
ON THE ACTION OF SO(3) ON Sn

DEANE MONTGOMERY AND HANS SAMELSON

1. Introduction* This paper contains some facts about the possible
actions of the rotation group SO(3) on the ^-sphere Sn. For some of
the results the action is required to be differentiate, but for others
this is not necessary.

We recall for an action of a compact Lie group, that a principal
isotropy group is an isotropy group of the lowest possible dimension and
that among these it is one with the fewest possible components. An
orbit with such an isotropy group is called a principal orbit. For a
compact Lie group acting on a cohomology manifold over Z, principal
orbits form an open connected everywhere dense set. In fact the comple-
ment is a closed set of dimension at most n — 2 [1, Chapter IX].

Two of the results to be proved are the following, where B is the
set of points on orbits of dimension less than the highest dimension of
any orbit: If SO(3) acts differentiably on Sn with three-dimensional
principal orbits and if dim B < n — 2 then the principal isotropy group
is the identity; if SO(3) acts differentially on S7, then some orbit has
dimension less than 3.

Part of the motivation for our work was the attempt to discover
whether the latter result is true for all n. If SO(3) does act differ-
entiably on Sn with all orbits three-dimensional then, as far as rational
coefficients are concerned, the sheaf generated by the orbits is constant
and relative to these coefficients we obtain similar results to those for
a fibering by S3 (see [1, 3]); hence n — 4/b — 1. There cannot be such
an action for n — 3 and the result above shows there is none for n — 7.
The general case remains open. It is known [1, p. 187; 3] that if a
compact connected Lie group G acts nontransitively on Sn with all orbits
of the same dimension, then rank G = 1, and every isotropy group is
finite. There are only three such groups, the circle, SO(3), and SU(2),
the simply connected covering of SO(3). The circle and SU(2) can act
on S™'1 and S4*"1 respectively with orbits of constant dimension, but
no such example is known for SO(3). This suggests the question we
have mentioned of whether or not SO(3) can act on Sn with every orbit
3-dimensional.

2 Cyclic isotropy groups. In this section no differentiability is
assumed; in fact the space on which SO(3) acts is only required to be
a generalized manifold; we assume all spaces to be strongly paracompact;
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i.e., all open sets are paracompact. We recall that principal orbits are
everywhere dense and that a principal isotropy group has at least one
fixed point on every orbit.

THEOREM 1. Let G = SO(3) act on a space X which is a cohomology
n-manifold over Z and a cohomology n-sphere over Z. If the principal
isotropy group is a finite cyclic group then it must be the trivial group
containing only the identity.

Assume the theorem false. Let A be one of the principal isotropy
group; it leaves at least one point fixed in every orbit. By assumption
A is cyclic and nontrivial. Let p be a prime factor of the order of A
and let Aλ be a cyclic subgroup of A where Ax has order p.

We show first that p cannot be 2. Let a be an element of order
2 in G, and let H = {e, a, b, c) be a subgroup of G isomorphic to Z2 0 Z2.
Let T be a circle group in G, such that A (Z T and ae T; and let N =
T U bT be the normalizer of TV

If p = 2, then, since all elements of order 2 of G are conjugate,
and since a has a one-dimensional fixed point set in each three-dimen-
sional orbit, we have

dim F(a) = n - 2 .

It follows from a theorem of Borel [1, p. 175] that

dim F(H) = n - 3 .

The subgroups of G, containing H, are:
(1) the icosahedral group /,
(2) the octahedral group C,
(3) the tetrahedral group S,
(4) the dihedral group D2k, k > 1,
(5) A = Hy

(6) N,
(7) G.
In an orbit with any one of these as isotropy group, H has a finite

number of fixed points. One concludes from known dimension relations
for the singular set B [1, p. 118, 120] that H is contained in a principal
isotropy group, contradicting the assumption that A is cyclic; and so
p φ 2. Since Ax c A, we have F(A) c F{A^)\ by Smith theory F{A^
is a cohomology sphere over Zp.

Let xeFiAJ, and suppose G(#) is a principal orbit. Choose a slice
K at a?. Then A leaves all of i£ fixed, and also leaves TK and NK

1 For any subset EczG we write F(ΐ;) for the set of points in X left fixed by all ele-
ments of E.
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pointwise fixed. Now K is an (n — 3)-cohomology manifold over Z; and
TK, which is locally a product of K and T\Ay is an (n — 2)-cohomology
manifold over Z. In a neighborhood of x the set TK coincides with
F(A), and also with F(A^, as one sees by considering the action in
each orbit through K. It follows that F(AX) is of dimension n — 2,
and, since principal orbits are dense, that

F(A) = F(AJ .

If x is a point of F(A), and the isotropy group Gx is finite, then
A is a normal subgroup of Gx [4]. Both F(A) and F(A) - F(G) are
invariant under N.

Suppose x and gx (for some geG) are in F(A) — i^G), so that

g-'Ag c Gβ .

A being odd cyclic, one finds, by considering all possible finite subgroups
of G (those containing H, cf. above, the cyclic groups Znj and the odd
dihedral groups D2k+1) that

g~xAg = A

this means g e N. Therefore X — F(G) is partitioned into sets g(FA) —
F(G)). If R is a small 2-cell in G, transversal to Γ, then i2 [F(A) -
F(G)] is homeomorphic to i2 x [F(A) — F(G)]. Hence the partitioning
is a fibering (in the sense of local product) of X — F(G) with fiber
F(A) — F(G) and base G/N= P2, the real protective plane. By [1, p.
120] we have dim F(G) ^ n - 4, so that the fiber F(A) - F(G) is con-
nected. By [2, p. 230] we have (cohomology with closed supports on
the left, compact supports on the right)

H\X - F(G); Z2) & Horn (HΓ\X - F(G); Z2), Z2) .

But Hr\X - F(G); Z2) = 0, from the exact sequence of (X, F(G)). The
spectral sequence of the fibering is now in contradiction to the H\P2, Z2) =
Z2, and the theorem follows.

3, Differentiable action with dim B < n — 2. Richardson has noted
[5] that the double suspension of SO(3)/I gives an example of SO(3)
acting on a cohomology manifold over Z which is a cohomology 5-sphere
over Z (and possibly is equal to S5), with dim B = 1 and with each
principal orbit a Poincare space. This example shows that differentia-
bility is needed for Theorem 2.

THEOREM 2. Let G = SO(3) act dίfferentiably on the n-sphere Sn

with principal orbits of dimension three. If the dimension of the
singular set B is < n — 2, then the principal isotropy group contains
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only the unit element.

It follows from Theorem 1, without the restriction on B, that the
principal isotropy group cannot be cyclic non-trivial. Assume Theorem
2 false. Then, since all finite subgroups of SO(3) of odd order are cyclic,
the principal isotropy group must contain an element of order two; and
as shown in the proof of Theorem 1, it must then contain a group iso-
morphic to H. It can therefore be only one of I, C, S, D2k, k > 1 H.

For reference we list the one-dimensional integral homology of the
quotients of SO(3) by its finite subgroups:

10(3)/A.) = J^2®Z2;

2tί+1) = Z,, HάSOWIS) =

fli(S0(3)/C) =

fli(SO(3)/7) =

= Z2;

= 0 .

Case 1. The principal isotropy group is /.
In this case all orbits in Sn — B are of type Gjl, since / is a maximal

finite subgroup of G; and on each such orbit I has exactly one fixed
point. Therefore

Sn - B = (F(I) - B) x Gil.

Since dim B ^ n — 3, we see that U = Sn — B is simply connected.
(Because of differentiability B can be represented as a C ̂ complex in Sn.
A singular 2-disc with boundary in Sn — B can be deformed slightly,
by simplicial approximation and shift to general position, so that it does
not intersect B). Since Gjl is not simply connected, this is a contra-
diction, and shows this case is impossible.

Case 2. The principal isotropy group is C.
The proof for this case is exactly the same as Case 1.

Case 3. The principal isotropy group is S.
The set F(H) is an (n — 3)-cohomology sphere mod 2, and F(S) c

F(H); we assume HaSczC. Since F(S) is a manifold (because of
differentiability) of dimension n — 3, it follows that

F(S) = F{H) .

The set F(S) — B is invariant under C. Assume

x e F(S) - B,gxe F(S) - B .

Then
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Sgx = gx, g~τSg c Gx .

In this case every isotropy group in Sn — B is isomorphic either to S
or to C In either case we have

g-'Sg = S

so geC. Hence Sn — B is ίibered by the sets g[F(S) — 5] with base
G/C To see that this is a ίibering in the sense of a local product, note
that if R is a small neighborhood of e in G, then i? x [F(S) — B] is
homeomorphic to R[F(S) — B], All points of B are stationary under
G, since all subgroups strictly between S and G are finite (of type C or
I ) . Using the linear orthogonal behavior of G at points of B (Bochner's
theorem), one sees easily that dim B < n — 4; otherwise two-dimensional
orbits would occur. But then the fiber F(S) — B of Sn — B is connected,
and we get a contradiction from the homotopy sequence: 0 = π1(Sn —
B) - πiGjC) -+ πo(F(S) - B) = 0.

Case 4. The principal isotropy group is D2k, k > 1.
Let ϋΓ2/c be the cyclic subgroup of D2k. We know that Z2 c Z2k, and

is an (n — 2)-cohomology sphere mod 2. Now F(Z2k) is an (w — 2)-
manifold in F(Z2) so

and F(Z2k) is a connected manifold.
The set F(Z2k) — B is invariant under iV where iV is the normalizer

of Z2k. Assume

x, gx e F(Z2k) - B .

Then

Z2kgx = flw, g~λZ2kgx = a? .

The isotropy group at E is either D2k or A& and in either case we see
that

g-λZ2kg = Z2k,geN.

Hence Sn - B is fibered by the sets g[F(Z2k) - B] with base G/N = P\
The set B satisfies dim B ^ n — 4. This is easily seen by considering
the (linearized) action of the stability group Gy at a point y e B (cf.
case 3); one should separate the cases Gy = G and Gy ^ T or N.

The fiber F(Z2k) — B is again connected, and we arrive at a con-
tradiction as in case 3.

Case 5. The principal isotropy group is H.
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The norrnalizer of H is C; any finite isotropy group must contain
a normal subgroup isomorphic to H. Suppose

x, gx e F(H) - B .

Then Hgx = gx and g~Ήgx = x, so that g~ιHg czGx. We use again the
linear orthogonal discription of Gx. Since H and g~λHg are principal
isotropy groups, their fixed point sets are of dimension n — 3; and they
act trivially perpendicularly to the orbit at x. It follows that they
must coincide, since otherwise we would get too large a principal iso-
tropy group at x. Consequently g e C, and therefore Sn — B is fibered
by translates of F(H) — B, with G\C as base. (As in case 4, we have
dim B ^ n — 4.) Sn — B is connected. The operation of C on F(H) — B
must therefore permute the components of F(H) — B transitively, and
there are then at most 6 components (note that the subgroup H of C
operates trivially). The fundamental group of G/C is of order 48, and
the homotopy sequence of the fibering gives a contradiction.

This completes the proof of Theorem 2.

4. Relations between F(α) and F(T). As before, Γ is a circle
group in SO(3), a the element of order 2 in T, N = T U bT the normalizer
of T.

THEOREM 3. Let G = SO(3) act on Sn. If F(a) Φ F(T), then
F(H) Φ φ (the empty set).

Let k be the greatest integer such that F(Zj) Φ F(T). By hy-
pothesis k ^ 1. We shall assume F(H) — φ and show that this leads
to a contradiction.

Let ax be the generator of a cyclic group in T of order 2fc. Then
F{a^) is a sphere mod 2. The group Nf — NJZ2k operates on F(a^j, and
we shall consider this action of JV\

LEMMA. Let xeF(ax) — F(T). Then Nή is odd cyclic.

Assume that Gx is cyclic. Then Nx = GJZ& and hence Nx is odd
cyclic.

Assume next that Gx = D2i+1 which is the only other possibility
since F{H) = φ. In this case k = 1. Hence the group Z2* is the group
{β, a}. In this case we see that Nx = {e, a} and that N'x — {e}. This
proves the above lemma.

We now consider the mod 2 sphere .F(αi) with the action of N' and
note that H — Z2 0 Z2 (more precisely a group in N' isomorphic to H)
acts freely on

F(ad - F{T) .
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There is then a spectral sequence for H^Ffa) - F(T))IH; Z2) (coho-
mology with compact supports) whose E2 term is

H*(BE; H\{F{aλ) - F(T)); Z2) .

We see from this sequence that H cannot act freely and this contradiction
proves the theorem; note that F(T) is also a sphere mod 2.

5 Action on S7.

THEOREM 4. Let G = SO(3) act differentially on the 7-sphere S7.
Then some orbit has dimension less than three.

Assume that we are given an action for which all orbits are three-
dimensional; we shall arrive at a contradiction.

As before we let H — {e, α, 6, c} be a specific subgroup of G, iso-
morphic to Z2 © Z2; we write T for the one-parameter subgroup of G,
containing α, and N for the normalizer of T in G; here N = Γ U bT
and bT = cT.

We know (from §3) that the principal isotropy group is e. This
implies that dim F(a) = 3 (if dim F(a) = 5, then clearly a would have
a fixed point in every orbit), and so dim F(H) = 1, by BoreΓs theorem
[1, p. 175]; of course, F(H) is homeomorphic to the circle S1. We note
that F{H) = F(a) n F(b).

The normalizer of H is the octahedral group, C; by general principles
C maps F(H) into itself, with H acting trivially. We have to consider
separately the various ways in which the group CjH, isomorphic to the
symmetric group &ζ on three letters, can act on a circle, and to show
that a contradiction arises in each case.

If x is any point of S7, then the stability group Gx acts on the
tangent space at x; we may assume this action to be orthogonal, and
write K or Kx for a Gx-invariant complement to the tangent space of
the orbit of x (this is the same as the tangent space to a differentiable
slice).

We shall need the irreducible representations of C. There are 5
of them (see e.g. [7]); they are all real: C(o), the trivial representation
of dimension 1; C(1), 1-dimensional nontrivial action "as Z2", i.e., with
the tetrahedral group S acting trivially; C(2), operation on the plane
"as dihedral group DB", i.e., with H acting trivially; C(3), the usual
operation of C on 3-space; C(4), the conjugate operation (tensor product
with C(1)).

Case 1. Suppose C acts trivially on F(H). Since C is a maximal
finite subgroup, the stability group at all points of F(H) is exactly C.



656 DEANE MONTGOMERY AND HANS SAMELSON

Let x e F(H); then in Kx there will be a one-dimensional subspace, on
which C operates trivially, namely the tangent line of F(H). Let Lx

be a C-invariant complementary (three-dimensional) space in Kx. Then
a must have a one-dimensional fixed space in Lx, since F(a) has dimension
3 and a leaves already fixed a direction tangent to the orbit G(x) and
the direction tangent to F(H). From the list of representations of C
it follows, that C must act on Lx by C(3) or C(4); however C(4) is im-
possible, since no element of Gx can reverse the orientation of the
tangent space to S7 at x, G being connected. Let now ax be one of
the two square roots of a in G; it lies in C, and we observe that the
dimension of its fixed space in Kx is 2, so that dim F(ax) — 3. Since
F(a^) c F(a), and both sets are manifolds, it follows that F(aλ) = F(a).
On the other hand let d be an element of order 2 in C, not in H, and
let dλ be a square root of d. Since dx # Φ x, we have -Fίĉ ) Φ F(d).
But we can conjugate the pair (α, αx) into (d, dλ) in G, and so we have
a contradiction.

Case 2. C acts on F(H) with exactly two fixed points ("reflection
across a diameter"). Letting x be one of the two fixed points, we see
that C operates by C(1) on the tangent line to F(H) at x, and that it
then must operate by C(4) in Lx. It follows that ax has no nontrivial
fixed vector in Kx, so that all fixed points of ax near G(x) are actually
in G(x) and form a circle. By the Smith theorem this is the full fixed
point set of ax on S7. But the second fixed point of C on F(H) lies
in another orbit (since C has only one fixed point in an orbit of type
GjC); since ax e C, we have a contradiction.

Case 3. C acts on F(H) in the way the dihedral group D
acts on the unit circle in the plane, in the usual representation of D3.
This implies that the elements ax will map F(H) into itself with exactly
two fixed points, x and y, and reversing the orientation of F(H).

We consider now the set T F(H). Its structure is easily established;
it is a 2-manifold with self-intersections: At any point z of F(H) a
neighborhood of the orbit T(z) is homeomorphic to a fiber bundle over
T(z), whose fiber is the finite set of lines obtained by letting the sta-
bility group Tz operate on the tangent line to F(H) at z. Except at
a finite number of points z, there will be only one line in the set and
the neighborhood in question is just a cylinder; i.e., product of a circle
and a line. At the points x and y the element ax (which belongs to
the stability group there) reverses the tangent line to F(H), so that
the neighborhood of T(x) or T(y) is a Mδbius band with self-intersection
along the middle line. One concludes easily from this description of
the structure that T-F(H) carries a nonzero 2-cycle over Z2, but that
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its second homology group over the rationale is 0. But by Alexander
duality such a set cannot exist in F(a) (recall that F(a) is a sphere
over Z2, and therfore also over the rationals).

Case 4. C acts on F(H) without fixed points (as "reflection through
the center"). This implies that the stability group at any point of F(H)
includes the tetrahedral group S (but not C), and so equals either S or
the icosahedral group /. The fixed point set F(I) or I, being a manifold
contained in F(H), either coincides with F{H) or consists of a finite
number of points. The first case is impossible, since in an orbit of type
Gjl the group I has only one fixed point, whereas here the operation
of C produces for each fixed point another one in the same orbit. In
the second case we claim that there can be at most one point with
stability group I on F(H). Suppose x is such a point. Then in Kx

the group / must operate in such a fashion that the subgroup S leaves
a straight line (the tangent to F(H)) point wise fixed, but that I itself
has no fixed line. From the list of representations of I [6, 7] one sees
that / must operate by the irreducible 4-dimensional representation,
obtained by letting I operate on E5 through all even permutations of
the axes and restricting to the subspace perpendicular to the main
diagonal of E5. The element a of order 5, which permutes the 5 axes
cyclically, has no nonzero fixed vector. This means that the fixed points
of a in S7 in the neighborhood of the orbit G(x) consist of just the
fixed points in the orbit itself, which form a circle. By the Smith
theorem mod 5 this must be the complete fixed point set of a in S7,
and therefore 7 cannot have any fixed point outside G(x), i.e., different
from x.

LEMMA 1. The stability groups of points on F(a) — F(H) are of
type D2k+1 or Zmι+1).

Proof. The only other possibility is a cyclic group of order divisible
by 4 (since no subgroup isomorphic with H is allowed). The fixed point
set of a1 is a proper subset of F{a), since the points of F(H) are not
in F(aτ). By the Smith theorems mod 2 the set F{a^) must be a single
circle; but in an orbit with Z±k as stability group the fixed point set of
Z± consists of two circles.

We write A for G-F(a), and B for G F(H).

LEMMA 2. The inclusion F(a) c A induces a homeomorphism
F(a)jN = AIG.

Proof. Clearly F(a) maps onto AjG = A'. Suppose y = g(z) with
with y,ze F(a). Then a gz = gz or g~λag e Gz. Now Gz is one of
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Z2(2k+Di D2k+1, S, I. In all cases, there exists g' eGz with {ggf)~λaggf =
a, since all elements of order two are conjugate. This implies gg' e N,
and y = gz = gg'z, q.e.d.

T operates on F(a) with finite stability groups. It follows that
F(a)/T is a two-manifold; it is obviously orientable. Moreover, since
fundamental group and first homology group map onto from F(a) to
F(a)IT, and F(a) is a Z2-sphere, F(a)/T is a 2-sphere. The element δ
of G leaves the decomposition of F(a) into Γ-orbits invariant, and induces
an involution in F{a)j T; we obtain F(a)/N by indentifying points under
6. The image of F(H) yields an S1 in F{a)jT9 pointwise fixed under
δ. It follows that A' — F(a)IN is a 2-disk, whose boundary is exactly
BjG = Bf. (In other words, the iV-orbits on F(a) consist generally of
two circles which are interchanged by δ, except on F{H)y where the
iV-orbits are single circles, which are reversed in themselves by δ.)

Next we compute the Z2-cohomology of A. From the nature of the
orbits in A — B, as described in Lemma 1, it is clear that the sheaf
over Af — B', formed by the Z2-cohomology of the orbits, is constant,
and that therefore (using the spectral sequence of the projection A —
B—>A! — B') the î -cohomology (with compact supports) of A — B is
isomorphic to that of G/Z2f with dimensions raised by two.

The orbits, making up the set B, have the Z2-cohomology of the
3-sphere S3, and the sheaf over Bf formed in this fashion is constant,
since it is clearly locally constant (even if there should be an orbit with
l a s stability group). The Z2-cohomology of B is consequently isomorphic
with that of S1 x S3. We determine the coboundary map (Z*: H*(B)-^
iϊ*(A - B) for the pair (A, B). We have H\B) ~ H\A - B)(~ZΛ) under
d*, since these groups are obtained from the base spaces B', resp.
A — Bf under the projection. We claim that cϊ* is 0 on H\B) and
H4(B). The reason for this is that the orbits near, but not on, B (which
are of type G/Z2) are even coverings of the orbits on B (of type G/S
or G/I), so that the cohomology map in dimension 3 vanishes. In more
detail: We think of A' as the unit circle in the plane. Let A[ be a
concentric circle of slightly smaller radius, with boundary B[; let Alf

Bτ be the inverse images under the projection. There is an obvious
retraction of B2, the closure of A — Au onto B, in fact a deformation
retraction. Its restriction / to Bλ is a fiber map over the radial pro-
jection of J5ί onto B', with the map on the fiber being the natural
map from G/Z2 to G/S, respectively to G/I. It follows from the spectral
sequence that /* is 0 in dimensions 3 and 4. The inclusions Ax — Bλ c
A — B2 c A — B clearly give isomorphisms in cohomology. It follows
that d* can be factored through /*, which proves our claim. (Alter-
nately one could use here the Fary spectral sequence.) The exact sequence
of {A, B) shows now that the Poincare polynomial over Z2 of A is 1 +
2f + 2£4 + f. The complement S7 — A has then Poincare polynomial



ON THE ACTION OF SO(3) ON Sn 659

2P + 2f + f + t\ The group H acts freely on S7 - A, but now the
spectral sequence of the covering leads at once to a contradiction: The
direct sum of the terms of total degree 7 in E* must be of rank 1.
But E£Λ has rank 8, whereas Et* and Eξfi (the only groups of E2 which
can contribute boundaries to EϊΛ) are together of rank 5.

The four cases considered clearly represent all possible actions of
St on the circle (up to topological equivalence), and so the proof of
our theorem is finished.
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