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l Introduction. Consider the linear operator Ho defined by

<1.1) [Hou](x) = -P*u(x) + V(x)u(x)

over all x e Rn, ^-dimensional Euclidean space, for each u e &r0. Here
F2 is the Laplacian and we take &0 as the set of all complex valued
functions u over Rn which everywhere possess continuous partials of all
orders ^ 2 and which together with these partials are in absolute value
g ζ)(|x|)exp(—2~1 |jc|2) over Rn for some polynomial Q depending on u.
Here V is a fixed, real valued, measurable function over Rn subject to
additional assumptions below which will assure that Ho takes £ ^ 0 into
X ~ L2(Rn) as a symmetric operator in the Hubert space X.

Assuming that Ve L2(Rn) for n = 3, Cook [2] has shown that the
unique existent (see Theorem I following) self-adjoint extension H of HQ

has the unitary operator

•(1.2) W(t) = eitBe~i%* ,

where H is the similar extension of Ho and HQ differs from Ho only by
replacing V(x) by zero in (1.1), to have existent isometric operators W±

on X which are the strong limits of W(t) as t -> ± co. Moreover, W±H =
HW±, the range spaces Y± = W±X reduce H, and each H eigenvector
is orthogonal to Y±. In Theorem II bellow we give a significant sharpening
of these results by weakening the restrictions upon V at oo. Thus, with
arbitrary p > 0, any function of the form C\ Jc|—χ—p over \x\ Ξg b will qualify
under our assumptions (the Coulomb case Clxl"1 thus being borderline),
while only such of form C|x|~3/2~p there will do so under Cook's assump-
tions. In Theorem III we also generalize to dimension n ^ 3. Cook's
results are used by Ikebe [4] in showing S— W* W-, the "S-matrix",
to be unitary with Y+ = Y_ and in showing the expected connection of
the positive part of the spectrum of H with scattering theory under
considerably more stringent conditions upon V. Our n — 3 existence
result II for W± also includes that of Jauch & Zinnes ([5], p. 566), who
assume V{x) = C\x\~β with 1 < β < 3/2, and that of Hack [3], who
replaces + | | F | | γ < +oo for some τe[2,3) by the above noted stronger
assumption that | V(x)\ ^ Mlx]'1^ over |ΛJ| ^ b for some p > 0.*

2 Statements* As notation for our theorems, denoteD£={xe Rn\ |x|^6}
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* Note added in proof. See also Kuroda, Nuovo Cim., 12, (1959), p. 431-454 particularly
Theorem 4.1), p. 444.
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and Dϊ = {xz Rn\ \x\ S &}, | x \ = EJU&}] 1 ' 1 . Also for real r ^ 1 and
Γ f l 1 / r

measurable u over Z>, let / r ( u , D) — I M r d μ Λ with μn n-dimensional

Lebesgue measure, and define \\u\\r — fr(u, Rn) and +| |w | | r = / r ( w , Z)6

+)

and _ | | u | | r = / r(w, Dϊ) for specified real 6 > 0. Likewise f^u^D) —

(esssup |^(Jc)|) for measurable u over D defines | |w |U and ±||w||oo similarly.

If r is suppressed, this denotes 7 = 2, so t h a t \\u\\ and ± | | % | | are t h e

L2(Rn) and L2(Djr) Huber t space norms.

We also define o n l = L2(Rn) the unitary Fourier-Plancherel t rans-

form operators U and U, having U = Z7* — J7~~\ by

(2.1) [fi

(2.2) [?7w](x) - Mm (2ττ)-"/2 ί _

for all weX, the limits being X norm limits. Here (x y) = J2
is the Rn inner product. We also will need to consider the set G of all
functions u of the form

(2.3) u= Uw , w(y) = exp(-α2||/ - 2|2)

for some ze Rn and real α > 0 depending upon w. With this notation
our theorems are as follows.

THEOREM I. Let real 6 > 0 and let η and Ί be extended real satisfy-
ing 2^η, nj2 < 7), 7] S +°° o^nd 2 ^ 7 , n/2 < 7, 7 ^ +™ for integer
n^l, the dimension of Rn. Let real valued, measurable V over Rn

satisfy both

(ii)
Then Ho in (1.1) takes £&0 into X = L2(Rn) as a symmetric operator,,
and Ho possesses a unique self-adjoint extension operator H in X.

The special case of / where 7 = + °o is our previous Theorem (T.I)
of [1], except for the enlargement of the initial domain there to ^ 0

here; the modification needed to take care of general 7 is very slight.
As there define [Aw](p) = \y\2w(y) over £/e Rn, the domain £2fA of A being
all we X for which \y\2w{y) is also finitely square integrable. Then A
is easily seen self ad joint in X, and hence so is H = UA U with domain
eg — U& A; moreover, Ho s H is now a consequence of standard Fourier
transform theorems (or a simple use of Green's formula). With sr =

Aj and defining [Fu](x) = V(x)u(x), we have the following lemma.

LEMMA 2.4. Let V satisfy the hypotheses of Theorem I. Then
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the function Vu is in X for all ue &. Moreover, for each real a > 0
there exists real βa > 0 such that

(2.5) \\Vu\\ ^a\\Hu\\+ β«\\u\\

over u e &.
Since Hϋ s H has ^ 0 C ^ , from this lemma it follows that ί/"0 takes

ϋ^o into X, and Green's formula with the ϋ^o exponential bound at °o
shows that Ho is symmetric. Also Hu — Hu + Vu for u e & defines H
from & into X, and Ho s i ί follows from J?o C #• Also our Lemma
2.4 (replacing Lemma T.2 in [1]) shows H self-adjoint in X without any
further change ([1], p.957). Likewise the previous approximation argu-
ment ([1], p.958) with Lemma 2.4 shows that H is the closure of H^HQ^H

and hence of iί0, and likewise H is the closure of Hi gΞ Ho £ H and hence
of HQ. Thus H is the unique selfadjoint extension of Ho and ίϊ likewise
of Ho, where Hλ and Hx are the restrictions of Ho and HQ respectively
to ϋ? ! £Ξ .^o, with ^ Ί the Hermite functions. Thus Theorem I will
be proved as soon as we prove Lemma 2.4 in the next section.

For our main Theorems II and III, we also need the following extension
of Cook's [2] Lemma 2.

LEMMA 2.6. If ueG (i.e. of form 2.3), then with 0 < Kn < + oo
for real r ^ 1 and real t

(2.7) | [β^](jc) | - [4(α4 + ί2)]"w/4exp(-α2[4(α4 + f ) ] " 1 ^ + 2t\z2) ,

(2.8) \\eitΊlu\\r = [4(α4 + ^ - ^ / ^ ^ ^ ^ ( α ' r ) - * ' 1 1 ' ^ ) 1 ' 1 " ,

(2.9) Hβ ' ^ I U = [4(α4 + ί a)]- / 4.

Moreover, / o r reαi valued, measurable V satisfying both ( i ) a m i (i i)
o/ Theorem I mίfe extended real Ύ] and 7, £/^re results for such u both

(2.10) Γ HVβ^lldί < +co ,
J —oo

(2.11) 0 = \im\\V&tSu\\ ,
lίHoo

if 2 ^η and 2 ^Ύ <n.
Since 2 ^ 7 < n in the last part of the lemma, this only applies

when dimension n ^ 3. From the crucial (2.10) and (2.11) (Corollary 2
and 1 of Cook's Lemma 2), the other arguments of Cook's paper [2]
apply without other change and yeild all the conculsions of our follow-
ing Theorems II and III, except for the unstated by Cook orthogonality
of each H eigenvector in X to Y±, which is an easy consequence of
W±H=HW± and hence H= W£HW± and the reduction of H by Y

±.
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Thus as soon as both Lemmas (2.4) and (2.6) are shown in the next
section, all our Theorems I, II, and III will be proved.

THEOREM II. Let n = 3 and for some real b > 0 let real valued,
measurable V satisfy both ( i ) and (ii) of Theorem I with η = 2 and
some real 7 satisfying 2 ^ 7 < 3. Then there exist isometric operators
W+ and W- on X — L2(R3) such that the unitary operator W(t) in (1.2)
has \imt^+00\\W+u - W(t)u\\ = 0 = limί_00||TΓ_w - W(t)u\\ for every u e X.
Moreover, W±ίϊ — HW±; P± = W±W± are orthogonal projections whose
range spaces Y± = P±X reduce H; and every ue & — st H satisfying
Hu = Xu for some scalar λ is orthogonal to Y±.

This is our new version of Cook's theorem, the special case here
7 = 2 being exactly Cook's statement. Since in most applications the
potential V will be bounded at oo, and since

L 4 A + ) Π L,(Dh

+)aL..(Db

+) Π L7(A+)

properly for 7 > 2 is easily seen, our version is essentially sharper than
Cook's. As pointed out in the introduction it "almost" includes the Cou-
lomb potential, which Cook's does not. (Actually, (2.10) fails for V(x) =
C|x|-\ C Φ 0.) We also remark that there would be no gain in allowing
2 ^ η < 3 in II instead of specifying ? = 2, since _|| F | | 2 ^ _|| V\\η[μn(Dh-)]ll2-1/Ύ>
follows from the Schwarz-Holder inequality.

THEOREM III. Let integer n ^ 4 and for some real 6 > 0 let real
valued, measurable V satisfy both ( i ) and (ii) of Theorem I with some
real rj and 7 satisfying nβ < η and nβ < 7 < n. Then the Theorem
II conclusions follow.

As above, the assumptions in III are least restrictive with η as small
as possible; and, for VeL^Όf) also holding, are then least restrictive
with 7 as large as possible.

3* Proof of lemmas. We start by proving Lemma 2.4, considering
first the case 1 ^ n ^ 3. For given a! > 0, we see by taking ω > 0
sufficiently small in equation (7) of [1] and by Va2 + b2 ^\a\ + \b\ that

(3.1) \\u\U^a'\\Hu\\ +/3;,|M|

over all u e 3f for some real β'a, Ξ> 1. Now define real r ^ 2 if 7 > 2
in Theorem I (the Lemma (2.4) hypotheses) by requiring 2/7 + 2/r = 1.
Then (3.1) with β'a, ^ 1 yields for u e &

INIr ^ [IMI~-2IN|T/r - \\u\ψ\a!\\Ru\\ + /^llull)1-"
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Thus (3.2), (ii) of /, and the Schwarz-Holder inequality for the associated
powers r/2 and 7/2 yield

.(3.3) + | | F u | | 2 <£ + | | F | | 2 | N | 2 ^ + | | F | | 2 {a'\\Hu\\ + β>J\u\\)2 .

Also _|| F | | 2 S [μn(Db~)Yl2~1/v-\\ V\\v < + oo, using ( i ) of / and the Schwarz-
Holder inequality with η ^ 2, gives from (3.1)

.(3.4) ~ | | F ^ | | 2 ^ _ | | F | | 2 \\u\\l S A\V\\l {a'\\Hu\\ + β'«

over ue &. (3.3) and (3.4) and | | F ^ | | 2 = + | | F ^ | | 2 + _ | | F ^ | | 2 and -\/a2 + b2 ^
|α| + |6| yield (2.5), with α — Mα' freely chosen > 0 by choice of a!, and
VueX as desired if 7 > 2. If 7 = 2, then _ | | F | | 2 < +cχ> above with
(ii) of I yields || F | | 2 < + ^ hence (3.1) yields (3.4) with the-script dropped,
proving (2.5) and Vu e X. Thus Lemma 2.4 has been shown if 1 ^ n ^ 3.

Now consider the remaining case n ^ 4 of Lemma 2.4. Here
2 g n/2 < s ^ + co f o r s ^ ^ and s = 7, and hence real τ ^ 2 and μ ^ 2
are defined by the requirements 2/7 + 2/τ = 1 and 2jr] + 2/// = 1 respec-
tively. Moreover, using (n + io)2~1 = 7 or rj respectively, we see in [1] at
the top of p. 956 that r' = 47(27 - 4)"1 - 2(1 - 2/7)"1 = τ or r' =
4^(2^ — 4)"1 = 2(1 — 2/r?)"1 = /i respectively, and equation (8) there
becomes

•<3.5) \\u\\τ S

•(3.6) \\u\l ^af\\Hu\\ + β':.\\u\

respectively over ue &, with real β'a, > 0 and β«, > 0 existing for each
real a! > 0. From (3.5) and (3.6) respectively, from (ii) and ( i ) re-
spectively of I, and from the Schwarz-Holder inequality we obtain re-
spectively

'(3.7) + | | F ^ | | 2 <£ +\\V\ΰ\\u\\l g +\\V\\2

y (a'\\Hu\\ + ^ | | ^ | | ) 2 ,

'(3.8) ^

•over ue^f. Thus (3.7) and (3.8) and \\Vu\\ ̂  i/+| | Vu\\2 + _|
+| I Vu || + _|| Vu\\ yields (2.5), with a = Mα' > 0 freely chosen, and F u e l
as desired when n ^ 4, completing the proof of Lemma 2.4.

Finally we must prove Lemma 2.6. Here from the proof of / (inde-
pendently of any condition on V), we have H = UAU to be the unique
self-adjoint extension of HQ. Hence eίtH — UeίtΛU and for u of form (2.3)
we compute directly, since the Lx Fourier transform and the L2 Fourier-
Plancherel transform are well known to coincide almost everywhere for
functions in L^BJ (Ί L2(Rn),
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[eu*u](x) = (2τr)-"/2( exp(-α 2 | y - z|2 + it\y|2 +

= Π f e ) - 1 ' 2 Γ exp(-α2(i/ - %)2 + ityt + iyx3)dy\
(3.9) ί = l 1 J-~ n

 J

= exp(-α2 |z |2 + 4-'(α2 - -iί)"1 £ (2a% + ixj

ΠJ(2π)-1/2Γ e-'"1-1

= [2(α2 - ίί)]^M

From (3.9) we readily obtain (2.7), from which (2.9) is obvious and (2.8)
follows by the direct computation

\[eitiru\\r = [4(α4 + t2)]'

(3.10)

with Kn = \ e~^ι2dμn(f) positive and finite.
JRn

Finally to prove last statement of Lemma 2.6 with conclusions (2.10)
and (2.11), we here are given V to satisfy ( i ) and (ii) of / with 2 ̂  7 < n
and 2 ^ η. Thus _||V||2 ^ -\\V\\η[μn(D^)]ll2-llΎ) < +oo, as noted just be-
fore III, and by (2.9) for our ueG

(3.11) -| | V Λ | | ^ - | |F| | 2[4(α 4 + ?)]-«>* .

Since n > 2 here, the right side of (3.11) is in Lx{— oo, oo) over ί. If
7 = 2, then + | |F | | 2 < + oo and (3.11) with the — script replaced by +
shows + | | F β ι ί ^ | | e Lx(—oo, oo) over t. If 7 > 2, then the requirement
2/7 + 2/r = 1 defines real r ^ 2, and the Schwarz-Holder inequality for
this r yields from (2.8) and (ii) of I for our ueG

(3.12) + | | V e ^ H ^ + | | F | | v M ' ( α 4 + i>)-c/«(i/»-w = M(α4 + f)"w/2^ ,

which is in ^(—00,00) by 7 < n. Hence (3.11) and (3.12) and
| |w| | ^ +||w|| + = | | ^ | | prove (2.10) and (2.11), and the proof of Lemma.
2.6 is complete.

REFERENCES

1. F. H. Brownell, Pacific J. Math., 9, (1959), 953-973.
2. J. M. Cook, Journ. Math. Phys., 36, (1957),82-87.
3. M. N. Hack. Nuovo Cimento, series 10, 9, (1958), 731-733.
4. T. Ikebe, Arch. Rat. Mech. & Anal., 5, (1960), 1-34.
5. J. M. Jauch & I. I. Zinnes, Nuovo Cimento, series 10, 11, (1959), 553-567.




