{H}_{0}, where H_{1} and \widetilde{H}_{1} are the restrictions of H_{0} and \widetilde{H}_{0} respectively to $\mathscr{D}_{1} \subseteq \mathscr{O}_{0}$, with \mathscr{D}_{1} the Hermite functions. Thus Theorem I will be proved as soon as we prove Lemma 2.4 in the next section.

For our main Theorems II and III, we also need the following extension of Cook's [2] Lemma 2.

Lemma 2.6. If $u \in G$ (i.e. of form 2.3), then with $0<K_{n}<+\infty$ for real $r \geqq 1$ and real t

$$
\begin{align*}
\left|\left[e^{i t \stackrel{H}{H}} u\right](\overrightarrow{\boldsymbol{x}})\right| & =\left[4\left(a^{4}+t^{2}\right)\right]^{-n / 4} \exp \left(-a^{2}\left[4\left(a^{4}+t^{2}\right)\right]^{-1}|\overrightarrow{\boldsymbol{x}}+2 t| \overrightarrow{\boldsymbol{z}}^{2}\right), \tag{2.7}\\
\left\|e^{i t \widetilde{H}} u\right\|_{r} & =\left[4\left(a^{4}+t^{2}\right)\right]^{-(n / 2)(1 / 2-1 / r)}\left(a^{2} r\right)^{-n, 2 r}\left(K_{n}\right)^{1 / r} \\
\left\|e^{i t \widetilde{H}} u\right\|_{\infty} & =\left[4\left(a^{4}+t^{2}\right)\right]^{-n / 4} .
\end{align*}
$$

Moreover, for real valued, measurable V satisfying both (i) and (ii) of Theorem I with extended real η and γ, there results for such u both

$$
\begin{gather*}
\int_{-\infty}^{\infty}\left\|V e^{i t \widetilde{H}} u\right\| d t<+\infty \tag{2.10}\\
0=\lim _{|t| \rightarrow \infty}\left\|V e^{i t \overparen{H}} u\right\| \tag{2.11}
\end{gather*}
$$

if $2 \leqq \eta$ and $2 \leqq \gamma<n$.
Since $2 \leqq \gamma<n$ in the last part of the lemma, this only applies when dimension $n \geqq 3$. From the crucial (2.10) and (2.11) (Corollary 2 and 1 of Cook's Lemma 2), the other arguments of Cook's paper [2] apply without other change and yeild all the conculsions of our following Theorems II and III, except for the unstated by Cook orthogonality of each H eigenvector in X to $Y_{ \pm}$, which is an easy consequence of $W_{ \pm} \widetilde{H}=H W_{ \pm}$and hence $\tilde{H}=W_{ \pm}^{*} H W_{ \pm}$and the reduction of H by $Y_{ \pm}$.

Thus as soon as both Lemmas (2.4) and (2.6) are shown in the next section, all our Theorems I, II, and III will be proved.

Theorem II. Let $n=3$ and for some real $b>0$ let real valued, measurable V satisfy both (i) and (ii) of Theorem I with $\eta=2$ and some real γ satisfying $2 \leqq \gamma<3$. Then there exist isometric operators W_{+}and W_{-}on $X=L_{2}\left(R_{3}\right)$ such that the unitary operator $W(t)$ in (1.2) has $\lim _{t \rightarrow+\infty}\left\|W_{+} u-W(t) u\right\|=0=\lim _{t \rightarrow-\infty}\left\|W_{-} u-W(t) u\right\|$ for every $u \in X$. Moreover, $W_{ \pm} \tilde{H}=H W_{ \pm} ; P_{ \pm}=W_{ \pm} W_{ \pm}^{*}$ are orthogonal projections whose range spaces $Y_{ \pm}=P_{ \pm} X$ reduce H; and every $u \in \mathscr{D}=\mathscr{D}_{H}$ satisfying $H u=\lambda u$ for some scalar λ is orthogonal to $Y_{ \pm}$.

This is our new version of Cook's theorem, the special case here $\gamma=2$ being exactly Cook's statement. Since in most applications the potential V will be bounded at ∞, and since

$$
L_{\infty}\left(D_{b}^{+}\right) \cap L_{2}\left(D_{b}^{+}\right) \subset L_{\infty}\left(D_{b}^{+}\right) \cap L_{\gamma}\left(D_{b}^{+}\right)
$$

properly for $\gamma>2$ is easily seen, our version is essentially sharper than Cook's. As pointed out in the introduction it 'almost" includes the Coulomb potential, which Cook's does not. (Actually, (2.10) fails for $V(\overrightarrow{\mathbf{x}})=$ $C|\overrightarrow{\mathbf{x}}|^{-1}, C \neq 0$.) We also remark that there would be no gain in allowing $2 \leqq \eta<3$ in II instead of specifying $\eta=2$, since $-\|V\|_{2} \leqq-\|V\|_{\eta}\left[\mu_{n}\left(D_{b}^{-}\right)\right]^{1 / 2-1 / n}$ follows from the Schwarz-Hölder inequality.

Theorem III. Let integer $n \geqq 4$ and for some real $b>0$ let real valued, measurable V satisfy both (i) and (ii) of Theorem I with some real η and γ satisfying $n / 2<\eta$ and $n / 2<\gamma<n$. Then the Theorem II conclusions follow.

As above, the assumptions in III are least restrictive with η as small as possible; and, for $V \in L_{\infty}\left(D_{b}^{+}\right)$also holding, are then least restrictive with γ as large as possible.
3. Proof of lemmas. We start by proving Lemma 2.4, considering first the case $1 \leqq n \leqq 3$. For given $\alpha^{\prime}>0$, we see by taking $\omega>0$ sufficiently small in equation (7) of [1] and by $\sqrt{a^{2}+b^{2}} \leqq|a|+|b|$ that

$$
\begin{equation*}
\|u\|_{\infty} \leqq \alpha^{\prime}\|\widetilde{H} u\|+\beta_{\alpha^{\prime}}^{\prime}\|u\| \tag{3.1}
\end{equation*}
$$

over all $u \in \mathscr{D}$ for some real $\beta_{\alpha^{\prime}}^{\prime} \geqq 1$. Now define real $r \geqq 2$ if $\gamma>2$ in Theorem I (the Lemma (2.4) hypotheses) by requiring $2 / \gamma+2 / r=1$. Then (3.1) with $\beta_{\alpha^{\prime}}^{\prime} \geqq 1$ yields for $u \in \mathscr{D}$

$$
\begin{gather*}
\|u\|_{r} \leqq\left[\|u\|_{\infty}^{r-2}\|u\|^{2}\right]^{1 / r}=\|u\|^{2 / r}\left(\alpha^{\prime}\|\widetilde{H} u\|+\beta_{\alpha^{\prime}}^{\prime}\|u\|\right)^{1-2 / r} \\
\leqq \alpha^{\prime}\|\widetilde{H} u\|+\beta_{\alpha^{\prime}}^{\prime}\|u\| \tag{3.2}
\end{gather*}
$$

Thus (3.2), (ii) of I, and the Schwarz-Hölder inequality for the associated powers $r / 2$ and $\gamma / 2$ yield

$$
\begin{equation*}
{ }_{+}\|V u\|^{2} \leqq+\|V\|_{\gamma}^{2}\|u\|_{r}^{2} \leqq+\|V\|_{\gamma}^{2}\left(\alpha^{\prime}\|\widetilde{H} u\|+\beta_{\alpha^{\prime}}^{\prime}\|u\|\right)^{2} . \tag{3.3}
\end{equation*}
$$

Also $-\|V\|_{2} \leqq\left[\mu_{n}\left(D_{b}^{-}\right)\right]^{1 / 2-1 / \eta}-\|V\|_{\eta}<+\infty$, using (i) of I and the SchwarzHolder inequality with $\eta \geqq 2$, gives from (3.1)

$$
\begin{equation*}
-\|V u\|^{2} \leqq-\|V\|_{2}^{2}\|u\|_{\infty}^{2} \leqq-\|V\|_{2}^{2}\left(\alpha^{\prime}\|\tilde{H} u\|+\beta_{\alpha^{\prime}}^{\prime}\|u\|\right)^{2} \tag{3.4}
\end{equation*}
$$

over $u \in \mathscr{D}$. (3.3) and (3.4) and $\|V u\|^{2}={ }_{+}\|V u\|^{2}+{ }_{-}\|V u\|^{2}$ and $\sqrt{a^{2}+b^{2}} \leqq$ $|a|+|b|$ yield (2.5), with $\alpha=M \alpha^{\prime}$ freely chosen >0 by choice of α^{\prime}, and $V u \in X$ as desired if $\gamma>2$. If $\gamma=2$, then ${ }_{-}\|V\|_{2}<+\infty$ above with (ii) of I yields $\|V\|_{2}<+\infty$; hence (3.1) yields (3.4) with the-script dropped, proving (2.5) and $V u \in X$. Thus Lemma 2.4 has been shown if $1 \leqq n \leqq 3$.

Now consider the remaining case $n \geqq 4$ of Lemma 2.4. Here $2 \leqq n / 2<s \leqq+\infty$ for $s=\eta$ and $s=\gamma$, and hence real $\tau \geqq 2$ and $\mu \geqq 2$ are defined by the requirements $2 / \gamma+2 / \tau=1$ and $2 / \eta+2 / \mu=1$ respectively. Moreover, using $(n+\rho) 2^{-1}=\gamma$ or η respectively, we see in [1] at the top of $p .956$ that $r^{\prime}=4 \gamma(2 \gamma-4)^{-1}=2(1-2 / \gamma)^{-1}=\tau$ or $r^{\prime}=$ $4 \eta(2 \eta-4)^{-1}=2(1-2 / \eta)^{-1}=\mu \quad$ respectively, and equation (8) there becomes

$$
\begin{align*}
& \|u\|_{:} \leqq \alpha^{\prime}\|\widetilde{H} u\|+\beta_{\alpha^{\prime}}^{\prime}\|u\| \tag{3.5}\\
& \|u\|_{\mu} \leqq \alpha^{\prime}\|\widetilde{H} u\|+\beta_{\alpha^{\prime}}^{\prime \prime}\|u\| \tag{3.6}
\end{align*}
$$

respectively over $u \in \mathscr{D}$, with real $\beta_{\alpha^{\prime}}^{\prime}>0$ and $\beta_{\alpha^{\prime}}^{\prime \prime}>0$ existing for each real $\alpha^{\prime}>0$. From (3.5) and (3.6) respectively, from (ii) and (i) respectively of I, and from the Schwarz-Hölder inequality we obtain respectively

$$
\begin{align*}
& +\|V u\|^{2} \leqq+\|V\|_{\gamma}^{2}\|u\|_{\tau}^{2} \leqq+\|V\|_{\gamma}^{2}\left(\alpha^{\prime}\|\widetilde{H} u\|+\beta_{\alpha^{\prime}}^{\prime}\|u\|\right)^{2}, \tag{3.7}\\
& -\|V u\|^{2} \leqq-\|V\|_{\eta}^{2}\|u\|_{\mu}^{2} \leqq-\|V\|_{\eta}^{2}\left(\alpha^{\prime}\|\widetilde{H} u\|+\beta_{\alpha^{\prime}}^{\prime \prime}\|u\|\right)^{2} \tag{3.8}
\end{align*}
$$

over $u \in \mathscr{D}$. Thus (3.7) and (3.8) and $\|V u\| \leqq \sqrt{{ }_{+}\|V u\|^{2}+{ }_{-}\|V u\|^{2}} \leqq$ $+\|V u\|+{ }_{+}\|V u\|$ yields (2.5), with $\alpha=M \alpha^{\prime}>0$ freely chosen, and $V u \in X$ as desired when $n \geqq 4$, completing the proof of Lemma 2.4.

Finally we must prove Lemma 2.6. Here from the proof of I (independently of any condition on V), we have $\widetilde{H}=U A \widetilde{U}$ to be the unique self-adjoint extension of \widetilde{H}_{0}. Hence $e^{i t \widetilde{H}}=U e^{i t s} \widetilde{U}$ and for u of form (2.3) we compute directly, since the L_{1} Fourier transform and the L_{2} FourierPlancherel transform are well known to coincide almost everywhere for functions in $L_{1}\left(R_{n}\right) \cap L_{2}\left(R_{n}\right)$,

$$
\begin{align*}
& {\left[e^{i t \tilde{H}} u\right](\overrightarrow{\mathbf{x}})=(2 \pi)^{-n / 2} \int_{R_{n}} \exp \left(-a^{2}|\overrightarrow{\mathbf{y}}-\overrightarrow{\mathbf{z}}|^{2}+i t|\overrightarrow{\mathbf{y}}|^{2}+i(\overrightarrow{\mathbf{y}} \cdot \overrightarrow{\mathbf{x}})\right) d \mu_{n}(\overrightarrow{\mathbf{y}})} \\
& \quad=\prod_{j=1}^{n}\left\{(2 \pi)^{-1 / 2} \int_{-\infty}^{\infty} \exp \left(-a^{2}\left(y-z_{j}\right)^{2}+i t y^{2}+i y x_{j}\right) d y\right\} \tag{3.9}\\
& \quad=\exp \left(-a^{2}|\overrightarrow{\mathbf{z}}|^{2}+4^{-1}\left(a^{2}-i t\right)^{-1} \sum_{j=1}^{n}\left(2 a^{2} z_{j}+i x_{j}\right)^{2}\right) \\
& \quad \prod_{j=1}^{n}\left\{(2 \pi)^{-1 / 2} \int_{-\infty}^{\infty} e^{-\left(a^{2}-i t\right) y^{2}} d y\right\} \\
& \quad=\left[2\left(a^{2}-i t\right)\right]^{-n / 2} \exp \left(-a^{2}|\overrightarrow{\mathbf{z}}|^{2}+4^{-1}\left(a^{2}-i t\right)^{-1} \sum_{j=1}^{n}\left(2 a^{2} z_{j}+i x_{j}\right)^{2}\right) .
\end{align*}
$$

From (3.9) we readily obtain (2.7), from which (2.9) is obvious and (2.8) follows by the direct computation

$$
\begin{align*}
\left\|e^{i t \tilde{u}} u\right\|_{r} & =\left[4\left(a^{4}+t^{2}\right)\right]^{-n / 4}\left[\int_{R_{n}} \exp \left(-a^{2} r 4^{-1}\left(a^{4}+t^{2}\right)^{-1}|\overrightarrow{\mathbf{y}}|^{2}\right) d \mu_{n}(\overrightarrow{\mathbf{y}})\right]^{1 / r} \\
& =\left[4\left(a^{4}+t^{2}\right)\right]^{-n / 4}\left[a^{-2} r^{-1} 4\left(a^{4}+t^{2}\right)\right]^{n / 2 r}\left(K_{n}\right)^{1 / r} \tag{3.10}
\end{align*}
$$

with $K_{n}=\int_{R n} e^{-|\overrightarrow{\mathbf{y}}|^{2}} d \mu_{n}(\overrightarrow{\mathbf{y}})$ positive and finite.
Finally to prove last statement of Lemma 2.6 with conclusions (2.10) and (2.11), we here are given V to satisfy (i) and (ii) of I with $2 \leqq \gamma<n$ and $2 \leqq \eta$. Thus ${ }_{-}\|V\|_{2} \leqq-\|V\|_{\eta}\left[\mu_{n}\left(D_{b}^{-}\right)\right]^{1 / 2-1 / \eta}<+\infty$, as noted just before III, and by (2.9) for our $u \in G$

$$
\begin{equation*}
-\left\|V e^{i t \tilde{H}} u\right\| \leqq-\|V\|_{2}\left[4\left(a^{4}+t^{2}\right)\right]^{-n / 4} . \tag{3.11}
\end{equation*}
$$

Since $n>2$ here, the right side of (3.11) is in $L_{1}(-\infty, \infty)$ over t. If $\gamma=2$, then $+\|V\|_{2}<+\infty$ and (3.11) with the - script replaced by + shows ${ }_{+}\left\|V e^{i t_{H}} u\right\| \in L_{1}(-\infty, \infty)$ over t. If $\gamma>2$, then the requirement $2 / \gamma+2 / r=1$ defines real $r \geqq 2$, and the Schwarz-Hölder inequality for this r yields from (2.8) and (ii) of I for our $u \in G$

$$
\begin{equation*}
+\left\|V e^{i t \tilde{H}} u\right\| \leqq+\|V\|_{\gamma} M^{\prime}\left(\alpha^{4}+t^{2}\right)^{-(n / 2)(1 / 2-1 / r)}=M\left(a^{4}+t^{2}\right)^{-n / 2 \gamma}, \tag{3.12}
\end{equation*}
$$

which is in $L_{1}(-\infty, \infty)$ by $\gamma<n$. Hence (3.11) and (3.12) and $\|w\| \leqq+\quad\|w\|+=\|w\|$ prove (2.10) and (2.11), and the proof of Lemma. 2.6 is complete.

References

1. F. H. Brownell, Pacific J. Math., 9, (1959), 953-973.
2. J. M. Cook, Journ. Math. Phys., 36, (1957),82-87.
3. M. N. Hack. Nuovo Cimento, series 10, 9, (1958), 731-733.
4. T. Ikebe, Arch. Rat. Mech. \& Anal., 5, (1960), 1-34.
5. J. M. Jauch \& I. I. Zinnes, Nuovo Cimento, series 10, 11, (1959), 553-567.

[^0]: Received May 31, 1961. This research was supported by National Science foundation, grant NSF-G11097.

 * Note added in proof. See also Kuroda, Nuovo Cim., 12, (1959), p. 431-454 particularly Theorem 4.1), p. 444.

