COMPLETION OF MATHEMATICAL SYSTEMS
A. H. KRUSE

1. Introduction. The completion problem to be considered may be
informally and tentatively described as follows.

Let o7 be a class of systems of some type (e.g., &% will be the class
of all fields in Example 1; cf. §86,7). For all a,be .o let “a < b” mean
that a is a subsystem (e.g., subfield in Example 1) of b. For each a €
let m(a) be a set of propositional forms' involving unknowns (e.g., poly-
nomial equations in one unknown in Example 1); each of these forms may
become a true or false proposition upon substitution of elements of & for
the unknowns; a substitution turning a form into a true proposition is a
solution of the form. For each a€ .o let 7'(a) be the set of all members
of m{a) with solutions (relative to a). If a,be & and @ < b, then each
p € n(a) will correspond to some member, say o%(p), of w(d) (e.g., if &
is the class of all groups, the propositional form “y~'zy + x for some y
in a” in unknown % could correspond to “y~'xy + x for some ¥y in ). We
may say that a € .o is complete if and only if for each be o7 with a <b
and each pen(a): if p has no solution (relative to a), then pi(p) has no
solution (relative to b). (E.g., in Example 1, a field is complete if and
only if it is algebraically closed.) The completion problem to be con-
sidered is: Does each a € .o~ have a complete extension?*

This extension problem will be formulated rigorously in §§5,6. In
some explicit special cases in modern algebra the existence of a complete
extension rests on (transfinitely) recursive definitions the justification of
which at first glance would seem to require a very strong version of the
axiom of choice (¢f. Remark 5 of §7). In this paper the set-theoretic
foundations cf such procedures will be examined. The result is a theorem
from which will follow the usual extension theorems via the usual weak
version of the axiom of choice.

2. Set-theoretic preliminaries. In axiomatic set theory one may con-
sider the following versions of the axiom of choice.

Received July 15, 1959, and in revised form August 7, 1961.

(A) Earlier versions of this paper consisted of research done at the University of Kansas
partially supported by National Science Foundation Grant NSF-G 4917. The writer is in-
debted to W. R. Scott for reading the first version and making several suggestions. The
writer is indebted to the referee for a number of comments and suggestions, some leading
to substantial improvements over earlier versions of this paper.

! Relative to (axiomatic) set theory, since a propositional form exists only in the meta-
theory, the propositional forms as such will have to be replaced by set-theoretic antecedents.

2 This completion problem is a straightforward generalization of problems raised and
solved by W. R. Scott [6] for groups (however, cf. Remark 5 of §7). The general problem
of this paper will be illustrated by Scott’s result via Example 2 (cf. §86, 7).
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Weak version. If M is a set of nonvoid sets, there is a function ¢
on M such that ¢(X) e X for each X e M.

Strong version. If _# is a class® of nonvoid sets, there is a function
@ on _# such that o(X)e X for each Xe _~.

Stronger version. If _# is a class, there is a function @ on
dom(_# ) such that p < _Z.°

Strongest version. If _7 is a class, there is a function @ on
dom (_#) such that ¢ C _# and such that for all u, v € dom (_#"), if for
each object y, [u, y] € _# if and only if [v,y]e _#, then p(u) = @(v).°

In the rest of this paper we will assume that we are working in a
set theory of the kind considered by Mostowski [4, pp. 4 — 6] with the
Fundierungsaxiom not assumed and with the weak version of the axiom
of choice assumed. Such a set theory may be obtained by modifying
the system considered by Godel [3] (this system being essentially developed
by von Neumann and further refined by Bernays [1]) as follows. There
is allowed the existence of atoms (also called Urelements) — elements
which are not sets —, and the usual axioms are modified to accomodate
them. Thus each object in the theory is either an element or a class.
A set is an element which is a class. An atom is an element which is
not a class. Intuitive language will be used throughout, but with pre-
cision.

We now have what might be regarded as a weakest reasonable set
theory in which practically all of modern mathematics can be developed.
In considering such a minimal set theory the writer is interested in gener-
ality not only as such but also in its effects on foundational methodology.

The writer feels (without proof) that the stronger version of the
axiom of choice is not a consequence of the strong version in the theory
under consideration. The stronger version has been stated partly in an-
ticipation of Remark 5 of § 7.

Throughout this paper ¢ will be the class of all ordinal numbers.”
The void set is 0 € 7.

For each class .7, &7(_#) will be the class of all subsets of 7.

3 A class may be too big to be a set.

¢ For each class .#, the domain of -# is the class dom (-#) consisting of all ¥ for which
[z, y] = {{z}, {z, y}} € -# for some y, and the image of -# is the class im(-#) consisting of
all y for which [z, y]€ # for some z.

5 The stronger version says roughly that there is a choice function for every ‘‘family”
of classes, the ‘“‘family’’ of classes being “‘{{y|[x, y]1€ #}}sedomisr)’’ -

6 The strongest version says roughly that there is a choice function for every ‘‘class’
of classes, the “‘class’ of classes being ‘“‘{{y|[x, y]€ -#}|x €dom(#)}’. In the von Neumann-
Bernays-Giodel theory including the axiom of foundation (and in which every member of
each class is a set) the strongest version is a consequence of the strong version via well-
ordering of the universe (cf. [8] and [1, pp. 70-71]).

7 Each ordinal number consists of its predecessors. A cardinal number is an ordinal
number not equi-potent with any of its members.
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For each set X, we define 7% X) for each B¢« so that &#Y(X) = X,
FPYX) = F(FP(X)) for each Be 7, and

FHX) = U {7 (X)|a < B}

for each nonzero limit ordinal number 3.
Suppose X and Y are sets of atoms. Then for each

e (U{g(X)|laea) n(U{F(Y)lae T}

and each ve 7, xe &?'(X) if and only if xe &#'(Y) (by induction on 7).
From this it follows (by induction on ) that for each nonvoid class _#
of sets of atoms and each v e 7,

PN #2)=N{F7(X)| Xe 7} .

It now follows that for each element x, if there is a set X (perhaps void)
of atoms such that x e &#Y(X) for some v € ~?, then there is a minimum
such set X. Such a minimum set X will be called a foundation of wx.

Although we will not assume it without specific mention, we shall
have occasion to consider the effects of the axiom of foundation
(Fundierungsaxiom): If _# is a nonvoid class of sets, then .7 N X
is void for some Xe_Z. In the system of set theory in which we
are working the axiom of foundation is equivalent to the (in the writer’s
opinion, intuitively better motivated) statement: For each set
X, Xe &#7(A) for some ve” and some set A of atoms.® Thus the
axiom of foundation is equivalent to the statement that each set has a
foundation.

Consider a set X. Now U X = {u|uecx for some xe X}. We de-
fine U* X for each ordinal number a < «° by induction so that U° X =
X, U X=UU*X for eachacw, and U* X = U {U* X|aecw}. Now
U X is the transitive closure of X as defined in [1, IV, p. 136] (cf.
also [1, VI, p. 68]), i.e., the smallest set Y such that X © Y and such
that Zc Y for each set Zc¢ Y. Let A= {x|xelU”X;«x is an atom}.
It may be shown that X has a foundation if and only if Xe &#Y(4) for
some Y€ . It may be shown that if X has a foundation, then A is
the foundation of X.

3. Subuniverses. The content of §3 remains valid in the absence
of an axiom of choice. We define a subuniverse to be any class &~
such that for each set X, Xe & if and only if X< o

Suppose ¥~ is a subuniverse. Recall that all notions within the
theory may be defined in terms of the primitive notions element, class,

8 This may be shown by making obvious modifications in the discussion in [1, VI, §16].
There the function ¥ is such that ¥ («) = g#(0) for each a€0.
9 » is the first infinite ordinal number.



592 A. H. KRUSE

€ by use of the usual logical connectives and the notion of logical
identity (these are formalized in the first order predicate calculus with
equality). If the notions element, class, @€ ¥ are replaced by the
notions member of 7°, subclass of 27°, @€ ¥ C ¥  respectively and all
subsequent notions are modified accordingly, the axioms of set theory
give rise to new statements which may be proved from the original
axioms and the statement that 2¢° is a subuniverse. These observations
motivate the choice of the term subumniverse. (Cf. §8.)

Suppose " is a subuniverse. It may be proved by transfinite
induction that ve < for each ve . Thus ¢« < 2. Moreover, if
Xe7, then U*Xe 7. If Xe ", then &#%(X)e 7 for each ae .
Under the switch in terminology described in the previous paragraph,
ordinal number is invariant. The same is true of the “operators”
U* (@ = 0) and &#?(ae ”) when they are restricted to members of 7.
The same is true of many other notions, and this point will be belabored
no further here. (Cf. §8.)

From now on, 2 will be the universe (thus 7 is the largest sub-
universe), and 2, will be the class of all atoms.

For each class _# we define the Aull of .o~ to be the class

2 (7) = U{7(U* X) | [X, ale () x &} .

For each atom a we define the Aull of a to be the class 57(a) =
57 ({a}). For each object @ the hull of @ is the smallest subuniverse
of which @ is either a subclass or a member and may be called the
subuniverse generated by @.

The axiom of foundation is equivalent to the statement that 7/ =
o#(2/,). This fact and the observations in the second paragraph of § 3
constitute essentially the classical proof of the theorem that if the
axiomatic system under consideration is consistent, then the axiomatic
system constituted by the axioms of the system under consideration and
the axiom of foundation is consistent; this proof is often given when
2/,=20, as in [1, VI], and is due to J. von Neumann [8]. Observe
that 577(0) is the smallest subuniverse.

4. Amenable classes. Given _#Z and @, we shall say that @ makes
_# amenable if and only if _# is a class and @ is a function on
dom (_#') and for each xedom (_#), o(x) is a nonvoid set of elements
y such that [x,y]e 2. Given _# and @, we shall say that ¢ makes
A perfectly amenable if and only if @ makes _~Z amenable and for
all u,vedom (_»7), if

llu,yle Z}={yllv,yle Z},
then @(u) = @(v). Given _# we shall say that _7Z is [perfectly]
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amenable if and only if for some @, ® makes _# [perfectly] amenable.

Observe that if the class _# satisfies the condition in the stronger
(resp., strongest) version of the axiom of choice, then _# is amenable
(resp., perfectly amenable). Observe that if _# is a class and
{y|lx,yle 7} is a set for each element z, then _#~ is prefectly
amenable. In particular, each set is perfectly amenable.

THEOREM 1. Suppose o7 is a class and each subclass of 57°(.7) %
() 1s |perfectly] amenable. (Note. 57 () x () C S7(_4).)
Then each subclass of S7(.7) is [perfectly] amenable.”

Proof. Consider a class 7 C 57(%). Let
< ={lu, yllue A (); ye 7(); ue 7Y (U° y) for some ve 7},

There is a function, say +r, which makes &~ [perfectly] amenable. Then
dom (v) = dom (&) = 5#7°( ). Let

A" =A{[x, y]| v e S£(); for some uec A (¥), [x, ule ~#
and y € r(u)} .

Since 1~ C Z7(¥) x P(7), there is a function, say &, which makes
" |perfectly] amenable. For each xedom(_#), let 5(x) be the smal-
lest ve€ ¢ such that there are u,ye97(7) for which [z, u]le _~,
yeg(u) N E(x), and ue 7' (U”y) (the existence of such v follows from
the definitions of &, _s~, ¥, ). For each xedom (_~) let

u e 7P (U° v)l.
For each zedom (_#7),

p(x) < U{P“ (U v) |y € &(x)}

isaset. Now @ = {[z, p(x)]| # € dom (_~ )} makes _~ [perfectly] amena-
ble. Q.e.d.

COROLLARY 1.1. For each set X, each subclass of 57 (X) is perfectly
amenable.

10 This theorem and its corollaries and Remark 1 may be regarded as generalizations
of results of A. Tarski [7, (II)] and D. Scott [5]. Since both of these are concerned with
Zermelo-Fraenkel set theory, the role of classes in this paper is played by formulae in (7]
and [5]. In [5], reference is made to a similar idea of A. P. Morse. In [7, (IID)] it is ob-
served anew that the universe (which turns out to be %#(0)= U{z®0)|a€ &} in [T]) is ef-
fectively covered by a well-ordered ‘‘sequence’ of sets; this of course is clear in [8] and
[1, VI, §16], but is done in |7] via an intrinsic theory of ranks.
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COROLLARY 1.2. Suppose that each subclass of Zz x P(%,) 1s
[perfectly] amenable, and suppose that the axiom of foundation holds.
Then each class is [perfectly] amenable.

In the rest of this paper U (resp., ;) will be the statement that
every class is amenable (resp., perfectly amenable).

REMARK 1. Consider the statements:

(i) =, is void,

(ii) <z, is a set,

(iii) =, is equi-potent to a subclass of #,

(iv) There is a function 7 from 2 to ZP(%;) such that Z; =
U im(z).
It is easily established that

() = (i) = (i) = (iv) .

If the axiom of foundation holds, it is easily established from Corollary
1.2 that

(iv)=> A=A

THEOREM 2. Suppose U. Suppose that = 1is a class and that
B C ¥ X ¥ 18 a transitive and anti-reflexive relation. Suppose that
every subset of %= which is well-ordered by <& has an F-upper bound
wn . Then either & has an F-maximal member or for each ac 7,
& has a subset of type a under H*

Proof. Let 97 be the class of all nonvoid subsets of & which
are well-ordered by <2 and let .9 C % x & be the relation such
that for all We<sz and ce &2, W.9 ¢ if and only if w<Zc for each
we W. By U there is a function, say I', making .7~ amenable.

Consider ce & and a e ¢ such that @ > 0. Let I',(c) be the class
of all functions f from « to % such that f(0) = ¢ and such that for
each Bea with 8>0, f(B)el(im(f|B)). Then I',(c) is a set. To
prove this consider v e ~\{0} such that I",(c) is not a set while I'g(c) is
a set for each Be\{0}. If v =1, then I",(c) = {{[0, c]}} is a set contrary
to assumption. If v > 1 is not a limit ordinal, then I"(c) is equi-potent
to a subclass of

Iyo(e) x UL (m(f) | f e Iyile)}

11 The set LCZ has type a under < if and only if there is a one-to-one &-increasing
function from a onto L.

12 This generalized Zorn’s lemma, under the assumption that the axiom of foundation
and some condition such as (ii) (preferrably (i)) of Remark 1 hold, was suggested to the
writer by the referee. An earlier version of this paper used transfinite recursion arguments
rather than an analogue of Zorn’s lemma.
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and hence is a set contrary to assumption. If v > 1 is a limit ordinal,
then I",(c) is equi-potent to a class of functions from 7 to

U {le(0) [0 < 8 <}

and hence is a set contrary to assumption. Thus there is no first v € &7,
and hence no v e 7, such that I",(c) is not a set; thus /',(c) is a set.
Let

dofe) = U{l(0) [0 < B = a} .

By Zorn’s lemma 4,(c) has a member f maximal in 4,(c) under set-
inclusion. If dom (f) = a, then im(f) is a subset of & of type « under
. Suppose dom (f) #+ «. Then dom(f) is a nonlimit ordinal, for
otherwise im(f) has an .ZZ-upper bound d, which may be assumed to
be a member of I"(im(f)) and thus results in

S U {[dom (1), d]} € 4u(c)

contrary to the maximality of f in 4,(c). Since dom (f) is a nonlimit
ordinal <« and f is maximal in 4,(c), it may be verified that f(dom (f)—1)
is . “#-maximal.

The conclusion of the theorem follows from the preceding paragraph
if 0. Now 0 C & is well-ordered by <2 and has an .<Z-upper
bound in . Hence & # 0. Q.e.d.

REMARK 2. Theorem 2 remains valid if instead of supposing 2 one
supposes that & < &~ for some subuniverse ¢~ each subeclass of which
is amenable. (Cf. the second and third paragraphs of §3.)

5. The predicate {0 and its completion theorem. By Q(.o7, <;
w, p,0,7') will be meant the conjunction of (1)-(6) below.
(1) 7 isaclass, and < C & x 7 18 reflexive on 7 and partially
orders o7 .*
(2) For each set L C .o well-ordered by < there is at least one
be 7 that a <b for each a€ L.
(8) 7 is a function from &7 to the class of all sets.
(4) p is a function on < such that (4a)—(4c) below hold for all a, b,
ce 7, where we write “p!” instead of “o([a, b])”.
(4a) If a < b, then p! is a function from w(a) to w(b).
(4b) p: is the identity function on w(a).
(4e) If a <b and b<ec, P, = p;oph.
(5) 0 is a monzero limit ordinal number. For each set L C o7 of
type 0 under <, L has an <-upper bound be .7 such that w(b) =

18 < partially orders & if and only if & is a class, < is a relation, < is transitive
on 2, and for all a,be &, if a < b and b < a, then a = b.
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U {im (0i) |a € L}.

(6) = is a function on 7 such that 7'(a) is a subset of w(a) for
each ae€ 7 and such that for all a,be &7 with a < b, pi(p) € 7' (b)
for each per'(a).

Examples of O will be given later; at this point § 1 should be kept
in mind for motivation. Similar predicates will be considered later.
Suppose Q(7, <; 7, p,0,7'). (Then .o~ is determined by any one

of <, m, o, 7" since .o is the domain of each of <, 7, and dom (0).)

For each element a, a will be called <-7m-p-n’-complete if and only if

ac o and for each pen(a) and each be. o7 with a < b, pi(p)en'(b)

only if pen'(a).
The following theorem is the first completion theorem in this paper

which can be applied to the type of situation described in § 1.

THEOREM 3. Suppose U. Suppose Q. , <;w, p,7n’"). Then for
each ac o7 there is some <-mw-p-m'-complete b such that a < b.

Proof. Consider ac . Let &, = {b|a < b}. There in a relation
P, C &, X &, such that for all b, ce &, bF,c if and only if b<¢
and there is p e x(a) such that pi(p) ¢ 7'(b) and pi(p)en’'(c). It may be
verified that for all b,¢,de &, if both b < ¢ and ¢Zd or both bFAc
and ¢ < d, then b.2d. Then further, <2, is transitive and anti-reflexive.
Consider any set L c &, well-ordered by “#,. If L =0, a is an <#,-
upper bound of L. If L has an .&Z,maximum, L has an .ZZ,-upper
bound. If L #+ 0 and L has no Z#Z,-maximum, then, by (2), L has an
<-upper bound d, and it may be verified that d € &, and that d is an
“Z-upper bound of L. Let a be the smallest infinite cardinal greater
than the cardinal of w(a). Suppose L C &, has type o under .Z,. There
is a one-to-one “Z-increasing function @ from « onto L. By the axiom
of choice there is a function  from « into m(a) such that for each
rea, PpEN(p(\V))€n(e(V) and e (p(V) e T(P(M +1)). It may be
verified that + is one-to-one. Hence 7(a) has cardinal >a«, contradiction.
Thus no subset of %, has type a under <%,. By Theorem 2, %, has
an #-maximal member.

Again consider ae 7. There is a relation 7 C &, x &, such
that for all b, ce &, bs“c if and only if b # ¢ and ¢ is an <z-maximal
member of &,. Thus b.%%c implies @ < b < c. It may be verified that
for all b, ¢, de &,, if both b < ¢ and c¢.%d or both b.%c and ¢ < d, then
b.~2d. Then further, .7 is transitive and anti-reflexive. Consider any
set L ¢ &, well-ordered by .&,. If L =0, a is an .S4-upper bound of
L. If L has an .%%-maximum, L has an S-upper bound. If L +# 0
and L has no .%%-maximum, then, by (2), L has an <-upper bound d,
and it may be verified that d € &, is an S4-upper bound of L.
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Suppose L C &, has type ¢ under .&2. By (5), L has an <-upper
bound d such that zn(d) = U {im(0{)|be L}. Consider a such d. Then
a < d. It is desired to prove that d is <-m-p-7’-complete (briefly, com-
plete). Consider g € 7(d) and e € .o~ such that e+ d, d <e, and pi(q) € 7'(e).
For some be L and pen(db), ¢ = pi(p). Consider such b and p. Now
b4d. Hence d is -maximal, and not d<Ze. Since pi(p) = piq) e '(e)
and not d.Ze, ¢ = pi(p) ¢ 7'(d) is impossible. Hence qen'(d). Thus d
is complete.

Suppose there is no set L C %, having type 6 under &2. By
Theorem 2, %, has an .%%-maximal member, say b. Then a < b. By
the first paragraph of the proof, &, has an .Z%-maximal member, say
¢. If b+ ¢, then b.5%, and the .$%-maximality of b is contradicted.
Hence b = ¢. Thus b is “#-maximal. Thus b is complete.

Thus a < b for some complete b in any event. Q.e.d.

REMARK 3. Suppose 2. Suppose (1)-(4) and (6) are assumed (thus (5)
is not assumed). Then for each a € o7 there is be o7 such that a <b and
such that for each pe m(a) and each ce o7 with b < ¢, pi(p)en'(c) only
if pi(p)en'(b). This follows from the fact that the first paragraph of
the proof of Theorem 3 does not use (5).

REMARK 4. Theorem 3 and Remark 8 remain wvalid if instead of
supposing A one supposes that & U w < &~ for some subuniverse &~
each subclass of which is amenable. (Cf. the second and third paragraphs
of §3.)

By &*(.o7, <; m, 0, 7') will be meant that Q(&7, <; x, o, 4, ©’) holds
where po{la, b]) = {[p, p]| pe m(a)} for all a,be .o with a < b. Consider
&, <, mw p,0, 7 so given. {(4) may be restated: for all a, be o7 with
a < b, m(a) < w(b). (5) and (6) may be similarly simplified.

Suppose L*( o7, <; 7w, 0,7'). For each element a, a will be called
<-m-r’-complete if and only if a is <-w-p-7'-complete where p is given
as in the preceding paragraph. Then for each a € .7, a is <-7-7'-complete
if and only if for each be o7 with a < b, 7'(a) = n(a) N #'(b)."

6. The predicates P and R. By P(7, &, ¥, <) will be meant
the conjunction of (7)—(11) below and (2) above.
(7) o7 is a class, and <& 1s a function from o7 to the class of all
sets.
(8) ¥ is a class of triples (f, a,b) such that a,be o7 and f is a
Sunction from Z(a) into <#(b).”
14 This elegant formulation of <-z—n’-completeness is due to the referee.
15 In the rest of this paper certain terminology is as follows. For each set X an X-

tuple is a function on X. A tripleisa 3-tuple. A couple is a 2-tuple (x, p) = {[0, z], [1, ¥1}
and is to be distinguished from the pair [z, y].
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(9) If (f,a,b), (9,b,¢)e¥, then (gof,a,c)e¥.

10) If ac 7, X s a set, and f is a one-to-one function from <Z(a)
onto X, then there is one and only one be 7 such that <Z(b) =
X and (f,a,b), (f,b,a)c?.

11) <c ¥ x . Foralla,be &, a <bif and only if (f,,a,b)e¥
where f, = {[z, 2] |z € F(a)}.

The statement P(, &, ¥, <) will often hold in a situation in
which &7 is a species of mathematical systems, <#(a) is the base set
of a for each a € .o, f is 2 monomorphism from a to b for each (f,a,d)c 7,
and < is the subsystem relation for .&. In this same situation many
familiar examples of . and < are such that if L is given as in (2),
L has a least upper bound under <; this is the case in Examples 1
and 2 following but is not the case in Example 3.

ExampLE 1. Let .o~ be the class of all fields (i.e., triples (¥, +, )
with the usual properties), and let < be the subfield relation. Let

Zz ={(F, +, ), F]1|(F, +, -)e &},
Y={f,ab)l|a, be o; fis a monomorphism from a to b} .

Then B(r, &7, 7, <).

ExAMPLE 2. Let .o be the class of all groups (i.e., couples (G, )
with the usual properties), and let <, &#, ¥ be defined in the obvious
way in analogy with Example 1. Then B( o7, &, ¥, <).

ExaAMPLE 8. Let .o~ be the class of all topological spaces (i.e.,
couples (X, T') with the usual properties, T consisting of the open sub-
sets of X), and let < be the topological subspace relation. Let

Z ={X, T), X]|(X, T)e =},
U ={(f,a,bla be ;f is a homeomorphism of ¢ into b} .

Then P(7, &, ¥, <). Here (2) may be proved as follows. If L € o~
is a set well-ordered by <, let o(L) = (Y, U) where Y = U {<Z(a)|a € L}
and U={Z|Zc Y; XN ZeT for each (X, T)e L}. Given L as just
specified, a < o(L) for each a € L, but not necessarily is (L) a <-supremum
of L.

LemMA 1. Suppose P(7, 7, ¥, <), or suppose merely (7)-(11).
Then < s reflexive on &7 and partially orders 7.

Proof. Consider a e . o7. By (10) there is b € .~ such that <#(b) =
Z(a) and (f.,@,b), (fi',b,a)e?, where f, = f;* = f,of, is given as
in (11), and (f,,a,a)e? by (9). Hence a <a by (11). Thus < is
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reflexive on .. By (7), (8), (11), and (9), < is transitive. If ¢,d € &7 are
such that ¢ < d and d < ¢, then (f,, ¢, d), (fa, d,¢)e ¥ by (11), Z(c) =
Z(d) by (8), and ¢ = d by (10) (for f, = f., and (f,, ¢, ¢), (f:%¢,c) el
by < being reflexive on .&7). Thus < partially orders &7. Q.e.d.

LEMMA 2. Suppose P(7, #, ¥, <), or suppose merely (7)-(11).
If ¢ < a, then =7 (c) C F(a). Consider (f,a,b)e ¥ such that (f*,b,a)c ¥
(one could say that f is an isomorphism from a to b). Let 7 be the
class of all pairs [c, d] such that ¢ < a, d <b, (f| Z(c),¢c,d)e¥, and
(), d,c)e¥. Then F is a one-to-one function from {c|c < a}
onto {d|d < b}; moreover, for all ¢, < a and ¢, < a, ¢, < ¢, if and only
oWf F () < F (c;). (Ome could say that # 1is a <-preserving one-to-
one correspondence between the class of all subsystems of a and the
class of all subsystems of b induced by f.)

Proof. If ¢ < a, then <#(c) C Z(a) by (7), (8), and (11).

For the rest of Lemma 2 consider f, a, b, &# as specified.

Consider ¢ < a. Then <#(c) c < (a). By (10) there is a unique
de o7 with (f| Z(e), ¢, d), (f| Z(c)™, de)e¥. Then also, where f,
and f, are defined as in (11),

(fdr dy b) = (fofco(fl -%(C))Al! d’ b) e

by (11) and two applications of (9). Hence d <b. Moreover, (f| Z(c))™*=
ftZ(d) since ((f| Z(e)™ d,c)e¥. It follows that [e¢,d]le. 7.
Consider also e € .97 such that [¢,e] € & . By (8), Z#(e)=dom(f | Z(d))=
Z(d) since f is one-to-one (f~' is a function by (8)), and d =e by (10).

It follows that & is a function from {c|c¢ < a} into {d|d < b}.
Symmetrically, & ~'is a function from {d|d < b} into {c|c¢ < a}. Hence
& is a one-to-one function from {c|c < a} onto {d|d < b}.

Now consider ¢,, ¢, € .7 such that ¢,<¢,<a. Then (f| Z(c,), ¢;, 7 (¢c,)),
((f] Fe))Y, F (cy),c)e¥. Let < be defined in terms of f| .<Z(c,), ¢,
Z (¢,) as & is defined in terms of f,a,b. Then & < & . Moreover,
Z(¢;) < . (¢,) since & is a function from {c|c < ¢,} onto {d|d < .F (¢c.)}.
Hence & (c) = Z(c) < F (cy).

Symmetrically, if ¢, <a, ¢,<a, and & (¢) < Z (¢c,), then ¢, =
F HF ()< F T (c)) = ¢, Q.ed.

By X7, 2, ¥, <;r, p,0,7";S,0) will be meant the conjunction
of (1)-(11) above and (12)-(18) below, i.e., the conjunction of
P, 7,7V, <), Q, <;rm, p,0,7'), (12), and (13); by Lemma 1, (1)
is redundant.

(12) S is a set; for each ac o7, w(a)e 57 ({a} U S) = =£(Z(a) U S).
(18) 6 is a function on {(f, a, b)|(f, @, b), (f7, b, a)e ¥}, and (132)—(13c)
below hold, where we write “(6f).” instead of “6((f, a, b))”.
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(13a) If (f, a, b) e dom (6), then (6f). is a function from w(a) into
7(b), and (6f)i(p) e w'(b) for each pe ' (a).
(13b) If ae Y and f, is the identity function on <& (a) (cf. (11)),
then (0f,)% is the identity function on w(a).
18c) If (f,a,b)edom (@), c¢<a, d=<b, ¢g=rf|F@), and
(9, ¢, d) e dom (8), then p)o(0g)¢ = (0f),0p:. (Cf. Lemma 2.)
Both £ and R furnish settings for problems of the type described
in §1, but R entails a functorial type of structure ignored by L and
present in most explicit problems of the type described in §1.
By R, 2 ,¥, <;=w, d,7’; S, 6) will be meant that R( o7, &7, T, <;
w, p,d,7'; S, 8) holds where p([a, b]) = {[p, p] | p € n(a)} for all a,be &~
with a < b.

ExAMPLE 1 (continued). Let 7 and 7’ be functions on & such
that for each a = (&, +, -) e o7, w(a) is the set of all finite sequences™
of members of . and

'(a) = {p e w(a) [jeg),(m p(7)x’ =0 for some xcF}.

Let 6 be the function with domain indicated in (12) such that (in the
notation of (12)) for each (f, a, b) e dom (0), (67);, is a function from 7(a)
into 7(b), and (6f), = fop for each pemn(a). Then R*(o, &, ¥, <;
T, 0,7';0,0)" A field ae o is <-m-n’-complete if and only if o is
algebraically closed (algebraically complete would be a better term).™

EXAMPLE 2 (continued). Let pte . Let 7 be the function on .o/
such that for each a = (G, ) e o7, n(a) is the set of all couples (X, Y)
such that (i) and (ii) below hold.

(i) X U Y is a set of triples (g, h,7) of finite sequences g, h,J such
that dom (g) = dom (k) = dom (7), im(9) < G, im(h) is a set of integers,

and im(j) C W..

(ii) The cardinal of X U Y is <W,.

Let 7’ be the function on .o~ such that for each a = (G, ) o7, 7'(a)
is the set of all (X, Y)en(a) for which there is a function k: ®.— G
such that (¢ being the neutral element of G under -)

= ¢ for each (g9, h,j)ec X,

I J@RGE™ | ¢or each (g1, e Y.

aw€dom

16 A finite sequence is any element which is an n-tuple for some 7€ w.

17 o(a) will serve as a set-theoretically meaningful substitute for the ‘‘class” of poly-
nomial equations over a. =/(a) gives rise to the ‘‘class’’ of polynomial equations over a
with solutions in a.

18 As is well-known, a field a is algebraically closed if and only if every nontrivial
polynomial equation over @ has a root in ¢. The proof of this of course uses information
about the nature of the elements of ; information of this type has no bearing on the
methods of this paper.
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Let 6 be the function with domain indicated in (12) such that (in the
notation of (12)) for each (f, a, b) e dom (0), (6f); is a function from 7(a)
into 7(b), and for each (X, Y) € m(a),

0f)((X, Y)) = ({(fog, b, 5) (9, h, 5) € X}, {(fog, h,5) | (g, h, )€ Y}) .

Then R (o7, #,¥, <; 7, Wus1, ©;0,0).° A group ac.& is <-w-n'-
complete if and only if a is algebraically closed (¥,.) in the sense of
W. R. Scott [6] (algebraically complete (W.) would be a better term).

7. The completion theorem for R. The second completion theorem
in this paper is Theorem 4 below and can be applied to the type of
situation desecribed in § 1 without the assumption 2.

LEMMA 3. Suppose P(o7, Z, ¥, <); suppose 7 1is a subuniverse,
and suppose that for each ae 7, ae ¥ if and only if F(a)e ¥ .
Then Wy N ¥, Z NZ, T N¥,<NI)

Proof. The proofs of the statements obtained from (7)-(11) by
replacing &, 72,0, < by S NY , B N7, ¥NY, <N respectively
are routine.

Consider any set L < o N 2" well-ordered by < N ¥°. By (2), L
has an <-upper bound, say b. Let B, = U {“#(a)|ac L}. By Lemma
2, B, c <7(b). There is some a e 7 such that a\B; is equi-potent with
Z (b)\B;, and for such an « there is a one-to-one function f from <Z(b)
onto « U B; such that f(x) = x for each xze€ B,. Consider such « and
f. By (10) there is ce . o such that <Z(¢c) =a U B, and (f,Db,c),
(f, ¢, b)e?; consider @ such ¢. For each ae o let f, be as in (11).
For each ae L, (f,,a,b)e¥ by (11), hence (since also (f, b, c)e ¥ and
fofe=1r ) (fo,a,6)e¥ by (9), and hence a <c¢ by (11). Moreover,
Z(c)=a U B,e >, and hence ce 7.

The statement obtained from (2) by replacing .o, &%, ¥, < by
X NY, B NY,¥NY, <U¥ respectively follows from the previous
paragraph. Q.e.d.

LEMMA 4. Suppose (o7, 7, ¥, <;w, p,0,7';8S,0), and suppose
7" 1s a subuniverse and S€¥". Then (¥ N ¥, F N¥, T N ¥,
<N iTN 7,00 78,7 N 738,600 F).

Proof. The obvious analogues of (2)-(13) must be proved (recall

19 n(aq) will serve as a set-theoretically meaningful substitute for the ‘‘class” of all
systems of fewer than X, simultaneous equations and inequations over a in fewer than
®,, unknowns, each equation (resp., inequation) equating (resp., inequating) a product of
elements of ¢ and unknowns to the neutral element of a. ='(a) gives rise to the class of
such systems with solutions in a.
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that (1) follows from (2)-(13)). By (12), for each ae€ &7, a€ 7 if and
only if “(a)e #". Then for (2) and (7)-(11) apply Lemma 3. The
proof of the analogue of the conjunction of (8) and (12) is routine.
Then also the proofs of the analogues of (4), (6), and (13) are routine.

Consider any set L ¢ .7 N <7 of type 0 under < N 2¢°. Let b be given
by (56). There are B;, «, and ¢ as in the second paragraph of the proof
of Lemma 3. Then ce &7 N 277, and a < ¢ for each a e L. Moreover,
(fyb,¢0), (f7¢c,b)e¥, and hence w(c) = im((6f);) by (13). Let & be
the class of all pairs [d, ¢] such that d <b, e<e¢, (f| Z),d,e)e?,
and (f| Z(e),e,d)e¥. By Lemma 2, & is a one-to-one <-preserving
function from {d|d < b} onto {e|e <c¢}. Moreover, for each acL,
S| & (a) = f, where f, is as in (11), and hence & (a) = a. By (5) and
(13),

(e) = im((0£);) = U {im((6f);°05) | @ € L}
= U {im(0zo (6.):) @ € L} = U {im(03) |a € L} .

The obvious analogue of (5) follows from the previous paragraph.
Q.e.d.

LemMA 5. Suppose 7, <7, ¥, <; w, p,0,7'; S, 0), suppose 7~ is
a subuniverse, and suppose S€ ¥ and ac. ¥ ¥ . Then a 1is
<-m-p-7'-complete if and only if a is (X N ) N X )(eN X )(x' N¥")-
complete.

Proof. Trivially, if a is <-m-p-n'-complete, a is (X N Z7)-(x N ¥7)-
(o N )" N ¥")-complete (briefly, 2 -complete).

Suppose a is 7 -complete. Consider p€ n(a) and be & such that
a <b and pPi(p)en'(b). Let L = {a}, and consider f and ¢ obtained from
L and b as in the second paragraph of the proof of Lemma 3. Then
ce ¥ N7, and a < c¢. Moreover, (f,b,¢),(f ¢ b)e¥?,and f| Z(a)=
f., wWhere f, is as in (11). By (13), (f, b, ¢) e dom (9), and

(D) = (020 (0f)D)(®) = ((0f);° 0)(p) = (0F )i(a(p)) € w'(c)

since Pi(p)en'(b). Since a is ¥ -complete, pen’(a). It now follows
that a is <-mw-p-r’-complete. Q.e.d.

THEOREM 4. Suppose R, #,¥,<;n,p,0,7';8S,0). Then for
each a€ o7 there is some <-mw-p-r’-complete b such that a < b.

Proof. Consider a€ . o7. Let 7 = 27/ (#(a) US). Then ¥ is a
subuniverse, and each subclass of 2”7 is amenable by Corollary 1.1. By
Lemma 4, R N ¥, Z N, TN, <N;7NT,0NT,0,
T”N¥;S,0NY). Hence QN ,<N¥;,anN7,0N,0,
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7' N 7). Also, ae". By Remark 4 applied to Theorem 3, a < b for
some (< N )@ N )N ¥ )@ N ¥ )complete b, and a such b is
<-m-p-r’-complete by Lemma 5. Q.e.d.

ExAMPLE 1 (concluded). By Theorem 4 every field is a subfield of
an algebraically closed field (this is a classical theorem of E. Steinitz).

ExAMPLE 2 (concluded). By Theorem 4 every group is a subgroup
of an algebraically closed (¥,.) group (W. R. Scott [6]).

REMARK 5. We now return to the point raised at the end of §1.
Suppose the stronger version of the axiom of choice holds. Then Theo-
rem 1 is fairly easy to prove in two steps, each step consisting of a
(transfinite) recursive definition which parallels an application of Theorem
2 in the previous proof of Theorem 3. Given a< .9, the first step
leads to be .7 with the relationship to a given in Remark 3; the re-
cursive definition leading to b is facilitated by a well-ordering of 7w(a).
Given a€ ., we next define by transfinite induction a family {a,},<s
of members of .o such that a, = a, « < 8 < 0 implies a, < ag, and for
each a < 0 the relation between «, and a,,, is the same as the relation
between a and b in the first step. The second step is capped by ap-
pealing to (5) to get a <-m-p-n'-complete be & with ¢ < b. In many
proofs in the literature following somewhat the pattern just outlined
(e.g., one of the usual proofs of the theorem at the end of Example
1 and the proof in [6] of the theorem at the end of Example 2), the
justification of the inductive definitions has been ignored. This amounts
to allowing the proof to be infinite (but “well-ordered”) and thereby
incapable of being effectively expressed—it is left unchecked whether
the transfinite succession of choices in an inductive definition may be
replaced by a single choice function. This point gains interest in Zermelo-
Fraenkel set theory (with no classes), in which the stronger version of
the axiom of choice is unavailable.

Essentially the pattern of proof outlined in Remark 5 could be used
to prove Theorem 3. The pattern would have to be modified to include
devices enabling the recursive definitions to proceed on the basis of the
weak version of the axiom of choice. The proof thereby would become
substantially more complex than the simple pattern of Remark 5. In
some proofs in the literature following roughly the pattern of proof in
Remark 5, each step of each recursive definition in the proof is uniquely
prescribed by an explicit “construction”. The objection raised at the
end of Remark 5 is thus obviated. For example, in [2, pp. 9-10] the
proof of R. Baer’s theorem that every module over a ring with unity
is a submodule of an injective module (over the same ring) follows such
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a pattern.

It is clear that the technique of Example 2 may be applied to many
other species of algebraic systems. For example, one may define a ring
r to be W.-complete if and only if (roughly) every system of fewer than
. polynomial equations and inequations in fewer than' ¥, unknowns
(here a polynomial is a sum of words in ring elements and unknowns)
that has no solution in 7 has no solution in any ring having = as a
subring. Then every ring is a subring of an ,-complete ring. One
may express similar theorems for ordered rings, ordered groups, nonas-
sociative rings, etc. In such examples, the set S in Theorem 4 might
arise from a fixed set of operators or coefficient domain.

The predicate R* is more convenient than R in all examples indicated
so far. A general class of examples in which R seems not to reduce
to R* will now be indicated in rough terms.

Suppose that & and &, are categories (in the usual Eilenberg and
MacLane sense) of mathematical systems and their homomorphisms, and
suppose that @ is a covariant functor from & to &,. The informal
language of §1 will now be used. Let .o (resp., .%4) be the class of
systems in & (resp., &,). Let <, be the subsystem relation for .o7.
For all a,be o7, let “a < b” mean that a is a subsystem of b and the
inclusion-induced homorphism from @(a) to @(b) is a monomorphism. For
each ce 9F let m(c) be a set of propositional forms involving unknowns,
and let wi(c) be the set of all forms in 7(¢) with solutions relative to c.
For each a € o let n(a) = 7(@(a)) and 7'(a) = w(@(a)). For simplicity,
let us suppose that m(c) C 7(d) and 7zi(c) < wy(d) for all ¢,de .o for
which ¢ < d (thus, for the subscript 0 case, we are thinking in terms
of NR* rather that R). Now for a, be & with a < b we cannot conclude
that @(a) <, @(b)—there merely being an inclusion-induced (via @) mono-
morphism from @(a) to @(b), which we now assume gives rise to a natural
map P, from w(a) into w(b); thus, in lieu of an inclusion relation
T(@(a)) C w(@(b)) we postulate the existence of p%: 7(@(a)) — 7, (D(D)).
We may say that a € &7 is complete if and only if for each b e o7 with
a < b and each p e m(a): if p has no solution relative to @(a), then pi(p)
has no solution relative to @(b). For such <, =, o, 7', we must think
in terms of R rather than R*.

The writer intends to apply the principles of the preceding paragraph
to algebraic topology in another paper. The set S in Theorem 4 will
arise from the coefficient group of a homology theory.

8. (Added in proof.) Remarks on subuniverses. Since writing the
preceding part of this paper the writer has read the work of J. C.
Shepherdson [9] on inner models for set theory. Although [9] does not
admit atoms, it could easily be modified to do so. Following [9, Part
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I, page 186, and Part II, page 225], we may say that a class &~ deter-
mines o super-complete model if and only if : If the notions element,
class, @ ¥ are replaced by the notions member of 7, subclass of 7,
© € ¥ C 7 respectively (and all subsequent notions are modified accord-
ingly), the axioms of set theory give rise to new statements which are
true.

The definition of determines a super-complete model just given may
easily be rendered in the primitive formalism of axiomatic set theory.
Observe from §3 that every subuniverse determines a super-complete
model. The invariance of ordinal number and many other notions
under the switch in terminology mentioned in § 8 is then a consequence
of the results of [9, Part I, §2] extended to the case in which the
existence of atoms is allowed.

It is easy to prove that for each class °, " is a subuniverse if
and only if &° determines a super-complete model and each subset of
2 i1s a member of &,
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